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13
Introduction to Reinforcement Learning

This part of the course concerns Reinforcement Learning (RL), the
conceptual underpinning of several modern technologies such as
self-driving technologies in new cars. It is the third major category of
machine learning, in addition to the two previously seen categories
of supervised and unsupervised learning. In class we saw a video of
robots (made by Boston Dynamics) doing parkour, dancing, and over-
all doing a pretty good job of imitating the peak human physique.
That is also achieved via RL.

The basic idea of RL involves the concept of an agent learning to
make a sequence of actions in a dynamic environment. At each discrete
time step, the agent is able to take one of a menu of actions. Each
choice of action leads to changes in the state of the world (i. e., the
agent and its surroundings). The agent has an internal representation
of the current and potential states of the world (e.g., using vision
or other sensing modules). Under this setting, the agent takes a
sequence of actions towards a certain goal.

The world contains uncertainty due to a variety of factors. For
instance, there may be other agents in the environment that also
take actions to their own benefit, or the sensing modules may be
imperfect. Thus taking the same action from the same state of the
world may lead to different evolution of state in the future — that is,
RL is non-deterministic.

In this chapter, we introduce the basic elements of RL using real-
world examples, and what it means for the agent to act optimally.
Chapter 14 focuses on the setting where the underlying environ-
ment (e.g., the number of states, the current state, the probability
distribution) is completely known to the agent. 1 In Chapter 15, we 1 Think of playing a game where you

know the complete set of rules.will present the case where the environment is not fully available
to the agent, and the agent learns about the environment while also
learning to act in it. 2 2 Think of playing a Role-playing Game

(RPG) where you need to unlock parts
of the map by advancing the story.
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13.1 Basic Elements of Reinforcement Learning

Now we formalize several of the basic elements of reinforcement
learning that were sketched above.

13.1.1 States and Actions

There is a finite set S of states, and the entire system agent + envi-
ronment exists in one of these states at any time. At each state s ∈ S,
the agent makes an action a ∈ As, where As is the set of allowed
actions at state s. We denote A =

⋃
s∈S

As to be the set of all possible

actions in the whole RL environment.

Example 13.1.1. Consider a game of chess. Each state s can be represented
as a pair (C, p) where C denotes the current configuration of pieces and p
denotes the player to play next. For example, “white king at e1, black king
at e8, and it is white turn to move” would be a possible state s of the game.
An action a is a valid movement of a piece, given a state of the game. For
example, “white king to e2” (i.e., Ke2) would be a possible action of the
agent playing white in state s.

Example 13.1.2. Self-driving cars, like those built by Tesla, are becoming
increasingly popular. Let’s imagine how we could construct a state diagram
for the task of driving autonomously. Each state can be represented by the
current configuration of a number of factors (e.g., the car speed, distance
from lane boundaries, distance to nearest vehicle, etc.) Possible actions
include increasing/decreasing speed, changing gear, changing direction,
changing lane, etc.

13.1.2 Modeling Uncertainty via Transition Probabilities

As mentioned, the agent has many sources of uncertainty in its
knowledge about the environment, and we can use concepts from
probability to model uncertainty.

Suppose S = {s1, s2, . . . , sn} contains n states. When the agent
takes action a while in state s, it will transition into another (poten-
tially the same) state s′. The catch is: the agent does not know exactly
which state it will end up in. Instead, there is a probability pi of end-
ing up in state si for each si ∈ S. Here ∑i pi = 1, meaning each (state,
action) pair is associated with a probability distribution over the next
state that the agent will enter. Formally, we define it as follows:

Definition 13.1.3 (Transition Probabilities). Given a state s ∈ S and an
action a ∈ As, there is an associated transition probability p(∗ | s, a)
distributed over S such that state s′ ∈ S happens with probability p(s′ | s, a)
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when action a is taken at state s and ∑
s′∈S

p(s′ | s, a) = 1. If p(s′ | s, a) > 0,

we say that the state s′ is reachable from s when action a is taken.

In general, not all states are reachable, given a state s and an action
a. That is, some transition probability p(s′ | s, a) is zero. For these
states, it is conventional to leave out the corresponding transitions
when representing the RL environment as a state diagram as in
Figure 13.1 or Figure 13.2.

Example 13.1.4. Consider the state diagram shown in Figure 13.1. This is
a special case where there is only one action a in the set A. In other words,
the agent is not making any choices; instead, it is just following probabilistic
transition over time steps. To calculate the probability of reaching state s3

from s0, we note there are two different paths. The first path is s0 − s1 − s3

and the second path is s0 − s2 − s3. We thus calculate the probabilities of each
of these paths and note that the overall probability of reaching s3 will be the
sum of both: 0.2 · 0.7 + 0.8 · 0.4 = 0.46.

Figure 13.1: An example diagram
where |A| = 1. The agent simply
follows probabilistic transitions.

Now we consider an example where there is more than one action
to make. In this case, each action induces a different probability
distribution on the set of states, so we need to draw a diagram for
each option.

Example 13.1.5. We can model a baby learning to walk through RL. As
shown in Figure 13.2, we can define the state s0 = standing but feeling
unsteady, s1 = standing and feeling secure, and s2 = on ground. The
baby has two actions to take: a = not grab onto nearest support and
a′ = grab onto nearest support. The state diagram on the top represents
the transition probabilities when the baby takes the action a. See that the
baby has a high chance of entering state s2 — falling to the ground. On
the other hand, the state diagram on the bottom represents the transition
probabilities when the baby takes the action a′. The baby now has a high
chance of entering state s1 — standing securely on the ground. The two
actions have different probability distributions associated with the relevant
transitions.

Example 13.1.6. Mechanical ventilators are used to stabilize breathing for
patients. Suppose we wished to construct a state diagram. We could define
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Figure 13.2: An example diagram
showing how an action determines the
probability of outgoing transitions.

states that consider the pressure and CO2 level in the patient’s level for the
past k seconds. Actions might include adjusting the flow rate of oxygen
via valve settings as needed. Possible transitions might include the typical
mechanical response of the lungs, or unexpected spasms. Finally, we can
define the goal to be maintaining steady pressure in the patient without

“overshooting” and causing damage.

13.1.3 Agent’s Motivation/Goals

In general, an agent is a participant in RL models driven by the
need to maximize “rewards.” In a probabilistic setting, the agent
wishes to maximize their expected rewards. In a natural setting, the
“rewards” could be innate satisfaction, such as getting to eat food,
being entertained, etc. But in the usual artificial settings such as
robots and self-driving cars, rewards are sprinkled by the system
designer into the framework. Some examples appear later.3 3 While reward/punishment as a way

to shape human or animal behavior is a
very old idea, mathematical modeling
of agents as reward-maximisers appears
in several disciplines that flowered
around the middle of the 20th century
(e. g., behaviorism in psychology, profit-
maximization in economics, and of
course RL).

At each step, the agent takes an action, and is given a reward
(which could be negative, i. e., is a punishment) based on the action,
current state, and next state.

Definition 13.1.7 (Reward). For each valid 3-tuple (a, s, s′) where s′ ∈ S
is a state reachable from state s ∈ S by taking action a ∈ As, we define a
corresponding reward r(a | s, s′) ∈ R.

Example 13.1.8 (Example 13.1.5 revisited). When the baby stands and
feels secure after grabbing onto something, the parents applaud the baby,
and the baby receives a positive reward: r(a′ | s0, s1) = 5. When the baby
feels secure without grabbing onto the nearest support, the parents feel even
prouder and the baby gets a more positive reward: r(a | s0, s1) = 10. When
the baby falls to the ground, the baby feels pain and receives negative reward:



introduction to reinforcement learning 171

r(a | s0, s2) = r(a′ | s0, s2) = −5.

Typically, the designer of an RL model gets to define the rewards
throughout the framework based on the designer’s judgment. For
instance, in Example 13.1.2, we might design an RL model such that
if the car drifts into an adjacent lane, we assign a negative reward.
If another vehicle is in the lane, we might assign an even larger
negative reward. This will induce an RL model to “learn” the proper
way to driving — staying in lane.

13.1.4 Comparison with NFA

Recall the Non-deterministic Finite Automata (NFA) you learned in
COS 126. In an NFA, there is a finite number of states, and for each
state, we know the set of next possible states, based on the next input
character.

