
Part V

Advanced Topics

16
Machine Learning and Ethics

Throughout this course, we have discussed the technical aspects of
model design, training, and testing in depth. However, we have not
yet discussed some of the social implications of this technology. What
are some ethical and legal issues in deployment of ML techniques in
society? What are the caveats and limitations to temper our exuber-
ance about the possibilities of ML? This brief chapter addresses these
issues, and we hope as technologists you will continue to investigate
and consider such issues throughout your career.

16.1 Facebook’s Suicide Prevention

Figure 16.1: A visualization of the
Facebook model to predict suicides.

In 2017, Facebook launched a program to use a machine learning
algorithm to predict suicide risk amongst its user population. It has
continued with various iterations over the years. Figure 16.1 gives a
visualization of the four-step process:

1. ML algorithm automatically analyzes a post by processing its text
content and comments

208 introduction to machine learning lecture notes for cos 324 at princeton university

2. Algorithm additionally uses spatial-temporal context of the post to
perform a risk prediction

3. A human behind the algorithm performs a personal review to
finally verify if a threshold is reached

4. If the post poses a serious risk, Facebook performs a wellness
check through the person’s contacts, community organizations, etc.

At first sight, this may appear to be very good idea: even if it saves
just one life, surely the project is worth it? But the announcement of
the project cause a lot of controversy among people. The following
are some of the potential problems that people identified:

1. False positives may result in stigmatization.

2. Many people who contemplate suicide do not end up going
through with it. Facebook’s reporting could lead to criminal
penalties (in regions where suicide is a crime), involuntary hospi-
talization, stigmatization, etc.

3. Involvement of authorities (e.g., law enforcement) raises risk of
illegal seizures.

4. Should Facebook be liable for any problem caused by mis-
detection?

Beyond these points, there are deep philosophical questions as-
sociated with the concept of suicide as well. For instance, is suicide
actually immoral? Even if it is immoral, is it the responsibility of
Facebook to get involved? Is it moral for Facebook to use personal
information to assess suicide risk? Opinions differ.

16.2 Racial Bias in Machine Learning

Suppose we are designing a machine learning approach for loan
approval. The general approach will be to take a dataset of (⃗x, y),
where x⃗ is a vector of the individual’s attributes (e.g., age, education,
alma mater, address, etc.) who got a loan and y ∈ {−1, 1} indicates
whether they actually paid off the loan or not. Using the approaches
we learned in Section 4.2, we could train a binary classifier through
logistic regression. Civil rights legislation forbids using the individ-
ual’s race in many of these decisions, so while training we could
simply mask out any coordinates which identify race. However, this
does not guarantee that the classifier will be entirely “race-neutral.” 1 1 The reason is that race happens

to be correlated with many other
attributes. Thus if a classifier uses any
of the correlated attributes, it may be
implicitly using racial information in
the decision making process.

In 2016, a study 2 found that COMPAS, a leading software for

2 Machine Bias, by Angwin et al., in Pro
Publica 2016.

assessing the probability that a prison inmate would commit another

machine learning and ethics 209

serious crime, disproportionately tags African-American as being
likely to commit crimes — in the sense that African-Americans who
were tagged as likely to commit another crime were only half as
likely to actually commit a crime than a similarly-tagged person of
another race.

White African-American
Labeled Higher Risk

23.5% 44.9%
& Did Not Re-offend
Labeled Lower Risk

47.7% 28.0%
& Did Re-offend

Table 16.1: COMPAS correctly predicts
recidivism 61 percent on average. But
African-Americans are almost twice
as likely as whites to be labeled a
higher risk but not actually re-offend.
Conversely, whites are twice as likely as
African-Americans to be labeled lower
risk but go on to commit other crimes.

16.3 Conceptions of Fairness in Machine Learning

We will briefly consider possible ways to formulate fairness in ma-
chine learning. Keep in mind that this task is intrinsically difficult,
as we are attempting to assign a quantifiable objective to a funda-
mentally normative problem. The first property we might want an
ML classifier to have is called demographic parity, which effectively
enforces that the output of classifier does not depend on a protected
attribute (e.g., race, ethnicity, gender).

