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18
Probability and Statistics

18.1 Probability and Event

18.1.1 Sample Space and Event

Probability is related to the uncertainty and randomness of the world.
It measures the likelihood of some outcome or event happening. To
formalize this concept, we introduce the following definition:

Definition 18.1.1 (Sample Space and Event). A set S of all possible
outcomes of a random phenomenon in the world is called a sample space. A
subset A ⊂ S is called an event.

Example 18.1.2. The sample space of “the outcome of tossing two dice” is the
set S = {(1, 1), (1, 2), . . . , (6, 6)} of 36 elements. The event “the sum of the
numbers on the two dice is 5” is the subset A = {(1, 4), (2, 3), (3, 2), (4, 1)}
of 4 elements.

18.1.2 Probability

Given a sample space S, we define a probability for each event A of
that space. This probability measures the likelihood that the outcome
of the random phenomenon belongs A.

Definition 18.1.3 (Probability). A probability Pr : S → R≥0 is a
mapping from each event A ⊂ S to a non-negative real number Pr[A] ≥ 0
such that the following properties are satisfied:

1. 0 ≤ Pr[A] ≤ 1 for any A ⊂ S

2. Pr[S] = 1

3. For any countable collection {A1, A2, . . .} of events that are pairwise
disjoint (i.e., Ai ∩ Aj = ∅ for any i ̸= j),

Pr

[
∞⋃

i=1

Ai

]
=

∞

∑
i=1

Pr[Ai]



226 introduction to machine learning lecture notes for cos 324 at princeton university

When the sample space is finite or countably infinite, 1 the properties above 1 A countably infinite set refers to a set
whose elements can be numbered with
indices. The set N of natural numbers
or the set Q of rational numbers are
examples of countably infinite sets.

can be simplified into the following condition:

∑
x∈S

Pr[{x}] = 1

Example 18.1.4. Consider the sample space of “the outcome of tossing two
dice” again. Assuming the two dice are fair, the probability of each outcome
can be defined as 1/36. Then the probability of the event “the sum of the
numbers on the two dice is 5” is 4/36.

Example 18.1.5. We are picking a point uniformly at random from the sam-
ple space [0, 2]× [0, 2] in the Cartesian coordinate system. The probability of
the event that the point is drawn from the bottom left quarter [0, 1]× [0, 1] is
1/4.

18.1.3 Joint and Conditional Probability

In many cases, we are interested in not just one event, but multiple
events, possibly happening in a sequence.

Definition 18.1.6 (Joint Probability). For any set of events A =

{A1, . . . , An} of a sample space S, the joint probability of A is the proba-
bility Pr[A1 ∩ . . .∩ An] of the intersection of all of the events. The probability
Pr[Ai] of each of the events is also known as the marginal probability.

Example 18.1.7. Consider the sample space of “the outcome of tossing two
dice” again. Let A1 be the event “the number on the first die is 1” and let
A2 be the event “the number on the second die is 4.” The joint probability of
A1, A2 is 1/36. The marginal probability of each of the events is 1/6.

It is also useful to define the probability of an event A, based on
the knowledge that other events A1, . . . , An have occurred.

Definition 18.1.8 (Conditional Probability). For any event A and any
set of events A = {A1, . . . , An} of a sample space S, where Pr[A1 ∩ . . . ∩
An] > 0, the conditional probability of A given A is

Pr[A | A1, . . . , An] =
Pr[A ∩ A1 ∩ . . . ∩ An]

Pr[A1 ∩ . . . ∩ An]

Example 18.1.9. Consider the sample space of “the outcome of tossing
two dice” again. Let A1 be the event “the number on the first die is 1” and
let A2 be the event “the sum of the numbers on the two dice is 5.” The
conditional probability of A1 given A2 is 1/4. The conditional probability of
A2 given A1 is 1/6.

Using the definition of a conditional probability, we can define a
formula to find the joint probability of a set A of events of a sample
space.
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Proposition 18.1.10 (Chain Rule for Conditional Probability). Given a
set A = {A1, . . . , An} of events of a sample space S, where all appropriate
conditional probabilities are defined, we have the following

Pr[A1 ∩ . . . ∩ An] = Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 ∩ . . . ∩ An]

= Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 | A3 ∩ . . . ∩ An] · Pr[A3 ∩ . . . ∩ An]

...

= Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 | A3 ∩ . . . ∩ An] · · ·Pr[An]

Finally, from the definition of a conditional probability, we see that

Pr[B | A]Pr[A] = Pr[A ∩ B] = Pr[A | B]Pr[B]

This shows that

Pr[B | A] =
Pr[A | B]Pr[B]

Pr[A]

This is known as the Bayes’s Rule.

18.1.4 Independent Events

Definition 18.1.11 (Independent Events). Two events A, B are indepen-
dent if Pr[A], Pr[B] > 0 and

Pr[A] = Pr[A | B]

or equivalently
Pr[B] = Pr[B | A]

or equivalently
Pr[A ∩ B] = Pr[A] · Pr[B]

Example 18.1.12. Consider the sample space of “the outcome of tossing
two dice” again. Let A1 be the event “the number on the first die is 1” and
let A2 be the event “the number on the second die is 4.” A1 and A2 are
independent.

Example 18.1.13. Consider the sample space of “the outcome of tossing two
dice” again. Let A1 be the event “the number on the first die is 1” and let
A2 be the event “the sum of the numbers on the two dice is 5.” A1 and A2

are not independent.

18.2 Random Variable

In the previous section, we only learned how to assign a probability
to an event, a subset of the sample space. But in general, we can
assign a probability to a broader concept called a random variable,
associated to the sample space.
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Definition 18.2.1 (Random Variable). Given a sample space S, a mapping
X : S → R that maps each outcome x ∈ S to a value i ∈ R is called a
random variable.

Example 18.2.2. Consider the sample space of “the outcome of tossing two
dice” again. Then the random variable X = “sum of the numbers on the two
dice” maps the outcome (1, 4) to the value 5.

Definition 18.2.3 (Sum and Product of Random Variables). If
X, X1, . . . , Xn are random variables defined on the same sample space S
such that X(x) = X1(x) + . . . + Xn(x) for every outcome x ∈ S, then we
say that X is the sum of the random variables X1, . . . , Xn and denote

X = X1 + . . . + Xn

If X(x) = X1(x)× . . .× Xn(x) for every outcome x ∈ S, then we say that
X is the product of the random variables X1, . . . , Xn and denote

X = X1 · · ·Xn

Example 18.2.4. Consider the sample space of “the outcome of tossing two
dice” again. Then the random variable X = “sum of the numbers on the two
dice” is the sum of the two random variables X1 = “the number on the first
die” and X2 = “the number on the second die.”

18.2.1 Probability of Random Variable

There is a natural relationship between the definition of an event
and a random variable. Given a sample space S and random variable
X : S→ R, the “event that X takes a value in B” is denoted Pr[X ∈ B].
It is the total probability of all outcomes x ∈ S such that X(x) ∈ B. In
particular, the event that X takes a particular value i ∈ R is denoted
as X = i and the event that X takes a value in the interval [a, b] is
denoted as a ≤ X ≤ b and so on.

Example 18.2.5. Consider the sample space of “the outcome of tossing two
dice” and the random variable X = “sum of the numbers on the two dice”
again. Then

Pr[X = 5] = Pr[{(1, 4), (2, 3), (3, 2), (4, 1)}] = 4/36

Often we are interested in the probability of the events of the form
X ≤ x. Plotting the values of Pr[X ≤ x] with respect to x completely
identifies the distribution of the values of X.