Figure 13.3: A sample Non-
deterministic Finite Automata. Source:
Introduction to the Theory of Computation
by Michael Sipser.

We can consider the following analogy between RL and NFA —
there is someone behind an NFA, who can observe its current state
and type in the next input character. This person will be called an
agent, and the choice of input character that is typed in will be called
an action. Each action can lead to a finite set of next possible states,
but because of some uncertainty in the world, the agent cannot
specify which particular state will be the next one. This is similar to
an NFA in the sense that the actions are non-deterministic. Also, just
like in an NFA, the change in the current state is also referred to as a
transition. One major difference between RL and NFA is that while an
NFA only cares about the final state of the automata (i. e., whether it
is an accept state or a reject state), in RL, the agent is given a reward
after each transition. The goal of the agent will be to take a sequence
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of actions so as to maximize the sum of the reward throughout the
sequence of actions.

13.2 Useful Resource: MuJoCo-based RL Environments

Real-life robots with precise and reliable hardware can get very
expensive to buy, let alone train. An easier playground for students
(especially those trying to work with a single GPU on CoLab) is
doing RL in a virtual environment.

MuJoCo is a famous physics engine that allows creating virtual
objects with somewhat realistic “joints” that can be commanded to
move similar to real-life robots. OpenAI and DeepMind have open-
source environments that allow experimentation in the MuJoCo
environment. The official website gives a pretty good overview of the
software:

Figure 13.4: An example of a MuJoCo
Walker.

MuJoCo is a physics engine that aims to facilitate research and development
in robotics, biomechanics, graphics and animation, and other areas where fast
and accurate simulation is needed. MuJoCo offers a unique combination of
speed, accuracy and modeling power, yet it is not merely a better simulator.
Instead it is the first full-featured simulator designed from the ground up
for the purpose of model-based optimization, and in particular optimization
through contacts. 4 4 Source: https://mujoco.org.

One aspect of MuJoCo simulation involves a representation of a
humanoid figure (i. e., the agent) learning how to navigate an obstacle
course (i. e., the environment). Training videos are readily available
online and show how the agent learns over time (sometimes, to
comedic effect).

Example 13.2.1. Let’s analyze the example of an agent navigating an
obstacle course through an RL framework. The states can be considered to be

https://mujoco.org
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the set of coordinates, velocity, and acceleration for each limb, the velocity
and acceleration for the motors in each joint, and the environment itself
straight ahead. The actions can include the agent increasing or decreasing
motor speed in their joints. Finally, the final goal is to stay upright, run
forward at a reasonable pace, and avoid obstacles.

13.3 Illustrative Example: Optimum Cake Eating

Let’s consider an extended example which ties together the elements
of RL discussed previously. Suppose you buy a small cake with three
slices. The reward of eating one slice at one sitting is 1, but eating
two or three slices at one sitting is 1.5 and 1.8 respectively. 5 5 This sense of diminishing rewards is

known as the satiation effect.

Problem 13.3.1. Suppose you plan to eat the cake over a period of three days.
What eating schedule will maximize the internal reward?

Now let’s introduce your roommate, who is oblivious to basic
understandings of ownership and adheres to the “finders keepers”
faith. We define the probability Pr[sneakily eats a slice overnight] =
1
2 . To account for this uncertainty, we can create a look-ahead tree for
different initial actions. We first consider the action where you decide
to eat two out of the three slices on the first night. Successive states
and associated probabilities are shown in the Figure 13.5.

Figure 13.5: The diagram (look-ahead
tree) of the cake problem where you
decide to eat two slices on the first
night. Each state represents the number
of slices remaining, and each action
represents the number of slices eaten on
one night.

Even though you eat only two out of the three slices during the
first night, there is a 1

2 chance that your roommate eats the remaining
slice overnight. Therefore, the action of “eating 2 slices” can lead
to two possible states — “1 slice left” or “0 slices left” — each with
probability 1

2 .

Example 13.3.2. We can calculate the expected reward associated with eating
two slices on the first night by analyzing the Figure 13.5. You first gain
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reward of 1.5 by eating the two slices on the first night. Then with proba-
bility 1

2 (where the roommate does not eat the remaining slice overnight),
you get to eat the last slice on the second night and gain additional re-
ward of 1. With probability of 1

2 (where the roommate eats the remaining
slice), you cannot gain anymore reward. That is, the expected reward is
1.5 + 0.5 · 1 + 0.5 · 0 = 2.

Problem 13.3.3. Consider the result of Example 13.3.2. Would you prefer to
take two slices on the first night or three slices?

We next consider the action where you decide to eat one out of
the three slices on the first night. Successive states and associated
probabilities are shown in Figure 13.6.

Figure 13.6: The diagram (look-ahead
tree) of the cake problem where you
decide to eat one slice on the first night.

The difficulty in this example in contrast to the Figure 13.5 is that
if the roommate does not eat a slice after the first night, you have two
slices at your disposal on the second night. You have two actions you
can take in this “2 slices left” state — “eat 1 slice” (and hope the third
slice is still there on the third night) or “eat 2 slices” — and it is not
immediately obvious which one is more optimal. It turns out that
the expected reward you can get from the remaining 2 slices is 1.5 for
both options.

Problem 13.3.4. Verify the previous claim that both options on the second
night have the same expected reward.

Example 13.3.5. Given the previous analysis and the look-ahead tree in the
Figure 13.6, we note that the total expected reward is 1 + 0.5 · 1 + 0.5 · 1.5 =

2.25. You first receive a reward of 1 by eating 1 slice on the first night. Then
with probability 1

2 , the roommate eats one slice over night, and you gain
reward of 1 by eating the last slice on the second night. With the remaining
probability 1

2 , the roommate does not eat a slice, and you are expected to gain
reward of 1.5 from the remaining 2 slices, regardless of the action you choose
to take on the second night.

Problem 13.3.6. Consider the result of Example 13.3.5. Would you prefer to
take two slices on the first night or one slice?
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Markov Decision Process

In this chapter, we formally introduce the Markov Decision Process
(MDP), a way to formulate an RL environment. We then present
ways to find the optimal strategy of an agent, provided that the agent
knows the full details of the MDP — that is, knows everything about
the environment.

14.1 Markov Decision Process (MDP)

Let’s review the key ingredients of RL. We have the agent, who senses
the environment and captures it as the current state. There is a finite
number of actions available at any given state, and taking an action a
in state s will cause a transition to s′ with probability p(s′ | s, a). Each
transition is accompanied by a reward r(a | s, si) ∈ R. Finally, the
goal of the agent is to maximize the expected reward via a sequence
of actions.

A Markov Decision Process (MDP) is a formalization of these con-
cepts. It is a directed graph which consists of four key features:

• A set S which contains all possible states

• A set A which contains all possible actions

• For each valid tuple of action a and states s1, s2, there is an as-
signed probability p(s2 | s1, a) of transition to s2 if action a is taken
in s1

• For each valid tuple of action a and states s1, s2, there is an as-
signed reward r(a | s1, s2), which is obtained if action a is taken to
transition from s1 to s2

If a designed MDP has M actions and N states, we can specify the
MDP by a table of transition probabilities (with MN2 numbers) and a
table for rewards (with MN2 numbers).
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14.1.1 Revisiting the Cake Eating Example

Let’s return to the case study on eating cake from Subsection 13.3,
and formally express it through a MDP. The set of states is given
as S = {0, 1, 2, 3}, where each state represents the number of slices
left. The set of actions is given as A = {1, 2, 3}, where each action
represents the number of slices you choose to eat on a given night.
Notice that reward only depends on how many slices you take, not
how many slices are left after your roommate goes through the fridge.
That is, we can define the reward r(a | s, ∗) for each a ∈ A to be the
same for every s ∈ S where a is feasible. 1 1 We still need to include the previous

state s because not all actions are
feasible at each state. For example, you
can’t eat 2 slices when there is only 1
slice left.

Example 14.1.1. Let’s revisit Example 13.3.2 as a motivating example.
If we let a = 2, s1 = 3, and s2 = 0, then the probability of the specified
transition is p(s2 | s1, a) = 0.5. The associated reward is r(a | s1, s2) = 1.5
as discussed earlier.

We are now ready to generalize to the a more complete MDP,
which is shown in Figure 14.1. Note that every transition is labeled
with its probability, associated action, and associated reward.