Definition 16.3.1 (Demographic Parity). We say that a binary classifier
that outputs y ∈ {−1, 1} satisfies demographic parity if Pr[y | xi = a] =
Pr[y | xi = b] where a, b are any two values that a protected attribute xi can
take.

Figure 16.2: A hypothetical application
of ML to a loan approval application.
Race has been made a protected at-
tribute in an attempt to prevent bias
during training.

A visualization of how a protected attribute could be specified in a
dataset is shown in Figure 16.2. Consider the loan approval example

210 introduction to machine learning lecture notes for cos 324 at princeton university

from the previous section. If the binary classification model for the
loan approval satisfies the demographic parity property, then the
model approves loans for different races at similar rates. One way
to achieve this condition is to use a regularizer term λ(Pr[y | xi =

a]− Pr[y | xi = b])2) during training. 3 3 Does this seem like a good formula-
tion of fairness?Another property we might want a “fair” model to satisfy is called

the predictive parity. This is the property that the model in Table 16.1
failed to satisfy.

Definition 16.3.2 (Predictive Parity). We say that a binary classifier that
outputs y ∈ {−1, 1} satisfies predictive parity if the true negative, false
negative, false positive, true positive rates are the same for any values of a
protected attribute.

Figure 16.3: A table of all possible
outcomes based on the model output
and the ground truth outcome. This is
also known as a confusion matrix.

Ideally, we want an ML model to satisfy both the demographic
parity and predictive parity. However, it turns out that these two
notions are incompatible!

Theorem 16.3.3 (Fairness Impossibility Theorem). 4 Under fairly general 4 See Inherent Trade-Offs in the Fair
Determination of Risk Scores, Kleinberg,
Mullainathan, and Raghavan, ITCS 2017.
The paper actually considered three
possible definitions of “fairness” and
showed every pair of them are mutually
incompatible.

conditions, demographic parity and predictive parity are incompatible.

There are other formulations of fairness, but it is difficult to find a
combination of these notions that are compatible with each other. So
one way or another, we need to sacrifice some notions of “fairness.”

16.4 Limitations of the ML Paradigm

The predictive power of ML seems immense, but is it true that if we
have enough data and the right algorithm, then everything becomes
predictable? If yes, then one could imagine societal programs leverag-
ing this to precisely target help to where it would be more effective.
We first consider a famous — and somewhat amusing — example of
a study 5 that turned out to be false. 5 Extraneous factors in judicial decisions,

Danziger et al., PNAS 2011.

machine learning and ethics 211

16.4.1 Hungry Judge Effect

The study analyzed the parole decisions made by 8 Israeli judges in
over 1, 100 cases. The data in Figure 16.4 shows that prisoners were
much more likely to be granted parole after the judge took a lunch
break or a coffee break. The study therefore suggested that judges
tend to be stricter before a break (maybe because they are “hangry”)
but more lenient when they return from the break.

Figure 16.4: Data from the study
shows an uptick in favorable decisions
following a lunch break or a coffee
break.

Nevertheless, it turns out that this “hungry judge effect” can be
explained by a completely different reason. A followup study 6 6 Overlooked factors in the analysis of

parole decisions, Weinshall-Margel and
Shepard, PNAS, 2012.

found that the ordering of cases presented to the judge was not
random: prisoners with attorneys were scheduled at the beginning
of each session, while prisoners without an attorney were scheduled
at the end of a session. The former group were let on parole with a
rate of 67%, while the rate was just 39% for those without attorneys.
Another important observation was that attorneys tended to present
their cases in decreasing order of strength of case, with the average
attorney having 4.1 clients. Computer simulations of hunger-immune
judges faced with cases presented according to these percentages
showed the same see-saw effect of Figure 16.4.