Definition 18.2.6 (Cumulative Distribution Function). Given a random
variable X, there is an associated cumulative distribution function (cdf)
FX : R→ [0, 1] defined as

FX(x) = Pr[X ≤ x]
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Proposition 18.2.7. The following properties hold for a cumulative distribu-
tion function FX :

1. FX is increasing

2. lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1

18.2.2 Discrete Random Variable

If the set of possible values of a random variable X is finite or count-
ably infinite, we call it a discrete random variable. For a discrete ran-
dom variable, the probability Pr[X = i] for each value i that the
random variable can take completely identifies the distribution of X.
In view of this fact, we denote the probability mass function (pmf) by

pX(i) = Pr[X = i]

Proposition 18.2.8. The following properties hold for a probability mass
function pX :

1. ∑
i

pX(i) = 1

2. FX(x) = ∑
i≤x

pX(i)

18.2.3 Continuous Random Variable

We now consider the case where the set of all possible values of
a random variable X is an interval or a disjoint union of intervals
in R. We call such X a continuous random variable. In this case, the
probability of the event X = i is zero for any i ∈ R. Instead, we care
about the probability of the events of the form a ≤ X ≤ b.

Definition 18.2.9 (Probability Density Function). Given a continuous
random variable X, there is an associated probability density function
(pdf) fX : R→ R≥0 such that

Pr[a ≤ X ≤ b] =
∫ b

a
f (x)dx

for any a, b ∈ R.

Proposition 18.2.10. The following properties hold for a probability density
function fX :

1.
∫ ∞
−∞ fX(x)dx = 1

2. FX(x) =
∫ x
−∞ fX(y)dy
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18.2.4 Expectation and Variance

Definition 18.2.11 (Expectation). The expectation or the expected value
of a discrete random variable X is defined as

E[X] = ∑
i

i · pX(i) = ∑
i

i · Pr[X = i]

where pX is its associated probability mass function. Similarly, the expecta-
tion for a continuous random variable X is defined as

E[X] =
∫ ∞

−∞
x · fX(x)dx

where fX is the associated probability density function. In either case, it is
customary to denote the expected value of X as µX or just µ if there is no
source of confusion.

Example 18.2.12. Consider the sample space of “the outcome of tossing one
die.” Then the expected value of the random variable X = “the number on
the first die” can be computed as

E[X] = 1 · 6
36

+ 2 · 6
36

+ 3 · 6
36

+ 4 · 6
36

+ 5 · 6
36

+ 6 · 6
36

= 3.5

Proposition 18.2.13 (Linearity of Expectation). If X is the sum of the
random variables X1, . . . , Xn, then the following holds:

E[X] = E[X1] + . . . + E[Xn]

Also, if a, b ∈ R and X is a random variable, then

E[aX + b] = aE[X] + b

Example 18.2.14. Consider the sample space of “the outcome of tossing two
dice.” Then the expected value of the random variable X = “the sum of the
numbers of the two dice” can be computed as

E[X] = 3.5 + 3.5 = 7

since the expected value of the number on each die is 3.5.

Definition 18.2.15 (Variance). The variance of a random variable X, whose
expected value is µ, is defined as

Var[X] = E[(X− µ)2]

Its standard deviation is defined as

σX =
√

Var[X]

It is customary to denote the variance of X as σ2
X .
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Proposition 18.2.16. If a ∈ R and X is a random variable, then

Var[aX] = a2Var[X] σaX = |a| σX

Problem 18.2.17. Prove Chebyshev’s inequality:

Pr[|X− µ| ≥ kσ] ≤ 1
k2

for any k > 0. (Hint: Suppose the probability was greater than 1/k2. What
could you conclude about E[(X− µ)2]? )

18.2.5 Joint and Conditional Distribution of Random Variables

Just as in events, we are interested in multiple random variables
defined on the sample space.

Definition 18.2.18 (Joint Distribution). If X, Y are discrete random
variables defined on the same sample space S, the joint probability mass
function pX,Y is defined as

pX,Y(i, j) = Pr[X = i, Y = j]

where the event X = i, Y = j refers to the intersection (X = i) ∩ (Y = j).
If X, Y are continuous random variables defined on S, there is an as-

sociated joint probability density function fX,Y : R → R≥0 such
that

Pr[a ≤ X ≤ b, c ≤ Y ≤ d] =
∫ d

c

∫ b

a
fX,Y(x, y)dxdy

The joint probability mass/density function defines the joint distribution of
the two random variables.

Definition 18.2.19 (Marginal Distribution). Given a joint distribution
pX,Y or fX,Y of two random variables X, Y, the marginal distribution of X
can be found as

pX(i) = ∑
j

pX,Y(i, j)

if X, Y are discrete and

fX(x) =
∫ ∞

−∞
fX,Y(x, y)dy

if continuous. We can equivalently define the marginal distribution of Y.

Definition 18.2.20 (Conditional Distribution). Given a joint distribution
pX,Y or fX,Y of two random variables X, Y, we define the conditional
distribution of X given Y as

pX | Y(i | j) =
pX,Y(i, j)

pY(j)
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if X, Y are discrete and

fX | Y(x | y) =
fX,Y(x, y)

fY(y)

if continuous. We can equivalently define the marginal distribution of Y
given X.

18.2.6 Bayes’ Rule for Random Variables

Sometimes it is easy to calculate the conditional distribution of X
given Y, but not the other way around. In this case, we can apply
the Bayes’ Rule to compute the conditional distribution of Y given X.
Here, we assume that X, Y are discrete random variables. By a simple
application of Bayes’ Rule, we have

Pr[Y = j | X = i] =
Pr[X = i | Y = j]Pr[Y = j]

Pr[X = i]

Now by the definition of a marginal distribution, we have

Pr[X = i] = ∑
j′

Pr[X = i, Y = j] = ∑
j′

Pr[X = i | Y = j′]Pr[Y = j′]

for all possible values j′ that Y can take. If we plug this into the
denominator above,

Pr[Y = j | X = i] =
Pr[X = i | Y = j]Pr[Y = j]

∑
j′

Pr[X = i | Y = j′]Pr[Y = j′]

Example 18.2.21. There is a coin, where the probability of Heads is
unknown and is denoted as θ. You are told that there is a 50% chance that it
is a fair coin (i.e., θ = 0.5) and 50% chance that it is biased to be θ = 0.7.
To find out if the coin is biased, you decide to flip the coin. Let D be the
result of a coin flip. Then it is easy to calculate the conditional distribution
of D given θ. For example,

Pr[D = H | θ = 0.5] = 0.5

But we are more interested in the probability that the coin is fair/biased
based on the observation of the coin flip. Therefore, we can apply the Bayes’
Rule.

Pr[θ = 0.7 | D = H] =
Pr[D = H | θ = 0.7]Pr[θ = 0.7]

Pr[D = H]

which can be calculated as

Pr[D = H | θ = 0.7]Pr[θ = 0.7]
Pr[D = H | θ = 0.7]Pr[θ = 0.7] + Pr[D = H | θ = 0.5]Pr[θ = 0.5]

=
0.7 · 0.5

0.7 · 0.5 + 0.5 · 0.5
≃ 0.58
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So if we observe one Heads, there is a 58% chance that the coin was biased
and a 42% chance that it was fair.