Figure 14.1: A more complete diagram
of the cake problem when described as
a MDP.

14.1.2 Discounting the Future

The MDP describing cake eating in the previous subsection was
acyclic. 2 However, in general, MDPs can have directed cycles, and 2 This is also known as an Episodic

MDP.the agent’s actions can allow it to continuously collect rewards along
that cycle. For instance, continuing our cake theme, we may have a
scenario in which you receive a fresh cake every 3 days. But now we
run into a problem: how can we calculate the expected reward when
there is an unbounded number of steps?

The solution lies in the concept of future discounting. The basic
idea is to reduce, or discount, the amount of reward we get from
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future steps. In an MDP, we represent this through a discount factor
0 < γ ≤ 1 and an associated infinite sum. 3 3 This is related to notions of discount-

ing commonly considered in economics.
Definition 14.1.2 (Future Discounting). If a reward rt is received at
time t = 0, 1, 2, . . . , then the perceived value of these rewards rd, or the
discounted reward, at t = 0 is:

rd = r0 + γr1 + γ2r2 + γ3r3 + · · ·

Example 14.1.3. Consider the cake eating problem again and let rt denote the
reward we get on night t. If the reward is discounted by a factor of γ every
night, the total expected discounted reward E[total] can be rewritten as

E[total] = E[r1] + γ ·E[r2] + γ2 ·E[r3]

Consider taking the action a = 2 on the first night. If γ = 0.9, then the
expected discounted reward is

1.5 + 0.9 · (0.5 · 1 + 0.5 · 0) = 1.95

This is the same as in Example 13.3.2 except the reward taken from the
second night is discounted by a factor of 0.9. Now consider taking the action
a = 1 on the first night and on the second night. If γ = 0.9, the expected
discounted reward is

1 + 0.9 · (0.5 · 1 + 0.5 · 1) + 0.92 · (0.52 · 1) = 2.1025

Here, we first take the reward of 1 on the first night without any discount
factor. Then, we calculate the expected reward from the second night — 1
whether or not the roommate eats a slice — and discount it by a factor of 0.9.
Finally, we calculate the expected reward from the third night — 1 only if
the roommate did not eat any slice on the first two nights — and discount it
by a factor of 0.92.

Note that in Definition 14.1.2, if each rt ∈ [−R, R] and if γ < 1,
then the magnitude of discounted reward of the infinite sequence has
the following upper bound:

|rd| ≤ R(1 + γ + γ2 + · · · ) = R
1− γ

(14.1)

(14.1) is derived by considering the formula for the sum of an infinite
geometric series, which we can invoke if γ < 1. In general, γ is up
to the system designer. A lower γ would imply that the agent places
little importance on future rewards, whereas γ = 1 would imply that
there is effectively no discounting.

14.2 Policy and Markov Reward Process

Now that we have discussed what an action is and what it does in
an MDP, we want to specify what action an agent has to take in each
state. This is known as a policy.
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Example 14.2.1. Consider again the cake eating MDP example without
a discount factor. We already established through Example 13.3.2 and
Example 13.3.5 that to maximize the expected reward, you need to eat one
slice per day until all slices are gone. That is, in any state j where j = 1, 2, 3,
you need to take action 1.

In general, if S is the set of states, and A is the set of actions, then
a policy (not necessarily the optimum) π can be defined as a function
π : S→ A

Definition 14.2.2 (Policy). If S is the set of states, and A is the set of
actions, any function π : S → A is called a policy that describes which
action to take at each state. In particular, each state s should only be mapped
to a valid action a ∈ As at that state.

Recall that if there are M actions and N states, there are at most
MN2 transitions in the graph of the MDP. Because a policy specifies
one action per state, there are at most N2 transitions that remain
when we choose a specific policy. Therefore, it can be understood
that a policy trims out the MDP.

14.2.1 Markov Reward Process (MRP)

When we have an MDP and a fixed policy, we have what is called a
Markov Reward Process (MRP). There are no more decisions to make;
instead, all we need to do is take the action specified by the policy;
probabilistically follow a transition into a new state; and collect the
associated reward.

Example 14.2.3. Let’s revisit Figure 14.1. If we fix the policy to be π(s) = 1
for any s ∈ S, we can focus our attention to the action a = 1. Then there
are three trajectories that will lead from state 3 to state 0, based on what
the roommate does overnight. The first trajectory is 3 → 1 → 0 with
probability 0.5× 1 and reward 1 + 1. The second trajectory is 3 → 2 → 0
with probability 0.5× 0.5 and reward 1 + 1. The last trajectory is 3→ 2→
1→ 0 with probability 0.5× 0.5× 1 and reward 1 + 1 + 1.

In general, when we fix a policy π and an initial state s, we can
redraw the transition diagram of an MDP into a tree diagram for
the MRP, where each node corresponds to a state, and each edge
corresponds to a probabilistic transition. The top node represents the
initial state, and each subsequent row of the tree represents the set of
possible states after taking an action from their parent node.

Example 14.2.4. We revisit Example 14.2.3. We now transform Figure 14.1
into a tree diagram for the MRP as shown in Figure 14.2. The top node is
the initial state 3. The second row of the tree is all states that can be achieved
by taking the action 1 at state 3, and so on.
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Figure 14.2: A tree representing the
MRP in Example 14.2.3.

Note that in an MRP tree, the same state can appear multiple
times, but each copy of the same state is identical — that is, the
subtree rooted at each copy must be identical. In Figure 14.2, the
state 1 appears twice in the tree. Every time it appears, it can only
lead to state 0 with probability 1. This is simply the result of fixing
a policy π — once we know the state we are in, we only have one
choice for the action to take.

The policy also induces a value function on this tree. The value
function assigns a value to each node of the tree, and each value
intuitively measures how much reward the agent should expect to
collect once the agent knows they have arrived at that node. By the
observation from the previous paragraph, this expected reward is the
same for two nodes if they are copies of the same state. Therefore,
we can equivalently define the value function for each state s instead.
Formally, we define the value function as the following.

Definition 14.2.5 (Value Function). vπ(s), the value of state s under the
policy π, is the expected discounted reward of a random trajectory starting
from s. We can define this value by using the following recursive formula:

vπ(s) = ∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvπ(s′)

)
(14.2)

Computing the value function as in (14.2) is also known as the Bellman
equation.

Let us unpack the intuition behind (14.2). Once we take action
π(s) at state s, it will bring us to state s′ with probability p(s′ | s, a),
immediately giving us a reward r(a | s, s′). Then, the expected reward
from that point on is already captured by the value vπ(s′). We just
need to apply the discount factor γ because we already took one time
step to reach s′ from s.
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On the other hand, if we pick any random trajectory starting
from s, its next node will be some state s′ that is reachable from s.
Therefore, the contribution of this particular trajectory to vπ(s) is
accounted for when we sum over that particular s′.

14.2.2 Connection with Dynamic Programming

In COS 226, you may have seen an implementation of a bottom-up
dynamic programming.

Figure 14.3: A Dynamic Programming
implementation of a coin changing
problem that uses the bottom-up
approach.

In such implementations, the algorithm divides the problem into
subproblems arranged as directed acyclic graphs and computes
“bottom-up.” The MDP from the cake eating problem is acylic and
our method using a look-ahead tree is similar to the dynamic pro-
gramming algorithms. Therefore, it seems like we can apply a similar
algorithm to the cake eating problem.

