
Part III

Deep Learning

10
Introduction to Deep Learning

Deep learning is currently the most successful machine learning
approach, with notable successes in object recognition, speech and
language understanding, self-driving cars, automated Go playing,
etc. It is not easy to give a single definition to such a broad and
influential field; nevertheless here is a recent definition by Chris
Manning:1 1 Source: https://hai.stanford.

edu/sites/default/files/2020-09/

AI-Definitions-HAI.pdf.Deep Learning is the use of large multi-layer (artificial) neural networks
that compute with continuous (real number) representations, a little like the
hierarchically-organized neurons in human brains. It is currently the most
successful ML approach, usable for all types of ML, with better generalization
from small data and better scaling to big data and compute budgets.

Deep learning does not represent a specific model per se, but
rather categorizes a group of models called (artificial) neural net-
works (NNs) (or deep nets) which involve several computational
layers. Linear models studied in earlier chapters, such as logistic
regression in Section 4.2, can be seen as special sub-cases involving
only a single layer. The main difference, however, is that general deep
nets employ nonlinearity in between each layer, which allows a much
broader scale of expressivity. Also, the multiple layers in a neural net
can be viewed as computing “intermediate representations” of the
data, or “high level features” before arriving at its final answer. By
contrast, a linear model works only with the data representation it
was given.

Deep nets come in various types, including Feed-Forward NNs
(FFNNs), Convolutional NNs (CNNs), Recurrent NNs (RNNs), Resid-
ual Nets, and Transformers. 2 Training uses a variant of Gradient 2 Interestingly, a technique called Neural

Architecture Search uses deep learn-
ing to design custom deep learning
architectures for a given task.

Descent, and the gradient of the loss is computed using an algorithm
called backpropagation.

Due to the immense popularity of deep learning, a variety of
software environments such as Tensorflow and PyTorch allow quick
implementation of deep learning models. You will encounter them in
the homework.

https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf

116 introduction to machine learning lecture notes for cos 324 at princeton university

10.1 A Brief History

Neural networks are inspired by the biological processes present
within the brain. The concept of an artificial neuron was first outlined
by Warren MuCulloch and Walter Pitts in the 1940s. 3 The basic 3 Paper: https://www.cs.cmu.edu/

~./epxing/Class/10715/reading/

McCulloch.and.Pitts.pdf.
frameworks for CNNs and modern training soon followed in the
1980s. 4 Later in 1986, backpropagation was discovered as a new 4 Paper: https://link.springer.com/

article/10.1007/BF00344251.procedure to efficiently apply gradient-based training methods to
these models. 5 However, by the 21st century deep learning had gone 5 Paper: https://www.nature.com/

articles/323533a0.out of fashion. This changed in 2012, when Krizhevsky, Sutskever,
and Hinton leveraged deep learning techniques through their AlexNet
model and set new standards for performance on the ImageNet
dataset. 6 Deep learning has since begun a resurgence throughout 6 Paper: https:

//papers.nips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.

pdf.

the last decade, boosted by some key factors:

• Hardware, such as GPU and TPU (Tensor Processing Unit, specifi-
cally developed for neural network machine learning) technology
has made training faster.

• The development of novel neural network architecutres as well as
better algorithms for training neural networks.

• A vast amount of data collection, boosted by the spread of the
internet, has augmented the performance of NN models.

• Popular frameworks, such Tensorflow and PyTorch, have made it
easier to prototype and deploy NN architectures.

• Commercial payoff has caused tech corporations to invest more
financial resources.

Each of the reasons listed above has interfaced in a positively
reinforcing cycle, causing the acceleration of this technology into the
foreseeable future.

10.2 Anatomy of a Neural Network

10.2.1 Artificial Neuron

An artificial neuron, or a node, is the main component of a neural
network. Artificial neurons were inspired by early work on neurons
in animal brains, with the analogies in Table 10.1.

Formally, a node is a computational unit which receives m scalar
inputs and outputs 1 scalar. This scalar output can be used as an
input for a different neuron.