Problem 18.2.22. Consider Example 18.2.21 again. This time, we decide to
throw the coin 10 times in a row. Let N be the number of observed Heads.
What is the probability that the coin is biased if N = 7?

18.2.7 Independent Random Variables

Analogous to events, we can define the independence of two random
variables.

Definition 18.2.23 (Independent Random Variables). Two discrete
random variables X, Y are independent if for every i, j, we have

pX(i) = pX | Y(i | j)

or equivalently,

pY(j) = pY | X(j | i)

or equivalently

pX,Y(x, y) = pX(x) · pY(y)

Two continuous random variables X, Y are independent if the analogous
conditions hold for the probability density functions.

Definition 18.2.24 (Mutually Independent Random Variables). If any
pair of n random variables X1, X2, . . . , Xn are independent of each other,
then the random variables are mutually independent.

Proposition 18.2.25. If X1, . . . , Xn are mutually independent random
variables, the following properties are satisfied:

1. E[X1 · · ·Xn] = E[X1] · · ·E[Xn]

2. Var[X1 + . . . + Xn] = Var(X1) + . . . + Var(Xn)

We are particularly interested in independent random variables
that have the same probability distribution. This is because if we
repeat the same random process multiple times and define a random
variable for each iteration, the random variables will be independent
and identically distributed.

Definition 18.2.26. If X1, . . . , Xn are mutually independent random
variables that have the same probability distribution, we call them indepen-
dent, identically distributed random variables, which is more commonly
denoted as iid or i.i.d. random variables.
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18.3 Central Limit Theorem and Confidence Intervals

Now we turn our attention to two very important topics in statistics:
Central Limit Theorem and confidence intervals.

You may have seen confidence intervals or margin of error in the
context of election polls. The pollster usually attaches a caveat to the
prediction, saying that there is some probability that the true opinion
of the public is ±ϵ of the pollster’s estimate, where ϵ is typically a
few percent. This section is about the most basic form of confidence
intervals, calculated using the famous Gaussian distribution. It
also explains why the Gaussian pops up unexpectedly in so many
settings.

A running example in this chapter is estimating the bias of a coin
we have been given. Specifically, Pr[Heads] = p where p is unknown
and may not be 1/2. We wish to estimate p by repeatedly tossing the
coin. If we toss the coin n times, we expect to see around np Heads.
Confidence intervals ask the converse question: after having seen the
number of heads in n tosses, how “confidently” can we estimate p?

18.3.1 Coin Tossing

Suppose we toss the same coin n times. For each i = 1, 2, . . . , n, define
the random variable Xi as an indicator random variable such that

Xi =

1 i-th toss was Heads

0 otherwise

It is easily checked that X1, . . . , Xn are iid random variables, each
with E[Xi] = p and Var[Xi] = p(1− p). Also if we have another
random variable X = “number of heads,” notice that X is the sum of
X1, . . . , Xn. Therefore, E[X] = np and Var[X] = np(1− p).

Problem 18.3.1. Show that if Pr[Heads] = p then E[X] = np and
Var[X] = np(1− p). (Hint: use linearity of expectation and the fact that
Xi’s are mutually independent.)

Suppose p = 0.8. What is the distribution of X? Figure 18.1 gives
the distribution of X for different n’s.

Let’s make some observations about Figure 18.1.

Expected value may not happen too often. For n = 10, the expected
number of Heads is 8, but that is seen only with probability 0.3. In
other words, with probability 0.7, the number of Heads is different
from the expectation. 2 2 In such cases, expectation can be a

misleading term. It may in fact be never
seen. For instance, the expected number
of eyes in an individual drawn from
the human population is somewhere
between 1 and 2 but no individual has a
non-integral number of eyes. Thus mean
value is a more intuitive term.

The highly likely values fall in a smaller and smaller band around the
expected value, as n increases.

For n = 10, there is a good chance that the number of Heads is
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Figure 18.1: Distribution of X when we
toss a coin n times, and p = 0.8. The
plots were generated using a calculator.

quite far from the the expectation. For n = 100, the number of
Heads lies in [68, 90] with quite high probability. For n = 1000 it
lies in [770, 830] with high probability.

The probability curve becomes more symmetrical around the mean. Contrast
between the case where n = 10 and the case where n = 100.

Probability curve starts resembling the famous Gaussian distribution .
Also called Normal Distribution and in popular math, the Bell curve,
due to its bell-like shape.

18.3.2 Gaussian Distribution

We say that a real-valued random variable X is distributed according
to N (µ, σ2), the Gaussian distribution with mean µ and variance σ2,
if

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (18.1)

It is hard to make an intuitive sense of this expression. The following
figure gives us a better handle.

Figure 18.2: Cheatsheet for the Gaus-
sian distribution with mean µ and
variance σ2. It is tightly concentrated
in the interval [µ− kσ, µ + kσ] for even
k = 1 and certainly for k = 2, 3. Source:
https://en.wikipedia.org/wiki/

Normal_distribution

Figure 18.2 shows that X concentrates very strongly around the
mean µ. The probability that X lies in various intervals around µ of
the type [µ− kσ, µ + kσ] are as follows: (i) For k = 1 it is 68.2%; (ii) For
k = 2 it is 95.4%; (iii) For k = 3 it is 99.6%.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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18.3.3 Central Limit Theorem (CLT)

This fundamental result explains our observations in Subsection 18.3.1.

Theorem 18.3.2 (Central Limit Theorem, informal statement). Suppose
X1, X2, . . . , is a sequence of random variables that are mutually independent
and each of whose variance is upper bounded by some constant C. Then
as n → ∞, the sum X1 + X2 + . . . + Xn tends to N (µ, σ2) where µ =

∑i E[Xi] and σ2 = ∑i Var(Xi).

We won’t prove this theorem. We will use it primarily via the
“cheatsheet” of Figure 18.2.

18.3.4 Confidence Intervals

We return to the problem of estimating the bias of a coin, namely
p = Pr[Heads]. Suppose we toss it n times and observe X heads.
Then X = ∑i Xi where Xi is the indicator random variable that
signifies if i-th toss is Heads.

Since the Xi’s are mutually independent, we can apply the CLT
and conclude that X will approximately follow a Gaussian distribu-
tion as n grows. This is clear from Figure 18.1, where the probability
histogram (which is a discrete approximation to the probability
density) looks quite Gaussian-like for n = 1000. In this course we
will assume for simplicity that CLT applies exactly. Using the mean
and variance calculations from Problem 18.3.1, X is distributed like
N (µ, σ2) where µ = np, σ2 = np(1− p). Using the cheatsheet of
Figure 18.2, we can conclude that

Pr[X ̸∈ [np− 2σ, np + 2σ]] ≤ 4.6%

Since X ∈ [np− 2σ, np + 2σ] if and only if np ∈ [X− 2σ, X + 2σ], some
students have the following misconception:

Given the observation of X heads in n coin tosses, the probability that np ̸∈
[X− 2σ, X + 2σ] is at most 4.6%.

But there is no a priori distribution on p. It is simply some (unknown)
constant of nature that we’re trying to estimate. So the correct infer-
ence should be:

If np ̸∈ [X− 2σ, X + 2σ], then the probability (over the n coin tosses) that we
would have seen X heads is at most 4.6%.