Example 14.2.6. Consider Example 14.2.3 again, but now with a discount
factor of 0.9. We will find the value vπ(s) of each state s by going bottom-up
from the tree in Figure 14.2. We start by noticing that vπ(0) = 0 as can be
seen from the bottom row. Then from the third node of the third row, we can
calculate

vπ(1) = 1 · (1 + 0.9 · 0) = 1

From the second node of the second row, we can calculate

vπ(2) = 0.5 · (1 + 0.9 · 0) + 0.5 · (1 + 0.9 · 1) = 1.45

Finally, from the top node, we can calculate

vπ(3) = 0.5 · (1 + 0.9 · 1) + 0.5 · (1 + 0.9 · 1.45) = 2.1025

But in general, the dynamic programming approach does not
completely apply to MDP. The biggest assumption for dynamic
programming algorithms is that the graph is acyclic, but MDPs are
generally allowed to have directed cycles if we can return to the same
state after a sequence of actions. Therefore, computing the expected
reward for even a single policy π involves solving a system of linear
equations.
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Example 14.2.7. Assume that we have three states s1, s2, s3 and transitions
as in Figure 14.4 with a discount factor of γ = 0.7. Then the value at each
state is given as

vπ(s1) = 0.2× (1 + 0.7vπ(s1)) + 0.8× (2 + 0.7vπ(s2))

vπ(s2) = 0.5× (2 + 0.7vπ(s1)) + 0.5× (2 + 0.7vπ(s3))

vπ(s3) = 1× (0 + 0.7vπ(s2))

Unlike in Example 14.2.6, we cannot compute any of these values one by
one because the values are interdependent in a cyclic manner. Instead, we
need to solve the linear equation as a whole, which gives us the solution:
vπ(s1) ≈ 5.47, vπ(s2) ≈ 5.18, vπ(s3) ≈ 3.63.

Figure 14.4: Visual representation of the
MDP in Example 14.2.7.

14.3 Optimal Policy

Out of all choices for a policy, we are interested in the optimal policy,
the one that maximizes the expected (discounted) reward. Surpris-
ingly, it is known that there always exists a policy π∗ that obtains the
maximum expected reward from all initial states simultaneously; that
is π∗ = arg max

π
vπ(s) for every state s. 4. The value function of the 4 If there are multiple such policies, we

denote any one of them by π∗.
optimal policy is called the optimal value function and is often denoted
as v∗(s). Then we can express the optimal value function using (14.2)
as:

v∗(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γvπ(s′))

This is just restating the fact that the optimal value of state s is the
maximum of all possible values vπ(s) of s under a policy π — i. e.,
the Bellman equation evaluated with the values vπ(s′) of each child
node s′ under that specific policy π.

But we can even go further than this result. It is known that the
optimal value also satisfies the following:

v∗(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γv∗(s′)) (14.3)
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Notice that vπ(s′) in the summation has now been replaced with
v∗(s′). This property, known as the Bellman Optimality condition,
states that the optimal value is even the maximum when the Bellman
equation is evaluated with the values v∗(s′), regardless of the choice
of the policy π.

Notice that the right-hand side of (14.3) only depends on the
choice of the action a of the given state s, not any other states. There-
fore, we can rewrite (14.3) as:

v∗(s) = max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.4)

which also suggests that the optimal action at state s can be ex-
pressed as:

π∗(s) = arg max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.5)

But the problem is: it is unclear how to turn this into an efficient
algorithm. Computing the value v∗(s) depends on the value v∗(s′),
which can also depend on v∗(s), which becomes recursive.

In this section, we present an iterative algorithm called the value
iteration method which will be used to compute the optimal policy.
Before we describe the algorithm, we unpack the underlying ideas.

14.3.1 Developing Intuition about Optimality: Gridworld

To develop intuition about how to find an optimum policy, let’s
consider a classic example called Gridworld. 5 5 Source: Sutton and Barton 2020, https:

//web.stanford.edu/class/psych209/

Readings/SuttonBartoIPRLBook2ndEd.

pdf
Example 14.3.1 (Gridworld). Consider a 5× 5 grid. The set of states
is given as the cells of this grid. At each state except for A = (1, 2) and
B = (1, 4), there are four available actions: move left/right/up/down, each
with reward 0, except in the following setting: if the action will make you
move off the grid. then the reward is −1, and you are made to stay at the
same state instead.

At A, there is only one action: move to A′ = (5, 2) with reward 10 and
similarly at B, there is one action: move to B′ = (3, 4) with reward 5. 6 The 6 The outgoing transition from A and B

can be thought of as “wormholes.”discount factor is given as 0.9.

How can we compute the reward for a policy in the example
above? When beginners try to calculate the exact value using the
above definitions, they quickly get bogged down in keeping track of
too many variables, equations, and recurrences.

Instead, let’s try to think intuitively about what an optimal policy
should be trying to do. Since the wormholes are the only source of
rewards, an optimal policy should be trying to utilize the wormholes
as much as possible. Using this kind of intuition, we can design a

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
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Figure 14.5: Visual representation of the
Gridworld.

policy that looks at least near-optimal, and use its value as a lower
bound for the optimal policy.

First, let v∗(s) denote the value vπ∗(s) of state s for an optimal
policy π∗. Since there is only one action to choose from at state A, we
know that

v∗(A) = 10 + γv∗(A′) (14.6)

Now, at the state A′, one possible trajectory you can follow is “go
up four steps” (each with reward 0) back to A. We know that the
optimal value has to be at least as great as this value. That is

v∗(A′) ≥ γ4v∗(A) (14.7)

Combining (14.6) and (14.7), we get

v∗(A) ≥ 10 + γ5v∗(A)

If we solve for v∗(A), we get

v∗(A) ≥ 10
1− γ5 ≈ 24.4

The value iteration method discussed below is based on this
intuition — we can provide a lower bound for the optimal policy
by suggesting some potential policy. If we repeat this process, the
lower bound for the optimal policy can only go up. At the end of
the section, we will prove that this process converges to the actual
optimal value.

14.3.2 Value Iteration Method

Value Iteration is a method guaranteed to find the optimal policy. At
each step of the iteration, we are given a lower bound on the optimal
values of each state s. Using the values of the immediate children
nodes in the tree, we can compute an improved lower bound on
v∗(s).
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Example 14.3.2. See Figure 14.6. Suppose there are two actions to take at
state s. The first action, labeled as blue, will lead to state s1 with reward −1
with probability 0.5 and s3 with reward −1 with probability 0.5. The second
action, labeled as red, will lead to state s2 with reward 2 with probability
1. The discount factor is given as 0.6. Now assume that someone tells us
that they know a way to get an expected reward of 12 starting from s1, 1
from s2, and 4 from s3, regardless of the choice of initial action at s. In
other words, the optimal values for these three states are lower bounded by:
v∗(s1) ≥ 12, v∗(s2) ≥ 1 and v∗(s3) ≥ 4. Using this fact, we consider two
strategies 7 — (1) first take action blue at state s and play optimally thereon 7 This is not necessarily a policy because

the second part of playing optimally
may require you to return to state s and
take an action that is inconsistent with
your initial choice of action.

based on the other person’s knowledge; (2) first take action red at state s and
play optimally thereon. The lower bound for the expected reward for each of
the two strategies can be computed as:

vblue(s) ≥ 0.5× (−1 + 0.6× 12) + 0.5× (−1 + 0.6× 4) = 3.8

vred(s) ≥ 1.0× (2 + 0.6× 1) = 2.6

The Bellman Optimality condition in (14.4) guarantees that the optimal
policy is at least as good as either of these strategies. Therefore v∗(s) has to
be larger than both vblue, vred; that is, v∗(s) ≥ 3.8.

Figure 14.6: There are two actions you
can take at state s, and you will end up
in one of the three states: s1, s2, s3.

In general, the value iteration algorithm looks like:

1. Initialize some values v0(s) for each state s such that we are guar-
anteed v0(s) ≤ v∗(s)

2. For each time step k = 1, 2, . . ., and for each state s, use the values
vk(s′) of the immediate children s′ to compute an updated value
vk+1(s) such that vk+1(s) ≤ v∗(s). 8 8 These values vk(s) maintained by the

algorithm is not necessarily associated
with a specific policy. They are just a
lower bound for the optimal value v∗(s)
that will be improved over time.

3. When k→ ∞, each vk(s) will converge to the optimal value v∗(s).

Recall from (14.1) that if all transition rewards are within [−R, R],
then the expected rewards at any state for any policy lies in

[
− R

1−γ , R
1−γ

]
.
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Therefore, we can set the initial value v0(s) = − R
1−γ to be the lower

bound for each state s. 9 9 Our proof assumes this special
initialization where all v0(s) = − R

1−γ
for all states s. It turns out the value
iteration method converges to the
optimal value for arbitrary initialization,
but the proof is more complicated.

After the k-th iteration of the algorithm, we will maintain a value
vk(s) for state s, where the condition vk(s) ≤ v∗(s) is maintained as
an invariant. Now at the (k + 1)-th iteration, the algorithm will update
the values at each state s as the following:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
(14.8)

This is just the Bellman equation evaluated with the values vk(s′) of
each children node.