Consider the vector x⃗ = (x1, x2, . . . , xm) of m inputs. A neuron
internally maintains a trainable weight vector w⃗ = (w1, w2, . . . , wm)

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

introduction to deep learning 117

Biological neuron Artificial neuron
Dendrites Input

Cell Nucleus / Soma Node
Axon Output

Synapse Interconnections

Table 10.1: A comparison between
biological neurons in the brain and
artificial neurons in neural networks

Figure 10.1: A comparison between a
brain neuron and an artificial neuron.

x1

x2

x3

x4

x5

w⃗ · x⃗ f (w⃗ · x⃗)

w1
w2
w3
w4
w5

f

Figure 10.2: A sample artificial neuron.

and optionally a nonlinear activation function f : R→ R and outputs
the following value: 7 7 If no activation function is chosen,

we can assume that f is an identity
function f (z) = z.

y = f (w⃗ · x⃗) (10.1)

We can also add a scalar bias b before applying the activation func-
tion f (z) in which case the output will look like the following: 8 8 If we introduce a dummy variable for

the constant bias term as in Chapter 1

we can absorb the bias term into the
equation in (10.1).

y = f (w⃗ · x⃗ + b)

10.2.2 Activation Functions

An artificial neuron can choose its nonlinear activation function f (z)
from a variety of options. One such choice is the sigmoid function

σ(z) =
1

1 + e−z (10.2)

118 introduction to machine learning lecture notes for cos 324 at princeton university

Note that in this case, the neuron represents a logistic regression
unit. 9 Another popular activation function is the hyperbolic tangent, 9 However, in this context the output

is not considered to be a subjective
probability as in the case of standard
logistic regression.

which is similar to the sigmoid function:

tanh(z) =
ez − e−z

ez + e−z (10.3)

In fact, we can rewrite the hyperbolic tangent in terms of sigmoid:

tanh(z) = 2σ(2z)− 1 (10.3 revisited)

According to this expression, tanh function can be viewed as a
rescaled sigmoid function. The key difference is: the range of σ(z) is
(0, 1) and the range of tanh(z) is (−1, 1).

Arguably the most commonly used activation function is the
Rectified Linear Unit, or ReLU:

ReLU(z) = [z]+ = max{z, 0} (10.4)

There are several benefits to the ReLU activation function. It is far
cheaper to compute than the previous two alternatives and avoids
the “vanishing gradient” problem. 10 With sigmoid and hyperbolic 10 The vanishing gradient problem refers

to a situation where the derivative of
a certain step is too close to 0, which
can stall the gradient-based learning
techniques common in deep learning.

tangent activation functions, the vanishing gradient problem happens
when z = x⃗ · w⃗ has high absolute values, but ReLU avoids this
problem because the derivative is exactly 1 even for high values of z.

Example 10.2.1. Consider a vector x⃗ = (−2,−1, 0, 1, 2) of inputs and a
neuron with the weights w⃗ = (1, 1, 1, 1, 1). If the activation function of this
neuron is the sigmoid, then the output will be:

y = σ(w⃗ · x⃗) = σ(0) =
1
2

If the activation is ReLU, it will output:

[w⃗ · x⃗]+ = [0]+ = 0

Problem 10.2.2. Consider a neuron with the weights w⃗ = (1, 1, 5, 1, 1) and
the ReLU activation function. What will the outputs y1 and y2 be for the
inputs x⃗1 = (−2,−2, 0, 1, 2) and x⃗2 = (2,−1, 0, 1, 2) respectively?