The above is an example of confidence bounds. Of course, you may
note that σ also depends on p, so the above conclusion doesn’t give
us a clean confidence interval. In this course we use a simplifying
assumption: to do the calculation we estimate σ2 as np′(1− p′) where
p′ = X/n. (The intuitive justification is that we expect p to be close to
X/n.)
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Example 18.3.3. Suppose X = 0.8n. Using our simplified calculation,
σ2 ≈ n(0.8)(0.2), implying σ = 0.4

√
n. Thus we conclude that if p ̸∈

[0.8− 0.4/
√

n, 0.8 + 0.4/
√

n], then the probability of observing this many
Heads in n tosses would have been less than 100− 68.2%, that is, less than
31.8%.

The concept of confidence intervals is also relevant to ML models.

Example 18.3.4. A deep neural network model was trained to predict cancer
patients’ chances of staying in remission a year after chemotherapy, and
we are interested in finding out its accuracy p. When the model is tested
on n = 1000 held-out data points, this problem is equivalent to the coin
flipping problem. For each of the held-out data point, the probability that the
model makes the correct prediction is p. By observing the number of correct
predictions on the held-out data, we can construct a confidence interval for
p. Say the test accuracy was p′ = 70%. Then the 68% confidence interval
can be written as

np ∈ [np′ − σ, np′ + σ]

Substituting p′ = 0.7, σ ≈
√

np′(1− p′), n = 1000, we get

1000p ∈ [685.5, 714.5]

or equivalently,
p ∈ [0.6855, 0.7145]

18.3.5 Confidence Intervals for Vectors

In the above settings, sampling was being used to estimate a real
number, namely, Pr[Heads] for a coin. How about estimating a vec-
tor? For instance, in an opinion poll, respondents are being asked
for opinions on multiple questions. Similarly, in stochastic gradient
descent (Chapter 3), the gradient vector is being estimated by sam-
pling a small number of data points. How can we develop confidence
bounds for estimating a vector in Rk from n samples?

The confidence intervals for the coin toss setting can be easily
extended to this case using the so called Union Bound:

Pr[A1 ∪ A2 ∪ · · · ∪ Ak] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[Ak] (18.2)

This leads to the simplest confidence bound for estimating a vector in
Rk. Suppose the probability of the estimate being off by δi in the i-th
coordinate is at most qi. Then

Pr[estimate is off by δ⃗] ≤ q1 + q2 + · · ·+ qk

where δ⃗ = (δ1, δ2, . . . , δk)
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18.4 Final Remarks

The CLT applies to many settings, but it doesn’t apply everywhere.
It is useful to clear up a couple of frequent misconceptions that
students have:

1. Not every distribution involving a large number of samples is
Gaussian. For example, scores on the final exam are usually not
distributed like a Gaussian. Similarly, human heights are not really
distributed like Gaussians.

2. Not everything that looks Gaussian-like is a result of the Central
Limit Theorem. For instance, we saw that the distribution of
weights in the sentiment model in Chapter 1 looked vaguely
Gaussian-like, but they are not the sum of independent random
variables as far as we can tell.



19
Calculus

19.1 Calculus in One Variable

In this section, we briefly review calculus in one variable.

19.1.1 Exponential and Logarithmic Functions

When we multiply the same number a by n times, we denote it as an.
The exponential function is a natural extension of this concept.

Definition 19.1.1 (Exponential Function). There is a unique function
f : R → R such that f (n) = en for any n ∈ N and f (x + y) = f (x) f (y)
for any x, y ∈ R. This function is called the exponential function and is
denoted as ex or exp(x).

Figure 19.1: The graph of the exponen-
tial function.

Proposition 19.1.2. The following properties hold for the exponential
function:

1. exp(x) > 0 for any x ∈ R

2. exp(x) is increasing

3. lim
x→−∞

exp(x) = 0

4. lim
x→∞

exp(x) = ∞

5. exp(−x) = 1
exp(x)

We are also interested in the inverse function of the exponential
function.

Definition 19.1.3 (Logarithmic Function). The logarithmic function
log : (0, ∞) → R is defined as the inverse function of the exponential
function. That is, log(x) = y where x = ey.

Figure 19.2: The graph of the logarith-
mic function.

Proposition 19.1.4. The following properties hold for the logarithmic
function:
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1. log(x) is increasing

2. lim
x→0+

log(x) = −∞

3. lim
x→∞

log(x) = ∞

4. log(xy) = log(x) + log(y)

19.1.2 Sigmoid Function

In Machine Learning, a slight variant of the exponential function,
known as the sigmoid function is widely used.

Definition 19.1.5 (Sigmoid Function). The sigmoid function denoted as
σ : R→ R is defined as

σ(x) =
1

1 + exp(−x)

Figure 19.3: The graph of the sigmoid
function.

Proposition 19.1.6. The following properties hold for the sigmoid function:

1. 0 < σ(x) < 1 for any x ∈ R

2. σ(x) is increasing

3. lim
x→−∞

σ(x) = 0

4. lim
x→∞

σ(x) = 1

5. The graph of σ is symmetrical to the point
(

0, 1
2

)
. In particular,

σ(x) + σ(−x) = 1

Because of the last property in Proposition 19.1.6, the sigmoid
function is well suited for binary classification (e.g., in logistic re-
gression in Chapter 1). Given some output value x of a classification
model, we interpret it as the measure of confidence that the input is
of label 1, where we implicitly assume that the measure of confidence
that the input is of label 2 is −x. Then we apply the sigmoid function
to translate this into a probability distribution over the two labels.

19.1.3 Differentiation

Definition 19.1.7 (Derivative). Given a function f : R → R, its
derivative f ′ is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

We alternatively denote f ′(x) as d
dx f (x).
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Example 19.1.8. The derivative of the exponential function is itself:

exp′(x) = exp(x)

and the derivative of the logarithmic function is:

log′(x) =
1
x

In general, there are more than two variables, that are related to
each other through a composite function. The chain rule helps us find
the derivative of the composite function.

Definition 19.1.9 (Chain Rule). If there are functions f , g : R→ R such
that y = f (x) and z = g(y), then

(g ◦ f )′(x) = g′( f (x)) f ′(x) =
d

dy
g( f (x)) · d

dx
f (x)

or equivalently
dz
dx

=
dz
dy
· dy

dx

19.2 Multivariable Calculus

In this section, we introduce the basics of multivariable calculus,
which is widely used in Machine Learning. Since this is a general-
ization of the calculus in one variable, it will be useful to pay close
attention to the similarity with the results from the previous section.

19.2.1 Mappings of Several Variables

So far, we only considered functions of the form f : R → R that
map a real value x to a real value y. But now we are interested in
mappings f : Rn → Rm that map a vector x⃗ = (x1, . . . , xn) with
n coordinates to a vector y⃗ = (y1, . . . , ym) with m coordinates. In
general, a function is a special case of a mapping where the range is R.
If the mappings are of the form f : Rn → R (i. e., m = 1), it can still be
called a function of several variables.

First consider an example where m = 1.

Example 19.2.1. Let f (x1, x2) = x2
1 + x2

2 be a function in two variables.
This can be understood as mapping a point x⃗ = (x1, x2) in the Cartesian
coordinate system to its squared distance from the origin. For example,
f (3, 4) = 25 shows that the point the squared distance between (3, 4) and
the origin (0, 0) is 25.