Example 14.3.3 (Example 14.3.1 revisited). Say we start the value
iteration on the gridworld with all values equal to zero. Now let us compute
v1(A), the value of A after the first iteration. Recall that A has only one
action to choose from: moving to A′. Denote this action by a. Therefore,

v1(A) = p(A′ | A, a) ·
(
r(a | A, A′) + γv0(A′)

)
= 1.0 · (10 + 0.9 · 0) = 10

Problem 14.3.4 (Example 14.3.1 revisited). Start value iteration with
all values equal to zero. What is v2((1, 3)), the value of (1, 3) after second
iteration?

14.3.3 Why Does Value Iteration Find an Optimum Policy?

Assume γ < 1. We prove that the values vk(s) maintained by the
value iteration method converge to the optimal values vπ(s). We
break this proof down into two parts. We first prove that the invari-
ant vk(s) ≤ v∗(s) holds throughout the algorithm. Then we prove
that in general, vk+1(s) is a tighter lower bound for v∗(s) than vk(s).

Proposition 14.3.5. For each time step k = 1, 2, . . ., and for each state s, the
invariant vk(s) ≤ v∗(s) holds.

Proof. Proof by mathematical induction. As discussed earlier, our
choice of initial values v0(s) = − R

1−γ satisfies the invariant. Now
assume that the invariant holds for some k. Now consider the update
rule of the value iteration algorithm:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
Notice that for any specific policy π and for any next state s′, we
have

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤p(s′ | s, π(s)) ·

(
r(π(s) | s, s′) + γv∗(s′)

)
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because of the inductive hypothesis that vk(s′) ≤ v∗(s′). Therefore, if
we sum over all state s′, we have

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤∑

s′
p(s′ | s, π(s)) ·

(
r(π(s) | s, s′) + γv∗(s′)

)
Since this inequality holds for every policy π, we have the following:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤ max

π
∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γv∗(s′)

)
= v∗(s)

where we apply the Bellman Optimality condition (14.4) in the last
equality. This concludes the inductive step, and it suffices for the
proof.

Now to prove that these values vk(s) eventually converge to v∗(s),
we introduce the following definition:

Definition 14.3.6. The residual at s at the k-th iteration is defined as
δs,k = v∗(s)− vk(s) ≥ 0.

Notice that as long as the residuals at the k-th iteration converge
to 0, the values vk(s) also converge to v∗(s). Since the residuals take
finite values when the algorithm is initiated, it suffices to prove that
the residuals decrease non-trivially in every iteration. 10 10 Our exposition of Value Iteration with

our particular initialization is new. The
usual textbook description requires a
slightly more complicated argument.

Proposition 14.3.7. If the largest residual at iteration k is denoted as
δk = maxs δs,k, then the largest residual δk+1 at iteration k + 1 satisfies
δk+1 ≤ γδk

Proof. Let a∗ be the action at s under the optimum policy π∗. Then
by (14.2),

v∗(s) = ∑
s′

p(s′ | s, a∗)(r(a∗ | s, s′) + γv∗(s′)) (14.9)

Note that taking the action a∗ is always an option at the (k + 1)-
th iteration, so vk+1(s), the maximum value across all policies (in
particular, across all actions available at s), has to be greater than or
equal to the value computed with the action a∗; that is,

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γvk(s′))

≥∑
s′

p(s′ | s, a∗)(r(a∗ | s, s′) + γvk(s′)) (14.10)
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Subtracting (14.10) from (14.9), we get

v∗(s)− vk+1(s) ≤ γ

(
∑
s′

p(s′ | s, a∗)(v∗(s′)− vk(s′))

)
By the definition of δk, each of v∗(s′)− vk(s′) = δs′ ,k ≤ δk. Therefore,

δs,k+1 = v∗(s)− vk+1(s) ≤ γδk∑
s′

p(s′ | s, a∗) = γδk

where the last equality uses the fact that ∑
s′

p(s′ | s, a∗) = 1 because p

is a probability distribution. Since this inequality holds for any state
s, we conclude that

δk+1 = max
s

δs,k+1 ≤ γδk

Theorem 14.3.8. For each s ∈ S, vk(s) converges to v∗(s) when k→ ∞.

Proof. By Proposition 14.3.5 and Proposition 14.3.7,

|v∗(s)− vk(s)| = v∗(s)− vk(s) ≤ δk ≤ γkδ0

which converges to 0 when k goes to infinity.

Theoretically, the value iteration method may not converge in a
finite number of steps, and the values maintained by the algorithm
vk(s) may only asymptotically approach the optimal values v∗(s).
However, in practice, the value iteration method will always termi-
nate, albeit sometimes not at convergence. The current design of
computers uses a discrete set of floating point numbers to approx-
imate the set of real numbers R. Once the theoretical difference
between vk(s) and vk+1(s) becomes smaller than what the computers
can process as different, no changes will be made to the values, and
the algorithm is guaranteed to terminate. However, the values when
the algorithm terminates may be slightly off from the optimal values.

14.3.4 Retrieving Optimal Policy from the v∗’s

One important thing to note is that the value iteration method finds
the optimal value of each state, not the optimal policy. So we need an
extra step to retrieve the optimal policy from the output of the value
iteration algorithm. This can be done by considering the Bellman
Optimality condition. For each state s, define π∗(s) = a∗ such that

a∗ = arg max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.5 revisited)

where v∗(s) is the value that the value iteration algorithm converges
to. If there are multiple actions a that satisfy the equation above,
arbitrarily choose an action.
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Example 14.3.9 (Example 14.3.1 revisited). Say we ran the value iteration
algorithm on the Gridworld. The output of the algorithm (the optimal values
of each state) is given in Table 14.1.

22.0 24.4 22.0 19.4 17.5
19.8 22.0 19.8 17.8 16.0
17.8 19.8 17.8 16.0 14.4
16.0 17.8 16.0 14.4 13.0
14.4 16.0 14.4 13.0 11.7

Table 14.1: Optimal values v∗(s) of the
Gridworld.

Consider the state A′ = (5, 2). There are four actions to take: left-
/right/up/down. Each action would yield the following values when evaluat-
ing the Bellman equation:

vle f t(A′) = 0 + 0.9× 14.4 = 13.0

vright(A′) = 0 + 0.9× 14.4 = 13.0

vup(A′) = 0 + 0.9× 17.8 = 16.0

vdown(A′) = −1 + 0.9× 16.0 = 13.4

The only action that maximizes the value is the action “go up.” Therefore,
we can conclude that the optimal policy π∗ will adopt the action “go up” for
the state A′.

Problem 14.3.10 (Example 14.3.1 revisited). Verify that an optimal policy
can assign either the action “go up” or the action “go left” for the state
(5, 3).



15
Reinforcement Learning in Unknown Environments

In the previous Chapter 14, we established the principles of reinforce-
ment learning using a Markov Decision Process (MDP) with set of
states S, set of actions A, transition probabilities p(s′ | a, s), and the
rewards r(a | s, s′). We saw a method (value iteration) to find the
optimal policy that will maximize the expected reward for every state.
The main assumption of the chapter was that the agent has access to
the full description of the MDP — the set of states, the set of actions,
the transition probabilities, rewards, etc.

But what can we do when some of the parameters of the MDP are
not available to the agent in advance — specifically, the transition
probabilities and the rewards? Instead, the agent makes actions and
observes the new state and the reward it just received. Using such
experiences it begins to learns the reward and transition structure,
and then to translate this incremental knowledge into improved
actions.

The above scenario describes most real-life agents: the system
designer does not know a full description of the probabilities and
transitions. For instance, think of the sets of possible states and
transitions in the MuJoCo animals and walkers that we saw. Even
with a small number of joints, the total set of scenarios is too vast.
Thus the designer can set up an intuitive reward structure and let the
learner figure out from experience (which is tractable since it involves
a simulation).

Settings where agent must determine (or “figure out”) the MDP
through experience, specifically by taking actions and observing the
effects, is called the “model-free” setting of RL. This chapter will
introduce basic concepts, including the famous Q-learning algorithm.