16.4.2 Fragile Families Challenge

The Fragile Families Challenge is a collaborative project initiated by
the Center for Research on Child Wellbeing at Princeton University.
A brief description of the initiative’s motivation is provided on the
website: 7 7 Source: http://www.

fragilefamilieschallenge.org.
The Fragile Families Challenge is a mass collaboration that combines pre-
dictive modeling, causal inference, and in-depth interviews to yield insights
that can improve the lives of disadvantaged children in the United States.

http://www.fragilefamilieschallenge.org
http://www.fragilefamilieschallenge.org

212 introduction to machine learning lecture notes for cos 324 at princeton university

By working together, we can discover things that none of us can discover
individually.

The Fragile Families Challenge is based on the Fragile Families and Child
Wellbeing Study, which has followed thousands of American families for
more than 15 years. During this time, the Fragile Families study collected
information about the children, their parents, their schools, and their larger
environments.

Figure 16.5: Diagram illustrating
the dataset of the Fragile Families
Challenge. After training a model on
the training data, participants made
predictions on held-out data and
submitted the results to a leaderboard.

The initiative has collected immense data on multiple families,
including interviews with mothers, fathers, and/or primary care-
givers at several ages. Interviewees were inquired as to attitudes,
relationships, parenting behavior, economic and employment status,
etc. Additionally, in-home assessments of children and their home
environments were performed to assess cognitive and emotional
development, health, and home environment. The goal was to predict
six key outcomes at age 15 (e.g., whether or not the child is attending
school) given background data from birth to age 9 as shown in 16.5.
However, up to this point no method has done better than random
guessing.

This is food for thought: what is going on?

16.4.3 General Limits to Prediction

Matt Salganik and Arvind Narayanan, professors at Princeton Uni-
versity, recently started a course 8 which aims to explore the extent 8 The course, COS 597E/SOC 555 is a

seminar first offered in Fall 2020.to which interdisciplinary problems in social science and computer
science can be predictable. In general, the following are some major
themes that can make prediction difficult:

1. The distribution associated with data can shift over time

2. The relationship between input data and desired outputs can
change over time

machine learning and ethics 213

3. There is a possibility for undiscovered coordinates to be uninten-
tionally ignored (i. e., as in the hungry judge effect)

4. The “8 billion problem,” which describes how data available in the
real world is fundamentally finite and limited

16.5 Final Thoughts

As described in the preceding sections, users and designers of ma-
chine learning will often face ethical dilemmas. Designers may have
to operate without moral clarity or easy technical fixes. In fact, techni-
cal solutions may even be impossible. To appropriately acknowledge
these limitations, it is important to embrace a culture of measuring
and openly discussing the impact of the system being built. Indeed, a
general principle to follow is to avoid harm when trying to do good.

17
Deep Learning for Natural Language Processing

17.1 Word Embeddings

In traditional NLP, each word is regarded as a distinct symbol each
with a single value of weight. For example, in Chapter 1, we learned
how to use linear regression on sentiment prediction. But with this
approach, it is hard for the computer to learn the meaning of the
word; instead, each of the words remains as some abstract symbol
with numeric weights.

But how do computers know the meaning of words? We can easily
think of one solution: we can look up words in a dictionary. For
example, WordNet is a project that codes the meaning of the words
and the relationship between the words, so that the data can be used
for computers to parse. 1 But resources like WordNet require human 1 For more information, check http:

//wordnetweb.princeton.edu.labor to create and adapt, and it is impractical to keep up-to-date
(because new words are coined and new meanings appear out of
existing words).

An alternative approach is to represent words as short (50 - 300
dimensions 2), real-valued vectors. These vectors encode the meaning 2 The dimension of word vectors is

a hyperparameter that needs to be
decided first.

and other properties of words. In this representation, the distance
between vectors represents the similarity between words. This vector-
ized form of the words is much easier to be used as input in modern
ML systems (especially neural networks). These vector forms of
words are known as word embedding. In this section, we explore the
process of how to learn a good word embedding.