When m > 1, we notice that each coordinate y1, . . . , ym is a func-
tion of x1, . . . , xn. Therefore, we can decompose f into m functions
f1, . . . , fm : Rn → R such that

f (⃗x) = ( f1 (⃗x), . . . , fm (⃗x))
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Example 19.2.2. Let f (x1, x2) = (x2
1x2, x1x2

2) be a mapping from R2 to R2.
Then we can decompose f into two functions f1, f2 in two variables where

f1(x1, x2) = x2
1x2

f2(x1, x2) = x1x2
2

19.2.2 Softmax Function

The softmax function is a multivariable function widely used in Ma-
chine Learning, especially for multi-class classification (see Chapter 4,
Chapter 10). It takes in a vector of k values, each corresponding to
a particular class, and outputs a probability distribution over the k
classes — that is, a vector of k non-negative values that sum up to
1. The resulting probability is exponentially proportional to the input
value of that class. We formally write this as:

Definition 19.2.3 (Softmax Function). Given a vector z⃗ = (z1, z2, . . . , zk) ∈
Rk, we define the softmax function as a probability function so f tmax :
Rk → [0, 1]k where the “probability of predicting class i” is:

so f tmax(⃗z)i =
ezi

∑k
j=1 ezj

(19.1)

Problem 19.2.4. Show that for k = 2, the definition of the softmax function
is equivalent to the sigmoid function (after slight rearrangement/renaming of
terms).

The sigmoid function is used for binary classification, where it
takes in a single real value and converts it to a probability of one
class (and the probability of the other class can be inferred as its com-
plement). The softmax function is used for multi-class classification,
where it takes in k real values and converts them to k probabilities,
one for each class.

19.2.3 Differentiation

Just like with functions in one variable, we can define differentiation
for mappings in several variables. The key point is that now we will
define a partial derivative for each pair (xi, yj) of coordinate xi of the
domain and coordinate yj of the range.

Definition 19.2.5 (Partial Derivative). Given a function f : Rn → Rm, the
partial derivative of yj with respect to xi at the point x⃗ is defined as

∂yj

∂xi

∣∣∣∣⃗
x
= lim

h→0

f j(x1, . . . , xj + h, . . . , xn)− f j(x1, . . . , xj, . . . , xn)

h
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Definition 19.2.6 (Gradient). If f : Rn → R is a function of several
variables, the gradient of f is defined as a mapping ∇ f : Rn → Rn that
maps each input vector to the vector of partial derivatives at that point:

∇ f (⃗x) =
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

)∣∣∣∣⃗
x

Similarly to the chain rule in one variable, we can define a chain
rule for multivariable settings. The key point is that there are mul-
tiple ways that a coordinate xj can affect the value of zi. Defini-
tion 19.2.7 can be thought as applying the chain rule for one variable
in each of the paths, and adding up the results.

x1

x2

y1

y2

y3

z1

z2

Figure 19.4: A visualization of the chain
rule in multivariable settings. Notice
that x2 can affect the value of z1 in
three different paths. The amount of
effect from each path will respectively
be calculated as (∂z1/∂y1)(∂y1/∂x2)
(red), (∂z1/∂y2)(∂y2/∂x2) (blue), and
(∂z1/∂y3)(∂y3/∂x2) (cyan).

Definition 19.2.7 (Chain Rule). If f : Rn → Rm and g : Rm → Rℓ are
mappings of several variables, where y⃗ = f (⃗x) and z⃗ = g(⃗y), the following
chain rule holds for each 1 ≤ i ≤ ℓ and 1 ≤ j ≤ n:

∂zi
∂xj

=
m

∑
k=1

∂zi
∂yk
· ∂yk

∂xj

Example 19.2.8. Suppose we define the functions h = s + t2, s = 3x, and
t = x− 2. Then, we can find the partial derivative ∂h

∂x using the chain rule:

∂h
∂x

=
∂s
∂x

+
∂(t2)

∂x

=
∂s
∂x

+
∂(t2)

∂t
· ∂t

∂x
= 3 + 2t · 1
= 2x− 1

Problem 19.2.9. Suppose we define the functions h = s + t2, s = xy, and
t = x− 2y. Compute the partial derivative ∂h/∂x.





20
Linear Algebra

20.1 Vectors

x

y

v⃗ = (2, 1)

Figure 20.1: A visualization of a vector
v⃗ = (2, 1) in R2.

Vectors are a collection of entries (here, we focus only on real num-
bers). For example, the pair (1, 2) is a real vector of size 2, and the
3-tuple (1, 0, 2) is a real vector of size 3. We primarily categorize vec-
tors by their size. For example, the set of all real vectors of size n is
denoted as Rn. Any element of Rn can be thought of as representing
a point (or equivalently, the direction from the origin to the point) in
the n-dimensional Cartesian space. A real number in R is also known
as a scalar, as opposed to vectors in Rn where n > 1.

20.1.1 Vector Space

x

y

x⃗ = (2, 1)

y⃗ = (1, 2)

x⃗ + y⃗ = (3, 3)

Figure 20.2: A visualization of x⃗ + y⃗
where x⃗ = (2, 1) and y⃗ = (1, 2).

We are interested in two operations defined on vectors — vector
addition and scalar multiplication. Given vectors x⃗ = (x1, x2, . . . , xn)

and y⃗ = (y1, y2, . . . , yn) and a scalar c ∈ R, the vector addition is
defined as

x⃗ + y⃗ = (x1 + y1, x2 + y2, . . . , xn + yn) ∈ Rn

where we add each of the coordinates element-wise. As shown in
Figure 20.2, vector addition is the process of finding the diagonal
of the parallelogram made by the two vectors x⃗ and y⃗. The scalar
multiplication is similarly defined as

c⃗x = (cx1, cx2, . . . , cxn) ∈ Rn

x

y

x⃗ = (4, 2)0.5⃗x = (2, 1)

Figure 20.3: A visualization of 0.5⃗x
where x⃗ = (4, 2).

As shown in Figure 20.3, scalar multiplication is the process of
scaling one vector up or down.

Rn is closed under these two operations — i. e., the resulting
vector of either operation is still in Rn. Any subset S of Rn that is
closed under vector addition and scalar multiplication is known as a
subspace of Rn.
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20.1.2 Inner Product

The inner product is defined as

x⃗ · y⃗ = x1y1 + x2y2 + . . . + xnyn =
n

∑
i=1

xiyi ∈ R

Closely related to the inner product is the norm of a vector, which
measures the length of it. It is defined as ∥⃗x∥ =

√
x⃗ · x⃗. 1 1 There are many other definitions of a

norm. This particular one is called an ℓ2
norm.Proposition 20.1.1. The inner product satisfies the following properties:

• Symmetry: x⃗ · y⃗ = y⃗ · x⃗

• Linearity: (a1⃗x1 + a2⃗x2) · y⃗ = a1 (⃗x1 · y⃗) + a2 (⃗x2 · y⃗)

and the norm satisfies the following property:

• Absolute Homogeneity: ∥a⃗x∥ = |a| ∥⃗x∥

20.1.3 Linear Independence

Any vector of the form

a1⃗x1 + a2⃗x2 + . . . + ak⃗xk

where ai’s are scalars and x⃗i’s are vectors is called a linear combination
of the vectors x⃗i’s. Notice that the zero vector 0⃗ (i. e., the vector with
all zero entries) can always be represented as a linear combination of
an arbitrary collection of vectors, if all ai’s are chosen as zero. This
is known as a trivial linear combination, and any other choice of ai’s is
known as a non-trivial linear combination.