In many settings today, the underlying MDP is too large for the
agent to reconstruct completely, and the agent uses deep neural
networks to represent its knowledge of the environment and its own
policy.
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15.1 Model-Free Reinforcement Learning

In model-free RL, we know the set of states S and the set of actions A,
but the transition probabilities and rewards are unknown. The agent
now needs to explore the environment to estimate the transition
probabilities and rewards. Suppose the agent is originally in state
s1, chooses to take an action a, and ends up in state s2. The agent
immediately observes some reward r(a | s1, s2), but we need more
information to figure out p(s2, |s1, a).

One way we can estimate the transition probabilities is through the
Maximum Likelihood Principle. This concept has been used before
when considering estimating unigram probabilities in Chapter 8. In
model-free RL, an agent can keep track of the number of times they
took action a at state s1 and ended up in state s2 — denote this as
#(s1, a, s2). Then the estimate of the transition probability p(s′|s, a) is:

p(s2|s1, a) =
#(s1, a, s2)

∑
s′

#(s1, a, s′)
(15.1)

The Central Limit Theorem (see Chapter 18) guarantees that esti-
mates will improve with more observations and quickly converge to
underlying state-action transition probabilities and rewards.

15.1.1 Groundhog Day

Groundhog Day is an early movie about a “time loop” and the title
has even become an everyday term. The film tracks cynical TV weath-
erman Phil Connors (Bill Murray) who is tasked with going to the
small town of Punxsutawney and filming its annual Groundhog Day
celebration. He ends up reliving the same day over and over again,
and becomes temporarily trapped. Along the way, he attempts to
court his producer Rita Hanson (Andie MacDowell), and is only
released from the time loop after a concerted effort to improve his
character.

Sounds philosophically deep! On the internet you can find various
interpretations of the movie: Buddhist interpretation (“many reincar-
nations ending in Nirvana”) and psychoanalysis (“revisiting of the
same events over and over again to reach closure”). The RL interpre-
tation is that Phil is in an model-free RL environment, 1 revisiting 1 Specifically a model-free RL environ-

ment with an ability to reset to an initial
state. This happens for example with a
robot vacuum that periodically returns
to its charging station. After charging,
it starts exploring the MDP from the
initial state again.

the same events of the day over and over again and figuring out his
optimal actions.
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15.2 Atari Pong (1972): A Case Study

In 1972, the classic game of Pong was released by Atari. This was the
first commercially successful video game, and had a major cultural
impact on the perception of video games by the general public. The
rules of the game are simple: each player controls a virtual paddle
which can move vertically in order to rally a ball back and forth
(one participant may be an AI agent). If a player misses the ball, the
other player wins a point. We can consider the total number of points
accumulated by a player to be their reward so far. While technology
and video games have become far more advanced in the present, it
is still useful to analyze Pong today. This is because it is a simple
example of a physics-based system, similar to (but far less advanced
than) the MuJoCo stick figure simulations discussed in Chapter 13. It
thus provides a useful case study to demonstrate how an agent can
learn basic principles of physics through random exploration and
estimation of transition probabilities.

Let’s apply some simplifications in the interest of brevity. We
define the pong table to be 5× 5 pixels in size, the ball to have a size
of 1 pixel, and the paddles to be 2 pixels in height. We define the
state at a time t as the locations of the two paddles at time t, and the
locations of the ball at time t and time t− 1. 2 2 Storing the location of the ball at time

t− 1 and time t allows us to calculate
the difference between the two locations
and thus gives an estimate for the
velocity.

We additionally restrict attention to the problem of tracking and
returning the ball, also known as “Pico-Pong.” Thus, we define the
game to begin when the opponent hits the ball. The agent gets a
reward of +1 if they manage to hit the ball, −1 if they miss, and 0
if the ball is still in play. As soon as the agent either hits the ball or
misses, we define that the game ends. Of course, these additional
rules of the game are not available to the agent playing the game.
The agent needs to “learn” these rules by observing the possible
states, transitions, and corresponding rewards.

In general, these simplifications remove complications of modeling
the opponent and makes the MDP acyclic; an explanatory diagram
is shown in Figure 15.1. Throughout this section, we will build
intuition about different aspects of our Pico-Pong model through
some examples.

15.2.1 Pico-Pong Modeling: States

Suppose the agent is playing random paddle movements. Consider
the possible states of the game shown in Figure 15.2. We note that
out of the three, the third option is never seen. By the definition of
the game, the ball can never move away from the agent. Of course,
the agent is oblivious to this fact at first, but once the game proceeds,
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Figure 15.1: The simplified Pico-Pong
setup which will be considered in this
case study.

the agent will be able to implicitly “learn” that the ball can never
move away from them.

Figure 15.2: Out of these possible states,
the third option is never seen.

15.2.2 Pico-Pong Modeling: Transitions

Let us now add another restriction to the game that the ball always
moves at a speed of 1 pixel every time step (i. e., moves to one of the
8 adjacent pixels) and in a straight linear path unless being bounced
against the top/bottom wall. Consider the possible transitions shown
in Figure 15.3. We note that out of the three, the third option is never
seen. By the restriction of the game, the ball cannot move 2 pixels in
one time step. The agent thus implicitly “learns” that the ball moves
at a constant speed of 1 pixel per time step.

Figure 15.3: Out of these possible
transitions, the third option is never
seen.
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Problem 15.2.1. Suppose the agent is playing randomly and the ball is trav-
eling at a speed of 1 pixel per step. Which of the transitions in Figure 15.4 is
never seen, and why?

Figure 15.4: Out of these possible
transitions, one option is never seen.

15.2.3 Pico-Pong Modeling: Rewards

Suppose the agent is playing randomly and the ball is traveling at a
speed of 1 pixel per step. Consider the action in Figure 15.5. We note
that the associated reward will be +1 because in the resulting state
the agent has “hit” the ball. The agent thus implicitly learns that if
the ball is 1 pixel away horizontally, it should move to intercept it to
obtain a positive reward.

Figure 15.5: Taking action ↓ results in a
reward of +1.

Problem 15.2.2. Suppose the agent is playing randomly and the ball is
traveling at a speed of 1 pixel per step. What reward is achieved given the
current state and chosen action in Figure 15.6, and why?

Figure 15.6: What reward will result
when taking action ↓?

15.2.4 Playing Optimally in the Learned MDP

After allowing the agent to explore enough, the agent has “learned”
some information about the underlying MDP of the Pico-Pong model.
The first thing the agent can learn is that, out of all possible states,
there is a subset of states that never appear in the game (e.g., ball
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moving away from the agent or ball moving too fast). The agent will
be able to ignore these states, while learning how to play optimally in
states that did occur while exploring.

Figure 15.7: An example look-ahead
tree for the Pico-Pong model.

Also, the agent has now “learnt” the transition probabilities and
rewards of the MDP. Using these estimates, the agent is able to build
up a representation of the MDP. Since the underlying MDP for the
simplified Pico-Pong model is acyclic, the optimal policy can be
determined using a simple look-ahead tree. An example diagram is
shown in Figure 15.7.

We provide a specific example to aid the exposition. Suppose
an agent finds themselves in the state shown in Figure 15.8. Since
the path of the ball is already determined, the next possible state is
uniquely determined by the choice of the action — “go down” or
“stay in place” or “go up.” If the agent chooses to “go down,” the
game will end with a reward of +1. If the agent chooses to “stay in
place” or “go up,” the game continues for another time step, but no
matter the choice of action on that step, the game will end with a
reward of −1. Therefore, the agent will learn that the optimal policy
will assign the action of “go down” in the state shown in Figure 15.8.

Problem 15.2.3. Draw out the look-ahead tree from the state shown in
Figure 15.8.

Figure 15.8: A sample state in the game
play of Pico-Pong.

Problem 15.2.4. Suppose we start from the state shown in Figure 15.9.
Assuming optimal play, what is the expected reward for the agent? (Hint:
consider if the agent will be able to reach the ball in time.)
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Figure 15.9: A sample state in the game
play of Pico-Pong.

Impressive! The agent has learnt how to return the ball in Pico-
Pong by first building up the MDP and its transitions/rewards
through repeated observations, and then computing the optimum
policy for the constructed MDP through a look-ahead tree. 3 3 How would you extend these ideas to

design a rudimentary ping pong robot
which can track and return the ball?