17.1.1 Distributional Hypothesis

Word embedding is based on a concept called the distributional hypoth-
esis, a theory developed by John Rupert Firth. The hypothesis, one of
the most successful ideas of modern statistical NLP, says that words
that occur in similar contexts tend to have similar meaning.

http://wordnetweb.princeton.edu
http://wordnetweb.princeton.edu

216 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 17.1.1 (Context). When a word w appears in a text, its context
is the set of words that appear nearby (within a fixed-size window).

Example 17.1.2. Assume that you first heard the word tejuino and have no
idea what the word means. But you learn that the word may appear in the
following four contexts.

• C1: A bottle of is on the table.

• C2: Everybody likes .

• C3: Don’t have before you drive.

• C4: We make out of corn.

Based on these contexts, it is reasonable to conclude that the word “tejuino”
refers to some form of alcoholic drink made from corn.

Problem 17.1.3. To find words with similar meanings as “tejuino,” we
tried filling out the contexts from Example 17.1.2 with 5 other words. The
results are given in Table 17.1, where 1 means that a native speaker deemed
the word was appropriate to be used in that context, and 0 means that it was
inappropriate.

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

Table 17.1: Data showing if 6 words
are appropriate for the four contexts in
Example 17.1.2.

Which word is closest to “tejuino”?

17.1.2 Word-word Co-occurrence Matrix

Given a very large collection of documents with words from a dic-
tionary V, we construct a |V| × |V| matrix X, where the entry at the
i-th row, j-th column denotes the number of times (i. e., frequency)
that wj appears in the context window of wi. This matrix is called the
word-word co-occurrence matrix.

Example 17.1.4. Table 17.2 shows a portion of a word-word co-occurrence
matrix. Each row corresponds to the center word wi, and each column
corresponds to the context word wj. The value Xij at the (i, j) entry means
that the context word wj appeared Xij times in the context (of length 4) of
wi in total.

Although the portion shown in Table 17.2 mostly has non-zero entries, in
general, the entries of the matrix are mostly zero.

deep learning for natural language processing 217

· · · computer data result pie sugar · · ·
cherry · · · 2 8 9 442 25 · · ·

strawberry · · · 0 0 1 60 19 · · ·
digital · · · 1670 1683 85 5 4 · · ·

information · · · 3325 3982 378 5 13 · · ·

Table 17.2: A portion of a word-word
co-occurrence matrix for a corpus
of Wikipedia articles. Source: https:
//www.english-corpora.org/wiki/.

17.1.3 Factorization of Word-word Co-occurrence Matrix

Recall the example of movie recommendation through matrix factor-
ization in Chapter 9. In that example m× n matrix M was factored
into M ≈ AB where the i-th row of A was a d-dimensional vector
that represented user i and the j-th column of B was a d-dimensional
vector that represented movie j.

We can imagine a similar factorization on the word-word co-
occurrence matrix. That is, we can represent each center word and
each context word as a d-dimensional vector such that Xij ≈ Ai∗ ·
B∗j. But this particular idea does not work on the word-word co-
occurrence matrix. The key difference is that X is a complete matrix
with no missing entries (although most entries are zero). Therefore
we instead use other standard matrix factorization techniques.

One popular choice of factorization is running the Singular Value
Decomposition (SVD) on a weighted co-occurrence matrix. 3 This 3 The particular weighting scheme is

called PPMI. We will not get into that
detail here.

idea originates from a concept called Latent Semantic Anlysis. 4 If the
4 From Indexing by Latent Semantic
Analysis by Deerwester et al., 1990.

SVD returns the following decomposition,

 X

 =

 W

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σd

 V⊺

where X is a |V| × |V| matrix, W is a |V| × d matrix, and V is a
d× |V| matrix, then the i-th row of matrix W can be regarded as the
embedding for word wi.

Other modern approaches tend to treat word vectors as parame-
ters to be optimized for some objective function and apply the gra-
dient descent algorithm. But the principle is the same: “words that
occur in similar contexts tend to have similar meanings.” Some of the
popular algorithms with this approach include: word2vec (Mikolov et
al., 2013), GloVe (Pennington et al., 2014), and fastText (Bojanowski et
al., 2017).