10.2.3 Neural Network

A neural network consists of nodes connected with directed edges,
where each edge has a trainable parameter called its “weight” and
each node has an activation function as well as associated parame-
ter(s). There are designated input nodes and output nodes. The input
nodes are given some input values, and the rest of the network then
computes as follows: each node produces its output by taking the

introduction to deep learning 119

Figure 10.3: A sample neural network
design. Each circle represents one
artificial neuron. Two nodes being
connected by an edge means that the
output of the node on the left is being
used as one of the inputs for the node
on the right.

values produced by all nodes that have a directed edge to it. If the
directed graph of connections is acyclic — which is the case in most
popular architectures — this process of producing the values takes
finite time and we end up with a unique value at each of the output
nodes. 11 The term hidden nodes is used for nodes that are not input 11 We will not study Recurrent Neural

Nets (RNNs), where the graph contains
cycles. These used to be popular until
a few years ago, and present special
difficulties due to the presence of
directed loops. For instance, can you
come up with instances where the
output is not well-defined?

or output nodes.

10.3 Why Deep Learning?

Now that we are aware of the basic building blocks of neural net-
works, let’s consider why we prefer these models over techniques
explored in previous chapters. The key understanding is that the
models previously discussed are fundamentally linear in nature. For
instance, if we do binary classification, where the data point x⃗ is
mapped to a label based on sign(w⃗ · x⃗), then this corresponds to sep-
arating the points with label +1 from the points with label −1 via a
linear hyperplane w⃗ · x⃗ = 0. But such models are not a good choice for
datasets which are not linearly separable. Deep learning is inherently
nonlinear and is able to do classification in many settings where linear
classification cannot work.

Figure 10.4: Some examples of datasets
that are not linearly separable.

120 introduction to machine learning lecture notes for cos 324 at princeton university

10.3.1 The XOR Problem

Consider the boolean function XOR with the truth table in Table 10.2.

x1 x2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

Table 10.2: The truth table for the XOR
Boolean function.

Let us first attempt to represent the XOR function with a single
linear neuron. That is, consider a neuron that takes two inputs x1, x2

with weights w1, w2, a bias term b, and the following Heaviside step
activation function: 12 12 This neuron is called a linear per-

ceptron. It uses a nonlinear activation
function, but the nonlinearity is strictly
for the binary classification in the final
step. The boundary of the classification
is still linear.

g(z) =

0 if z ≤ 0

1 if z > 0
(10.5)

Proposition 10.3.1. There are no values of w1, w2, b such that the linear
neuron defined by the values represent the XOR function.

Proof. Assume to the contrary that there are such values. Let x⃗1 =

(0, 0), x⃗2 = (0, 1), x⃗3 = (1, 0), x⃗4 = (1, 1). Then we know that

g(w⃗ · x⃗1 + b) = g(w⃗ · x⃗4 + b) = 0

g(w⃗ · x⃗2 + b) = g(w⃗ · x⃗3 + b) = 1

which implies that

w⃗ · x⃗1 + b ≤ 0, w⃗ · x⃗4 + b ≤ 0

w⃗ · x⃗2 + b > 0, w⃗ · x⃗3 + b > 0

Now let x⃗ =
(

1
2 , 1

2

)
. Since we have x⃗ = 1

2 x⃗1 +
1
2 x⃗4, we should have

w⃗ · x⃗ + b =
1
2
· ((w⃗ · x⃗1 + b) + (w⃗ · x⃗4 + b)) ≤ 0

since we are taking the average of two non-positive numbers. But at
the same time, since x⃗ = 1

2 x⃗2 +
1
2 x⃗3, we should have

w⃗ · x⃗ + b =
1
2
· ((w⃗ · x⃗2 + b) + (w⃗ · x⃗3 + b)) > 0

since we are taking the average of two positive numbers. This leads
to a contradiction.

Problem 10.3.2. Verify that the AND, OR Boolean functions can be
represented by a single linear node.

introduction to deep learning 121

Figure 10.5 visualizes the truth table for XOR in the 2D plane. The
two axes represent the two inputs x1 and x2; blue circles denote that
y = 1; and white circles denote that y = 0. A single linear neuron can
be understood as drawing a red line that can separate white points
from blue points. Notice that it is possible to draw such a line for
AND and OR functions, but the data points that characterize the
XOR function are not linearly separable.