Definition 20.1.2. k vectors x⃗1, x⃗2, . . . , x⃗k ∈ Rn are called linearly
dependent if 0⃗ can be represented as a non-trivial linear combination of the
vectors x⃗1, . . . , x⃗k; or equivalently, if one of the vectors can be represented as
a linear combination of the remaining k− 1 vectors. The vectors that are not
linearly dependent with each other are called linearly independent.

Consider the following analogy. Imagine trying to have a family
style dinner at a fast food restaurant, where the first person orders a
burger, the second person orders a chilli cheese fries, and the third
person orders a set menu with a burger and a chili cheese fries. The
third person’s order did not contribute to the diversity of the food
on the dinner table. Similarly, if some set of vectors are linearly
dependent, it means that at least one of the vectors is redundant.

Example 20.1.3. The set {(−1, 2), (3, 0), (1, 4)} of three vectors is linearly
dependent because

(1, 4) = 2 · (−1, 2) + (3, 0)

can be represented as the linear combination of the remaining two vectors.
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Example 20.1.4. The set {(−1, 2, 1), (3, 0, 0), (1, 4, 1)} of three vectors is
linearly independent because there is no way to write one vector as a linear
combination of the remaining two vectors.

20.1.4 Span

Definition 20.1.5. The span of a set of vectors x⃗1, . . . , x⃗k is the set of all
vectors that can be represented as a linear combination of x⃗i’s.

Example 20.1.6. (1, 4) is in the span of {(−1, 2), (3, 0)} because

(1, 4) = 2 · (−1, 2) + (3, 0)

Example 20.1.7. (1, 4, 1) is not in the span of {(−1, 2, 1), (3, 0, 0)} because
there is no way to choose a1, a2 ∈ R such that

(1, 4, 1) = a1(−1, 2, 1) + a2(3, 0, 0)

The span is also known as the subspace generated by the vectors
x⃗1, . . . , x⃗k. This is because if you add any two vectors in the span, or
multiply one by a scalar, it is still in the span (i. e., the span is closed
under vector addition and scalar multiplication).

Example 20.1.8. In the R3, the two vectors (1, 0, 0) and (0, 1, 0) span the
2-dimensional XY-plane. Similarly, the vectors (1, 0, 1) and (0, 2, 1) span
the 2-dimensional plane 2x + y− 2z = 0. 2 2 The term dimension will be formally

defined soon. Here, we rely on your
intuition.In Example 20.1.8, we see examples where 2 vectors span a 2-

dimensional subspace. In general, the dimension of the subspace
spanned by k vectors can go up to k, but it can also be strictly smaller
than k. This is related to the linear independence of the vectors.

Proposition 20.1.9. Given k vectors, x⃗1, . . . , x⃗k ∈ Rn, there is a maximum
number d ≥ 1 such that there is some subcollection x⃗i1 , . . . , x⃗id of these
vectors that are linearly independent. Then

span(⃗x1, . . . , x⃗k) = span(⃗xi1 , . . . , x⃗id) (20.1)

is a d-dimensional subspace of Rn.
Conversely, if we know that the span of the k vectors is a d-dimensional

subspace, then the maximum number of vectors that are linearly indepen-
dent with each other is d, and any subcollection of linearly independent d
vectors satisfies (20.1).

Proposition 20.1.9 states that the span of some set of k vectors is
equivalent to the maximum number d of linearly independent vectors.
It also states that the span of the k vectors is equal to the span of
the linearly independent d vectors, meaning all of the information
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is captured by the d vectors; the remaining k− d vectors are just re-
dundancies. But trying to directly compute the maximum number of
linearly independent vectors is inefficient — it may require checking
the linear independence of an exponential number of subsets of the
vectors. In the next section, we discuss a concept called matrix rank
that is very closely related to this topic.

20.1.5 Orthogonal Vectors

Definition 20.1.10. If vectors x⃗1, . . . , x⃗k ∈ Rn satisfy x⃗i · x⃗j = 0 for
any i ̸= j, then they are called orthogonal vectors. In particular, if they
also satisfy the condition that ∥⃗xi∥ = 1 for each i, then they are also
orthonormal.

In Rn, orthogonal vectors form a 90 degrees angle with each other.

Example 20.1.11. The two vectors (1, 0), (0, 2) are orthogonal. So are the
vectors (1, 2), (−2, 1).

x

y

x⃗ = (1, 2)y⃗ = (−2, 1)

Figure 20.4: A visualization of orthogo-
nal vectors x⃗ = (1, 2) and y⃗ = (−2, 1).

Given any set of orthogonal vectors, it is possible to transform it
into a set of orthonormal vectors, by normalizing each vector (i. e.,
scale it such that the norm is 1).

20.1.6 Basis

Definition 20.1.12. A collection {⃗x1, . . . , x⃗k} of linearly independent
vectors in Rn that span a set S is known as a basis of S. In particular, if
the vectors of the basis are orthogonal/orthonormal, the basis is called an
orthogonal/orthonormal basis of S.

The set S in Definition 20.1.12 can be the entire vector space Rn,
but it can also be some subspace of Rn with a lower dimension.

Example 20.1.13. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of three vec-
tors is a basis for R3. When we exclude the last vector (0, 0, 1), the set
{(1, 0, 0), (0, 1, 0)} is a basis of the 2-dimensional XY-plane in R3.

Given some subspace S, the basis of S is not unique. However,
every basis of S must have the same size — this size is called the
dimension of S. For a finite dimensional space S, it is known that
there exists an orthogonal basis of S. There is a well-known algorithm
— Gram-Schmidt process — that can transform an arbitrary basis
into an orthogonal basis (and eventually an orthonormal basis via
normalization).

20.1.7 Projection

Vector projection is the key concept used in the Gram-Schmidt process
that computes an orthogonal basis. Given a fixed vector a⃗, it decom-
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poses any given vector x⃗ into a sum of two components — one that is
orthogonal to a⃗ (“distinct information”) and the other that is parallel
to a⃗ (“redundant information”).

Definition 20.1.14 (Vector Projection). Fix a vector a⃗ ∈ Rn. Given
another vector x⃗, the projection of x⃗ on a⃗ is defined as

proj⃗a (⃗x) =
x⃗ · a⃗
a⃗ · a⃗ a⃗

and is parallel to the fixed vector a⃗. The remaining component

x⃗− proj⃗a (⃗x)

is called the rejection of x⃗ from a⃗ and is orthogonal to a⃗.

Proposition 20.1.15 (Pythagorean Theorem). If x⃗, y⃗ are orthogonal, then

∥⃗x + y⃗∥2 = ∥⃗x∥2 + ∥⃗y∥2

In particular, given two vectors a⃗, x⃗, we have

∥⃗x− proj⃗a (⃗x)∥2 = ∥⃗x∥2 − ∥proj⃗a (⃗x)∥2

Now assume we are given a space S and a subspace T ⊂ S. Then
a vector x⃗ ∈ S in the larger space does not necessarily belong in T.
Instead, we can find a vector x⃗′ ∈ T that is “closest” to x⃗ using vector
projection. 3 3 We ask you to prove this in Prob-

lem 7.1.3.

Definition 20.1.16 (Vector Projection on Subspace). Given a space S, its
subspace T with an orthogonal basis {⃗t1, . . . ,⃗ tk}, and a vector x⃗ ∈ S, the
projection of x⃗ on T is defined as

projT (⃗x) =
k

∑
i=1

proj⃗ti
(⃗x) =

k

∑
i=1

x⃗ · t⃗i

t⃗i · t⃗i
t⃗i

the sum of projection of x⃗ on each of the basis vectors of T.