Here we briefly explain the GloVe algorithm. Given the co-
occurrence table X, we will construct a center word vector u⃗i ∈ Rd

and a context word vector v⃗j ∈ Rd such that they optimize the follow-

https://www.english-corpora.org/wiki/
https://www.english-corpora.org/wiki/

218 introduction to machine learning lecture notes for cos 324 at princeton university

ing objective:

J(θ) = ∑
i,j∈V

f (Xij)
(

ui · vj + bi + b̃j − log Xij

)2
(17.1)

where f is some non-linear function and bi, b̃j are bias terms, and θ is
the set of all entries in ui, vj and bi, b̃j. This is within the same line of
logic as optimizing

L(A, B) =
1
|Ω| ∑

i,j∈Ω
(Mij − (AB)ij)

2 ((9.5) revisited)

17.1.4 Properties of Word Embeddings

A good word embedding should represent the meaning of the words
and their relationship with other words as accurately as possible.
Therefore there are some properties that we would like a word
embedding to preserve. We will discuss three such properties and
see how the current algorithms for word embedding perform on
preserving those properties.

1. Similar words should have similar word vectors: This is the most
important property we can think of.

Example 17.1.5. In a certain word embedding, the following is the list of 9
most nearest words to the word “sweden.”

Word Cosine distance
norway 0.760124
denmark 0.715460
finland 0.620022

switzerland 0.588132
belgium 0.585835

netherlands 0.574631
iceland 0.562368
estonia 0.547621
slovenia 0.531408

Notice Scandanavian countries are the top 3 entries on the list, and the rest
are also European country names.

2. Vector difference should encode the relationship between words: If
there are two or more pairs of words where each pair of words are
distinguishable by the same attribute, you can imagine that the vector
difference within each pair is nearly the same.

deep learning for natural language processing 219

Example 17.1.6. In Figure 17.1, notice that vman− vwoman ≈ vking− vqueen.
The vector difference in common can be understood as representing the male-
female relationship. Similarly, there seems to be a common vector difference
for representing the difference in verb tense.

Figure 17.1: Pairs of words that differ
in the same attribute show a similar
difference in their word embeddings.

3. The embeddings should be translated between different languages:
When we independently find the word embedding in different lan-
guages, we can expect to have a bijective mapping that preserves the
structure of the words in each language. 5 5 From Exploiting Similarities among

Languages for Machine Translation by
Mikolov et at., 2013.Example 17.1.7. In Figure 17.2, notice that if we let W to be the mapping

from English to Spanish word embeddings, vcuatro ≈W ◦ v f our

Figure 17.2: Word embeddings are
translated into the embeddings of other
languages.

17.2 N-gram Model Revisited

Recall the n-gram model from Chapter 8. It assigned a probability
Pr[w1w2 . . . wn] to every word sequence w1w2 . . . wn. We discussed
the concept of perplexity of the model to compare the performance

220 introduction to machine learning lecture notes for cos 324 at princeton university

of unigram, bigram, and trigram models. While the n-gram model is
impressive, it has obvious limitations.

Problem 17.2.1. “The students opened their .” Can you guess the
next word?

Problem 17.2.2. “As the proctor started the clock, the students opened their
.” Can you guess the next word?

In a lot of cases, words in a sentence are closely related to other
words and phrases that are far away. But the n-gram model cannot
look beyond the specified frame.

Example 17.2.3. The following is a text generated by a 4-gram model

Today the price of gold per tan, while production of shoe
lasts and shoe industry, the bank intervened just after it

considered and rejected an imf demand to rebuild depleted
european stocks, sept 30 and primary 76 cts a share.

The generated text is surprisingly grammatical, but incoherent.