Figure 10.5: The data points that
characterize the XOR function are not
linearly separable.

Instead, we will leverage neural networks to solve this problem.
Let us design an architecture with inputs x1, x2, a hidden layer with
two nodes h1, h2, and a final output layer with one node y1. We
assign the ReLU activation function to the hidden nodes and define
weights and biases as shown in Figure 10.6.

x1

x2

b

h1

h2

b

y

1

1

1

1

0 −1

1

−2

0

Figure 10.6: A sample neural network
which computes the XOR of its inputs
x1 and x2. The weights for inputs are
shown by black arrows, while bias
terms are shown by grey arrows.

To be more explicit, the neural network is defined by the following
three neurons:

h1 = ReLU(x1 + x2)

h2 = ReLU(x1 + x2 − 1)

y1 = ReLU(h1 − 2h2)

Problem 10.3.3. Verify that the model in Figure 10.6 represents the XOR
function by constructing a truth table.

The main difference between the single linear neuron approach
and the neural network for the XOR function is that the network now

122 introduction to machine learning lecture notes for cos 324 at princeton university

has two layers of neurons. If we only focus on the final layer of the
neural network, we expect the boundary of the binary classification
to be linear in the values of h1, h2. However, the values of h1, h2 are
not linear in the input values x1, x2 because the hidden nodes utilize a
nonlinear activation function. Hence the boundary of the classification
is also not linear in the input values x1, x2. The nonlinear activation
function transforms the input space into a space where the XOR
operation is linearly separable. As shown in Figure 10.7, the h space is
quite clearly linearly separable in contrast to the original x space.

Figure 10.7: Unlike the x space, after
applying the nonlinear ReLU activation
function, the mapped h space is linearly
separable.

10.4 Multi-class Classification

Neural networks, like multi-class regression in Chapter 4, can be
used for classification tasks where the number of possible labels is
larger than 2. Real-life scenarios include hand-written digit recog-
nition on the MNIST dataset, where the model designer could use
ten different classes to correspond to each possible digit. Another
possible example is a speech recognition language model, where the
model is trained to distinguish between sounds of |V| vocabularies.

It turns out that such functionality can be added by simply includ-
ing the same number of output neurons as the desired number of
classes in the output layer. Then, the values of the output neurons
will be converted into a probability distribution Pr[y = k] over the
number of classes.

10.4.1 Softmax Function

Just as in Chapter 4, we use the softmax function for the purpose of
the multi-class classification. See Chapter 19 for the definition of the
softmax function.

Example 10.4.1. Say o⃗ = (3, 0, 1) are the values of the output neurons
of a neural network before applying the activation function. If we decide to

introduction to deep learning 123

apply the softmax function as the activation function, the final outputs of the
network will be so f tmax(⃗o) ≃ (0.84, 0.04, 0.11). If the network was trying
to solve a multi-class classification task, we can understand that the given
input is most likely to be of class 1, with probability 0.84 according to the
model.

One notable property of the softmax function is that the output
of the function is the same if all coordinates of the input vector is
shifted by the same amount; that is so f tmax(⃗z) = so f tmax(⃗z + c · 1⃗)
for any c ∈ R, where 1⃗ = (1, 1, . . . , 1) is a vector of all ones.

Example 10.4.2. Consider two vectors z⃗1 = (5, 2, 3) and z⃗2 = (3, 0, 1).
Then so f tmax(⃗z1) = so f tmax(⃗z2) because z⃗2 = z⃗1 − (2, 2, 2).

Problem 10.4.3. Prove the property that so f tmax(⃗z) = so f tmax(⃗z + c · 1⃗)
for any c ∈ R. (Hint: multiply both the numerator and the denominator of
so f tmax(⃗z)k by exp(c).)

11
Feedforward Neural Network and Backpropagation

Feedforward Neural Networks (FFNNs) are perhaps the simplest kind of
deep nets and are characterized by the following properties:

• There are nodes connected with no cycles.