20.2 Matrices

Matrices are a generalization of vectors in 2-dimension — a m × n
matrix is a collection of numbers assembled in a rectangular shape
of m rows and n columns. The set of all real matrices of size m× n
is denoted as Rm×n. A vector of size n is customarily understood as
a column vector — that is, a n× 1 matrix. Also, if m = n, then the
matrix is known as a square matrix.
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20.2.1 Matrix Operation

Similarly to vector operations, we are interested in four matrix opera-
tions — matrix addition, scalar multiplication, matrix multiplication,
and transpose. Given a scalar c ∈ R and matrices X, Y ∈ Rm×n such
that

X =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...
xm,1 xm,2 · · · xm,n

 and Y =


y1,1 y1,2 · · · y1,n

y2,1 y2,2 · · · y2,n
...

...
. . .

...
ym,1 ym,2 · · · ym,n


the matrix addition is defined as

X + Y =


x1,1 + y1,1 x1,2 + y1,2 · · · x1,n + y1,n

x2,1 + y2,1 x2,2 + y2,2 · · · x2,n + y2,n
...

...
. . .

...
xm,1 + ym,1 xm,2 + ym,2 · · · xm,n + ym,n


where we add each of the coordinates element-wise. The scalar
multiplication is similarly defined as

cX =


cx1,1 cx1,2 · · · cx1,n

cx2,1 cx2,2 · · · cx2,n
...

...
. . .

...
cxm,1 cxm,2 · · · cxm,n


The matrix multiplication XY is defined for a matrix X ∈ Rℓ×m and
a matrix Y ∈ Rm×n; that is, when the number of columns of the
first matrix is equal to the number of rows of the second matrix. The
output XY of the matrix multiplication will be a ℓ× n matrix. The (i, j)
entry of the matrix XY is defined as

(XY)i,j =
m

∑
k=1

xi,kyk,j

That is, it is defined as the inner product of the i-th row of X and the
j-th column of Y.

Proposition 20.2.1. The above matrix operations satisfy the following
properties:

• c(XY) = (cX)Y = X(cY)

• (X1 + X2)Y = X1Y + X2Y

• X(Y1 + Y2) = XY1 + XY2
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Finally, the transpose X⊺ ∈ Rn×m of a matrix X ∈ Rm×n is the re-
sulting matrix when the entries of X are reflected down the diagonal.
That is,

(X⊺)i,j = Xj,i

Proposition 20.2.2. The transpose of a matrix satisfies the following
properties:

• (X + Y)⊺ = X⊺ + Y⊺

• (cX)⊺ = c(X⊺)

• (XY)⊺ = Y⊺X⊺

20.2.2 Matrix and Linear Transformation

Recall that a vector of size n is often considered a n × 1 matrix.
Therefore, given a matrix A ∈ Rm×n and a vector x⃗ ∈ Rn, we
can define the following operation

y⃗ = A⃗x ∈ Rm

through matrix multiplication. This shows that A can be understood
as a mapping from Rn to Rm. We see that ai,j (the (i, j) entry of the
matrix A) is the coefficient of xj (the j-th coordinate of the input
vector) when computing yi (the i-th coordinate of the output vector).
Since each yi is linear in terms of each xj, we say that A is a linear
transformation.

20.2.3 Matrix Rank

Matrix rank is one of the most important concepts in basic linear
algebra.

Definition 20.2.3. Given a matrix A ∈ Rm×n of m rows and n columns,
the number of linearly independent rows is known to be always equal to the
number of linearly independent columns. This common number is known as
the rank of A and is denoted as rank(A).

The following property of rank is implied in the definition, but we
state it explicitly as follows.

Proposition 20.2.4. The rank of a matrix is invariant to reordering rows/-
columns.

Example 20.2.5. Consider the matrix M =

[
1 1 −2 0
−1 −1 2 0

]
, we notice

that the second row is simply the first row negated, and thus the rank of M
is 1.
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Example 20.2.6. Consider the matrix M =

1 0 0
0 1 0
0 0 1

, the rank of M is 3

because all the row (or column) vectors are linearly independent (they form
basis vectors of R3).

Example 20.2.7. Consider the matrix M =

 1 0 1
−2 −3 1
3 3 0

, the rank of M

is 2 because the third row can be expressed as the first row subtracted by the
second row.

When we interpret a matrix as a linear transformation, the rank
measures the dimension of the output space.

Proposition 20.2.8. A ∈ Rm×n has rank k if and only if the image of the
linear transformation; i.e., the subspace

{A⃗x | x⃗ ∈ Rn}

of Rm has dimension k.

There are many known algorithms to compute the rank of a
matrix. Examples include Gaussian elimination or certain decom-
positions (expressing a matrix as the product of other matrices with
certain properties). Given m vectors in Rn, we can find the maximum
number of linearly independent vectors by constructing a matrix with
each row equal to each vector 4 and finding the rank of that matrix. 4 By Proposition 20.2.4, the order of the

rows can be arbitrary.

20.2.4 Eigenvalues and Eigenvectors

Say we have a square matrix A ∈ Rn×n. This means that the linear
transformation expressed by A is a mapping from Rn to itself. Most
vectors x⃗ ∈ Rn is mapped to a very “different” vector A⃗x under this
mapping. However, some vectors are “special” and they are mapped
to another vector with the same direction.

Definition 20.2.9 (Eigenvalue/Eigenvector). Given a square matrix
A ∈ Rn×n, if a vector v⃗ ∈ Rn satisfies

Av⃗ = λ⃗v

for some scalar λ ∈ R, then v⃗ is known as an eigenvector of A, and λ is its
corresponding eigenvalue.

Each eigenvector can only be associated with one eigenvalue, but
each eigenvalue may be associated with multiple eigenvectors.

Proposition 20.2.10. If x⃗, y⃗ are both eigenvectors of A for the same eigen-
value λ, then any linear combination of them is also an eigenvector for A
with the same eigenvalue λ.
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Proposition 20.2.10 shows that the set of eigenvectors for a par-
ticular eigenvalue forms a subspace, known as the eigenspace of that
eigenvalue. The dimension of this subspace is known as the geometric
multiplicity of the eigenvalue. The following result ties together some
of the concepts we discussed so far.

Proposition 20.2.11 (Rank-Nullity Theorem). Given a square matrix
A ∈ Rn×n, the eigenspace of 0 is the set of all vectors that get mapped to
zero vector 0⃗ under the linear transformation A. This subspace is known as
the null space of A and its dimension (i.e., the geometric multiplicity of 0)
is known as the nullity of A and is denoted as nullity(A). Then

rank(A) + nullity(A) = n

20.3 Advanced: SVD/PCA Procedures

Now we briefly introduce a procedure called Principal Component
Analysis (PCA), which is commonly used in low-dimensional repre-
sentation as in Chapter 7.

We are given vectors v⃗1, v⃗2, . . . , v⃗N ∈ Rd and a positive integer k
and wish to obtain the low-dimensional representation in the sense
of Definition 7.1.1 that minimizes ϵ. This is what we mean by “best”
representation.

Theorem 20.3.1. The best low-dimensional representation consists of
k eigenvectors corresponding to the top k eigenvalues (largest numerical
values) of the matrix AA⊺ where the columns of A are v⃗1, v⃗2, . . . , v⃗N .