15.3 Q-learning

15.3.1 Exploration vs. Exploitation

Let us analyze the case study with Pico-Pong more deeply. We
can separate the process of learning into two different stages —
exploration and exploitation:

• Exploration: This pertains to what the agent did in the first phase.
Random paddle movements were used to help build up previously
unknown knowledge of the MDP — transition probabilities and
rewards.

• Exploitation: This pertains to what the agent did in the second
phase. Specifically, the agent used the learnt MDP to play opti-
mally.

In general, an RL environment is more complicated than Pico-
Pong, and there is no clear-cut boundary of when an agent has
explored “sufficiently.” It is best to combine the two stages (i. e.,
exploration and exploitation) into one and “learn as you go.” Also,
it is difficult to balance between these two processes, and how to
find the correct trade-off between exploration and exploitation is a
recurring topic in RL.

15.3.2 Q-function

We now introduce the Q-function, an important concept that helps tie
together concepts of exploration and exploitation when considering
general MDPs with discounted rewards.

Definition 15.3.1 (Q-function). We define the Q-function Q : S× A→ R

as a table which assigns a real value Q(s, a) to each pair (s, a) where s ∈ S
and a ∈ A.
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Intuitively, the value Q(s, a) is the current estimate of the expected
discounted reward when we take action a from state s. In other words, it
is the estimate of the value vπ(s) if π is any policy that will assign
the action a to state s. Using the currently stored values of the Q-
function, we can define a canonical policy πQ. For each state s, the
policy will assign the action a that maximizes the Q(s, a) value; that
is,

πQ(s) = arg max
a

Q(s, a)

Since the agent only has access to the estimate values Q(s, a), but
not the actual value function v, this is the most optimal policy to
the agent’s knowledge. Therefore, if the agent chooses to take an
exploitation step, they will take an action prescribed by the policy πQ

with respect to the currently maintained Q-function.
Instead of relying on the currently stored Q-function, we can also

choose to take an exploration step. Every time we take an exploration
step and receive additional information about the RL environment,
we update the values of the Q-function accordingly. The goal of the
Q-learning is to learn the optimal Q-function, which approximates the
optimal policy π∗ and the optimal value function v∗ as closely as
possible. We formalize the notion as follows:

Definition 15.3.2 (Optimal Q-function). The optimal Q-function is a
Q-function that satisfies the following two conditions:

• The corresponding canonical policy πQ is an optimal policy for the MDP.

• The Q-function satisfies the following condition:

Q(s, a) = ∑
s′ ; a

p(s′ | s, a)(r(a | s, s′) + γ max
b

Q(s′, b)) (15.2)

The first condition of Definition 15.3.2 states that for a fixed state s,
the action a that maximizes Q(s, a) is a = π∗(s). This condition only
cares about the relative ordering of the values of Q(s, a) — as long
as Q(s, π∗(s)) is the maximum value among all Q(s, a), then it is fine.
This condition guarantees that the action we take in the exploitation
step is an optimal action.

The second condition is formally stating that the values of the
Q-function are estimates of the expected reward when we take action
a from state s. It also suggests that Q-function needs to “behave
like” a value function vπ for some policy π. However, whereas a
similar condition for a value function vπ only needs to hold for one
particular action (i. e., a = π(s)) given a state s, this condition for a
Q-function should hold for any arbitrary action a. Note that for an
optimal Q-function, the term maxb Q(s′, b) in (15.2) is equivalent to
vπQ(s

′).
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15.3.3 Q-learning

Now that we have defined the Q-function and the optimal Q-function,
it is time for us to study how to learn the optimal Q-function. This
process is called Q-learning. The basic idea is to probabilistically
choose between exploration or exploitation: we define some probabil-
ity ϵ ∈ [0, 1] such that we choose a random action a with probability ϵ

(exploration) or choose the action a according to the current canonical
policy πQ with probability 1− ϵ (exploitation). If we choose the explo-
ration option, we use its outcome to update the Q(s, a) table. But how
should we define the update rule?

Let’s take a step back and consider a (plausibly?) real life scenario.
You are a reporter for the Daily Princetonian at Princeton, and want
to estimate the average wealth of alumni at a Princeton Reunions
event. The alumni, understandably vexed by such a request, strike
a compromise that you are only allowed to ask one alum about their
net worth. Can you get an estimate of the average? Well, you could
pick an alum at random and ask them their net worth! 4 4 The expectation gives the right aver-

age. But typically the answer would be
far from the true average; especially if
Jeff Bezos happens to be attending the
reunion.

With this intuition, we return to the world of Q-learning. Suppose
you start at some state st, take an action at, receive a reward of rt, and
arrive at state st+1. We call this process an experience. Now, when we
update the current estimate of Q(st, at), we ideally want to mimic the
behavior of the optimal Q-function in (15.2) and update it to:

Q(st, at) = ∑
s′ ; at

p(s′ | st, at) · (r(at | st, s′) + γ max
b

Q(s′, b)) (15.3)

Notice that this is the weighted average of the expected reward
r(at | st, s′) + γ maxb Q(s′, b) over all possible next states s′ given the
action at. But in practice, the agent only has the ability to take a single
experience; they lack the ability to “reset” and retake the step to try
all states s′ according to the transition probability p(s′ | st, at). We
thus must consider an alternative idea — we define the estimate for
Q(st, at) according to the experience at time step t as

Q′t = rt + γ max
b

Q(st+1, b)

This estimate can be calculated using the observed reward rt and
looking up the Q values of the state st+1 on the Q-function table.
Note that the expectation of Q′t is exactly the right hand side of (15.3).
That is,

E[Q′t] = ∑
s′ ; at

p(s′ | st, at) · (r(at | st, s′) + γ max
b

Q(s′, b))

This is because the agent took a transition to state st+1 with probabil-
ity p(st+1 | st, at) (of course, the agent does not know this value). This
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is thus analogous to the single-sample estimate of average alumni
wealth at the Princeton Reunions event. We can now define the
following update rule of the Q-learning process:

Q(st, at)← Q(st, at) + η(Q′t −Q(st, at))

= (1− η)Q(st, at) + ηQ′t
(15.4)

for some learning rate η > 0. You can understand this update rule in
two different ways. First, we are gently nudging the value of Q(st, at)

towards the estimate Q′t from the most recent experience. We can
alternatively think of the updated value of Q(st, at) as the weighted
average of the previous value of Q(st, at) and the estimate Q′t. In
either approach, the most important thing to note is that we combine
both the previous Q value and the new estimate to compute the
updated Q value. This is because the new estimate is just a single
sample that can be far off from the actual expectation, and also
because after enough iterations, we can assume the previous Q value
to contain information from past experience.

Example 15.3.3. Let’s return to our adventures in Pico-Pong and consider
the situation in Figure 15.10. Denote the state in the left diagram as st and
the state in the right as st+1. Suppose the current value of Q(st, a) = 0.4
with a =↑. Assuming that Q(st+1, a) = 0 for all a, we can compute the
estimate Q′t from this experience as

Q′t = rt + γ max
b

Q(st+1, b) = 1

Then the Q value will be increased to 0.4 + 0.6η.

Figure 15.10: The diagram representing
two states in a game of Pico-Pong.

15.3.4 Deep Q-learning

Note that the update rule in (15.4) looks similar to the Gradient De-
scent algorithm. They are both iterative processes which incorporate
a learning rate η. In fact, you can consider the Q-learning update rule
to be trying to minimize the squared difference between Q(st, at) and
Q′t. The similarity between the Q-learning update rule and the Gra-
dient Descent algorithm allows us to utilize a deep neural network
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to learn the optimal Q-function. Such a network is called the Deep Q
Network (DQN).

In a DQN, the Q-function can be represented by the parameters
W of the network. We emphasize this by denoting the Q-function as
QW(s, a). Now instead of directly updating the Q-function as in the
update rule

Q(st, at)← Q(st, at) + η(Q′t −Q(st, at)) (15.4 revisited)

we instead update the parameters W such that the Q-function is
updated accordingly.

First consider the case that Q′t > Q(st, at). That is, the estimated
Q-value is larger than the currently stored value. Then the update
rule (15.4) will increase the value of Q(st, at). To mimic this behavior,
we want to find an update rule for W that will increase the Q-value.
This is given as:

W← W + β · ∇WQW(st, sa)

for some learning rate β > 0.