Example 17.2.3 shows that we need to consider more than three
words at a time if we want to model language well. But if we use
a larger value of n for the n-gram model, the data will become too
sparse to estimate the probabilities. But even when we restrict our-
selves to words that appear in the dictionary, there are 1021 distinct
sequences of 4 words.

17.2.1 Feedforward Neural Language Model

The idea of the feedforward neural language model was proposed by
Bengio et al. in 2003 in a paper called A Neural Probabilistic Language
Model. The intuition is to use a neural network to learn the probabilis-
tic distribution of language, instead of estimating raw probabilities.
The key ingredient in this model is the word embeddings we dis-
cussed earlier.

Example 17.2.4. Assume we are given two contexts “You like green
” and “You like yellow ” to fill the blanks in. A n-gram

model will try to calculate the raw probabilities Pr[w | You like green] and
Pr[w | You like yellow]. However, if the word embeddings showed that
vgreen ≈ vyellow, then we can imagine that the two contexts are similar
enough. Then we may be able to estimate the probabilities better.

Now we show how to use the feedforward neural language model
on a n-gram model. Assume we want to estimate the probability
Pr[wn+1 | w1 . . . wn]. Then the first step is to find a word embedding

v1, v2, . . . , vn ∈ Rd

deep learning for natural language processing 221

of each word w1, w2, . . . , wn. Then we concatenate the word embed-
dings into 6 6 the order of the input vectors cannot

changex⃗ = (v1, . . . , vn) ∈ Rnd

This will be the input layer. Then we define the fully connected
hidden layer as

h⃗ = tanh(Wx⃗ + b⃗) ∈ Rh

where W ∈ Rh×nd and b⃗ ∈ Rh. Then we define the output layer as

z⃗ = Uh⃗ ∈ R|V|

where U ∈ R|V|×h. Then finally, the probability will be calculated
with the softmax function:

Pr[wn+1 = i | w1 . . . wn] = softmaxi (⃗z) =
ezi

∑
k∈V

ezk

So the total number of parameters to train in this network is

d |V|+ ndh + h + h |V|

where the terms are respectively for the input embeddings, W, b⃗, U.
When d = h, sometimes we tie the input and output embeddings.
That is, we can consider U to be the parameters required for the
output embeddings. At this point, the language model reduces
to a |V|-way classification, and we can create lots of training ex-
ample by sliding the input-output indices. That is, when given
a huge text, we can create lots of input-output tuple as follows:
((w1, . . . , wn), wn+1), ((w2, . . . , wn+1), wn+2),

17.2.2 Beyond Feedforward Neural Language Model

But the feedforward language model still has its limitations. The
main reason is that W ∈ Rh×nd scales linearly with the window
size. Of course, this is better than the traditional n-gram model
which scales exponentially with n. Another limitation of the neu-
ral LM is that the model learns separate patterns for the same item.
That is, a substring wkwk+1, for example, will correspond to differ-
ent parameters in W when trained on (wkwk+1 . . . wk+n−1) or on
(wk−1wk . . . wk+n−2).

To mitigate these limitations, we can choose to use similar model-
ing ideas but use better and bigger neural network architectures like
recurrent neural networks (RNN) or transformers.

Here we briefly explain the core ideas of a RNN. RNNs are a fam-
ily of neural networks that handle variable length inputs. Whereas
feedforward NNs map a fixed-length input to a fixed-length output,
recurrent NNs map a sequence of inputs to a sequence of outputs. The

222 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 17.3: A visual representation of
an RNN architecture.

sequence length can vary and the key is to reuse the weight matrices at
different time steps. When the inputs are given as x⃗1, x⃗2, . . . x⃗T ∈ Rd

and we want to find outputs h⃗1, h⃗2, . . . h⃗T ∈ Rh, we train the parame-
ters

W ∈ Rh×h, U ∈ Rh×d, b⃗ ∈ Rh

such that
h⃗t = g(Wh⃗t−1 + U⃗xt + b⃗) ∈ R

where g is some non-linear function (e.g., ReLU, tanh, sigmoid). We
can also set h⃗0 = 0⃗ for simplicity.