Theorem 20.3.1 shows what the best low-dimensional represen-
tation is, but it does not show how to compute it. It turns out some-
thing called the Singular Value Decomposition (SVD) of the matrix A
is useful. It is known that any matrix A can be decomposed into the
following product

A = UΣV⊺

where Σ is a diagonal matrix with entries equal to the square root
of the nonzero eigenvalues of AA⊺ and the columns of U are the
orthonormal eigenvectors of AA⊺, where the i-th column is the
eigenvector that corresponds to the eigenvalue at the i-th diagonal
entry of Σ. There are known computationally efficient algorithms that
will perform the SVD of a matrix.

In this section, we will prove Theorem 20.3.1 for the case where
k = 1. To do this, we need to introduce some preliminary results.

Theorem 20.3.2. If a square matrix A ∈ Rn×n is symmetric (i. e., A = A⊺),
then there is an orthonormal basis of Rn consisting of n eigenvectors of A. 5 5 This is known as the Spectral Theo-

rem.
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Proof. A real symmetric matrix is known to be diagonalizable, and
diagonalizable matrices are known to have n eigenvectors that form a
basis for Rn. In particular, the eigenvectors are linearly independent,
meaning the eigenvectors corresponding to a particular eigenvalue
λ will form a basis for the corresponding eigenspace. Through the
Gram-Schmidt process, we can replace some of these eigenvectors
such that the eigenvectors for λ are orthogonal to each other. That
is, if u⃗, v⃗ are eigenvectors for the same eigenvalue λ, then u⃗ · v⃗ = 0.
Now assume u⃗, v⃗ are two eigenvectors with distinct eigenvalues λ, µ

respectively. Then

λu⃗ · v⃗ = (λu⃗) · v⃗ = (Au⃗) · v⃗ =
n

∑
i,j=1

ai,jujvi

= u⃗ · (A⊺⃗v) = u⃗ · (Av⃗) = u⃗ · (µ⃗v) = µu⃗ · v⃗

where the third and the fourth equality can be verified by direct
computation. Since λ ̸= µ, we conclude u⃗ · v⃗ = 0. We have now
showed that u⃗ · v⃗ = 0 for any pair of eigenvectors u⃗, v⃗ — this means
that the basis of eigenvectors is also orthogonal. After normalization,
the basis can be made orthonormal.

The following result is not necessarily needed for the proof of
Theorem 20.3.1, but the proofs are similar.

Theorem 20.3.3. If A ∈ Rn×n is symmetric, then the unit vector x⃗ that
maximizes ∥A⃗x∥ is an eigenvector of A with an eigenvalue, whose absolute
values is the largest out of all eigenvalues.

Proof. By Theorem 20.3.2, there is an orthonormal basis {⃗u1, . . . , u⃗n}
of Rn consisting of eigenvectors of A. Then any vector x⃗ is in the
span of the eigenvectors and can be represented as the linear combi-
nation

x⃗ = α1u⃗1 + α2u⃗2 + . . . + αnu⃗n

for some scalars αi’s. Then

∥⃗x∥2 = x⃗ · x⃗
= (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n) · (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

=
n

∑
i,j=1

αiαj (⃗ui · u⃗j)

=
n

∑
i=1

α2
i

where for the last equality, we use the fact that u⃗i’s are orthonormal
— that is, u⃗i · u⃗j = 0 if i ̸= j and u⃗i · u⃗i = 1. Since x⃗ has norm 1, we see
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that
n
∑

i=1
α2

i = 1. Now notice that

A⃗x = A(α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

= α1Au⃗1 + α2Au⃗2 + . . . + αnAu⃗n

= α1λ1u⃗1 + α2λ2u⃗2 + . . . + αnλnu⃗n

where λi is the eigenvalue for the eigenvector u⃗i. Following a similar
computation as above,

∥A⃗x∥2 =
n

∑
i=1

α2
i λ2

i

The allocation of weights αi that will maximize
n
∑

i=1
α2

i λ2
i while main-

taining
n
∑

i=1
α2

i = 1 is assigning αi = ±1 to the eigenvalue λi that has

the highest value of λ2
i . This shows that the unit vector x⃗ = ±u⃗i is an

eigenvector with the eigenvalue λi.

We now prove one last preliminary result.

Theorem 20.3.4. For a matrix A ∈ Rm×n, the matrix AA⊺ is symmetric
and its eigenvalues are non-negative.

Proof. The first part can be verified easily by observing that

(AA⊺)⊺ = (A⊺)⊺A⊺ = AA⊺

Now assume x⃗ is an eigenvector of A with eigenvalue λ. Then

AA⊺⃗x = λ⃗x

We multiply x⃗⊺ on the left on both sides of the equation.

x⃗⊺AA⊺⃗x = x⃗⊺(λ⃗x) = λ ∥⃗x∥2

At the same time, notice that

x⃗⊺AA⊺⃗x = (A⊺⃗x)⊺(A⊺⃗x) = ∥A⊺⃗x∥2

which shows that

λ ∥⃗x∥2 = ∥A⊺⃗x∥2

Since ∥⃗x∥2 , ∥A⊺⃗x∥2 are both non-negative, λ is also non-negative.

We are now ready to (partially) prove the main result of this
section.



256 introduction to machine learning lecture notes for cos 324 at princeton university

Proof of Theorem 20.3.1. We prove the case where k = 1. Recall
that we want to find a vector u⃗ that minimizes the error of the low-
dimensional representation:

N

∑
i=1

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

where ̂⃗vi is the low-dimensional representation of v⃗i that can be
computed as ̂⃗vi = (⃗vi · u⃗)⃗u
by the result of Problem 7.1.3. Now by Proposition 20.1.15, we see
that

N

∑
i=1
∥⃗vi − (⃗vi · u⃗)⃗u∥2 =

N

∑
i=1

(
∥⃗vi∥2 − ∥(⃗vi · u⃗)⃗u∥2

)
=

N

∑
i=1

(
∥⃗vi∥2 − (⃗vi · u⃗)2

)
Since we are already given a fixed set of vectors v⃗i, we cannot change
the values of ∥⃗vi∥2. Therefore, minimizing the last term of the equa-

tion above amounts to maximizing
N
∑

i=1
(⃗vi · u⃗)2. Notice that

N

∑
i=1

(⃗vi · u⃗)2 = ∥A⊺u⃗∥2 = u⃗⊺AA⊺u⃗

By Theorem 20.3.2 and by Theorem 20.3.4, there is an orthonormal
basis {⃗u1, . . . , u⃗n} of Rn that consist of the eigenvectors of the matrix
AA⊺. Let λi be the eigenvalue corresponding to the eigenvector u⃗i.
Then similarly to the proof of Theorem 20.3.3, we can represent any
vector u⃗ as a linear combination of the eigenvectors as

u⃗ = α1u⃗1 + α2u⃗2 + . . . + αnu⃗n

Then we have
n
∑

i=1
α2

i = 1 and

u⃗⊺AA⊺u⃗ = (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)
⊺AA⊺(α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

= (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)
⊺(α1λ1u⃗1 + α2λ2u⃗2 + . . . + αnλnu⃗n)

=
n

∑
i,j=1

αiαjλj (⃗ui · u⃗j)

=
n

∑
i=1

α2
i λi

Again, the allocation of αi’s that maximize
n
∑

i=1
α2

i λi while maintaining

n
∑

i=1
α2

i = 1 is assigning αi = ±1 to the eigenvector corresponding to

the highest value of λi.