Problem 15.3.4. Suppose Q′t < Q(st, at). How should we design the weight
updates?

One final thing to note is a technique called experience replay. Ex-
periencing the environment can be expensive (i. e., computation time,
machine wear, etc.). Therefore, it is customary to keep a history of
old experiences and their rewards, and periodically take a random
sample out of the old experiences to update the Q values. In partic-
ular, experience replay ensures that DQNs are efficient and avoid
“catastrophic forgetting.” 5 5 Catastrophic forgetting is a phe-

nomenon where a neural network, after
being exposed to new information,
“forgets” information it had learned
earlier.

15.4 Applications of Reinforcement Learning

15.4.1 Q-learning for Breakout (1978)

We previously considered using reinforcement learning for Pong. We
can also use it for another famous Atari game called Breakout. One
particular design uses a CNN to process the screen and uses the
"score" as a reward. As shown in Figure 15.11, the model becomes
quite successful after several epochs.

15.4.2 Self-help Apps

Self-help apps are designed to aid in recovery of the user from ad-
diction, trauma, heart disease, etc. A typical design involves an RL
algorithm which determines the next advice/suggestion based upon
reversals, achieved milestones, etc. so far. These can be a helpful
supplement to expensive therapy/consultation.
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Figure 15.11: An application of Q-
learning to the famous Atari game
Breakout.

15.4.3 Content Recommendation

At reputable websites, we might imagine that there exists a page cre-
ation system designed to capture the “reward” of user engagement.
We can use MDP techniques to model this situation. Specifically,
we can define s0 as the outside link which brought the user to the
landing page and/or the past history of the user on the site. If the
user clicks on a link, a new page is created and we can define s1

as a concatenation of s0 and the new link. If the user again clicks
on a link, another new page is created and we can define s2 as the
concatenation of s1 and the new link.

15.5 Deep Reinforcement Learning

Deep Reinforcement Learning is a subfield of machine learning that
combines the methods of Deep Learning and Reinforcement Learning
that we have discussed earlier. 6 The goal of it is to create an artificial 6 Source: https://www.youtube.com/

watch?v=x5Q79XCxMVcagent with human-level intelligence (Artifical General Intelligence,
AGI). In general, Reinforcement Learning defines the objective and
Deep Learning gives the mechanism for optimizing that objective.
Deep RL combines the problem given by the RL specification with
the solution given by the DL technique. In the cited source video,
RL expert David Silver made three broad conjectures related to this
topic.

1. RL is enough to formalize the problem of intelligence

2. Deep neural networks can represent and learn any computable
function

3. Deep RL can solve the problem of intelligence

Many Deep RL models are trained to play games (e.g., chess, Go) be-
cause it is easy to evaluate progress. By letting them compete against

https://www.youtube.com/watch?v=x5Q79XCxMVc
https://www.youtube.com/watch?v=x5Q79XCxMVc
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humans, we can easily compare them to human-level intelligence. As
an example, Google Deepmind trained a Deep RL model called DQN
to play 49 arcade games. 7 The computer is not given the explicit set 7 For the full paper, visit https:

//storage.googleapis.com/

deepmind-media/dqn/DQNNaturePaper.

pdf

of rules; instead, given only the pixels and game score as input, it
learns by using deep reinforcement learning to maximize its score.
Amazingly, on about half of the games, the model played at least at a
human level of intelligence!

15.5.1 Chess: A Case Study

Founders of AI considered chess to be the epitome of human in-
telligence. In principle, the best next move can be calculated via a
look-ahead tree (similar to Figure 13.5 from the cake-eating example).
Since chess is a two-player game, we can use an algorithm called the
min-max search on the look-ahead game tree. 8 8 Source: https://www.youtube.com/

watch?v=l-hh51ncgDIUsually, RL agents are playing against the nature that causes
them to take random transitions according to the MDP’s transition
probabilities. But in chess, the agent plays against an opponent that
is trying to make the agent take the largest possible loss (the largest
possible gain for the opponent). That is why we need a min-max
evaluation of the look-ahead tree.

Figure 15.12: An example look-ahead
game tree for chess with depth 3. White
will choose the right option.

In Figure 15.12, the numbers at the leaf nodes represent a static
evaluation of how good the game configuration is for white. This
is an approximation for the actual value of the node. An example
metric in chess would be the difference in the number of pieces (#
white − # black). These numbers are evaluated either when the game
terminates or when the algorithm has reached the specified number
of steps to look ahead. If the game ever reaches the specified node,
the white has two options to choose from: if white chooses the left
child node, it will end up with reward of −1; whereas if it chooses
the right child node, the reward will be 3. Then to maximize reward,

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://www.youtube.com/watch?v=l-hh51ncgDI
https://www.youtube.com/watch?v=l-hh51ncgDI
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the best move of white will be to choose 3. 9 9 For those who are familiar with chess
or game theory in general, this is
known as the best response.Figure 15.13: Black will choose the left
option.

In Figure 15.13, it is now black’s turn to choose. Note that the
reward for black is the opposite of the reward for white, so black
wants to minimize the value on the tree. Therefore, black will want to
choose the left child node.

So whenever we are at a configuration, we can create a look-
ahead tree for a reasonable number of steps and try to calculate
the best move. But the size of a game tree is astronomical, so it is
computationally infeasible to search all levels of the tree. 10 10 There is an optimization method

called alpha-beta pruning. Consult
the video referenced above for an
implementation on the game of chess.15.5.2 AlphaGo: A Case Study

Go is a game invented in China around 500 BC. It is played by 2
players on a 19× 19 grid. Players take turns placing stones on the grid,
and if any set of stones is entirely surrounded by opponent stones,
the enclosed stones are taken away from the board and awarded to
the opponent as points. Even though the rules are very simple, no
computer could beat a good human amateur at Go until 2015. 11 11 In comparison, IBM’s Deep Blue

model beat the world chess champion
Kasparov in 1997.

How can we utilize RL concepts to play this game? In general, we
can create a Deep Policy Net (DPN) to learn W, which is a function
that takes state s as an input and outputs a probability distribution
pW(a | s) over the next possible actions from s. AlphaGo is an
example of a DPN engineered by the Google Deepmind lab. It takes
the current board position as the input and uses ConvNet to learn the
internal weights, and outputs the value given by a softmax function.
In its initial setup, the DPN was trained using a big dataset of past
games. 12 12 Source: https://www.youtube.com/

watch?v=Wujy7OzvdJkTo be more specific, AlphaGo used supervised learning from
human data to learn the optimal policy (action to take at each game
setting). In other words, it used convolutional layers to replicate the
moves of professional players as closely as possible. Since the CNN

https://www.youtube.com/watch?v=Wujy7OzvdJk
https://www.youtube.com/watch?v=Wujy7OzvdJk
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Figure 15.14: The diagram representing
the process of training AlphaGo.

is just mimicking human players, it cannot beat human champions.
However, it can be used to search the full game tree more efficiently
than the alpha-beta search. Formally, this method is called the Monte
Carlo Tree Search, where the CNN is used to decide the order in
which to explore the tree. After the policy network was sufficiently
trained, reinforcement learning was used to train the value network
for position evaluation. Given a board setting, the network was
trained to estimate the value (i. e., likelihood of winning) of that
setting.

AlphaGo Zero is a newer version of the model that does not
depend on any human data or features. In this model, policy and
value networks are combined into one neural network, and the model
does not use any randomized Monte-Carlo simulations. It learns
solely by self-play reinforcement learning and uses neural network
(ResNet) to evaluate its performance. Within 3 days of training,
AlphaGo Zero surpassed an earlier version of AlphaGo that beat Lee
Se Dol, the holder of 8 world titles; within 21 days, it surpassed the
version that beat Ke Jie, the world champion. Interestingly enough,
AlphaGo Zero adopted some opening patterns commonly played by
human players, but it also discarded some common human patterns
and it also discovered patterns unknown to humans.

The newest version of AlphaGo is called AlphaZero. It is a model
that can be trained to play not just Go but simultaneously Chess and
Shogi (Japanese chess). After just a few hours of training, AlphaZero
surpassed the previous computer world champions (Stockfish in
Chess, Elmo in Shogi, and AlphaGo Zero in Go). Just as AlphaGo Zero
did, AlphaZero was able to dynamically adopt or discard known
openings in chess.