• Nodes are partitioned into layers numbered 1 to k for some k. The
nodes in the first layer receive input of the model and output some
values. Then the nodes in layer i + 1 receive output of the nodes
in layer i as their input and output some values. The output of the
model can be computed with the output of the nodes in layer k.

• No outputs are passed back to lower layers.

Now, we only consider fully-connected layers — a special case of a
layer in feedforward neural networks.

Definition 11.0.1 (Fully-Connected Layer). A fully-connected layer
is a neural network layer in which all the nodes from one layer are fully
connected to every node of the next layer.

Note that not all layers of feedforward neural networks are nec-
essarily fully-connected (a typical case is a Convolutional Neural
Network, which we will explore in Chapter 12). However, feedfor-
ward neural networks with fully-connected layers are very common
and also easy to implement.

11.1 Forward Propagation: An Example

Forward propagation refers to how the network converts a specific
input to the output, specifically the calculation and storage of inter-
mediate variables from the input layer to the output layer. In this
section, we use concrete examples to motivate the topic. We will pro-
vide a more general formula in the next section. Readers who have a
stronger background in math may feel to skip this section altogether.

126 introduction to machine learning lecture notes for cos 324 at princeton university

11.1.1 One Output Node

We start with the network in Figure 11.1 as an example. The network
receives three inputs x1, x2, x3 and has a first hidden layer with two
nodes h(1)1 , h(1)2 , a second hidden layer with two nodes h(2)1 , h(2)2 , and
a final output layer with one node o. We assign the ReLU activa-
tion function to the hidden units, and define weights as shown in
Figure 11.1.

Figure 11.1: A sample feedforward
neural network with two hidden layers
and one output node.

The two hidden nodes in the first hidden layer are characterized
by the following equations:

h(1)1 = ReLU(2x1 − 3x2)

h(1)2 = ReLU(−x1 + x2 + 2x3)
(11.1)

and the two hidden nodes in the second hidden layer are character-
ized by the following equations:

h(2)1 = ReLU(h(1)1 + 2h(1)2)

h(2)2 = ReLU(2h(1)1 − 2h(1)2)
(11.2)

and the output node is characterized by the following equation:

o = −h(2)1 + 2h(2)2

Therefore, if we know the input values x1, x2, x3, we can first calcu-
late the values h(1)1 , h(1)2 , then using these values, calculate h(2)1 , h(2)2 ,
and finally using these values, we can calculate the output o of the
network.

Example 11.1.1. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1), we can calculate the first hidden layer as

h(1)1 = ReLU(2− 3) = 0

h(1)2 = ReLU(−1 + 1 + 2) = 2

feedforward neural network and backpropagation 127

and the second hidden layer as

h(2)1 = ReLU(0 + 2 · 2) = 4

h(2)2 = ReLU(0− 2 · 2) = 0

and the output as

o = −4 + 2 · 0 = −4

11.1.2 Multiple Output Nodes

Networks can have more than one output node. An example is the
network in Figure 11.2.

Figure 11.2: A sample feedforward
neural network with two hidden layers
and three output nodes.

The networks in Figure 11.1 and Figure 11.2 are the same except
for the output layer; the former has one output node, while the latter
has three output nodes. Now the output values of the network in
Figure 11.2 can be calculated as:

o1 = −h(2)1 + 2h(2)2

o2 = 2h(2)1 + h(2)2

o3 = h(2)1 + 2h(2)2

(11.3)

Recall from the previous Chapter 10 that a FFNN with multiple
output nodes is used for multi-class classfication. After the naive
output values are calculated, the output nodes will use the softmax
activation function to transform the values into the probabilities for
each of the three classes. That is, the probability for predicting each
class will be calculated as:

ô1 = so f tmax(o1, o2, o3)1

ô2 = so f tmax(o1, o2, o3)2

ô3 = so f tmax(o1, o2, o3)3

(11.4)

128 introduction to machine learning lecture notes for cos 324 at princeton university

Example 11.1.2. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1), we can calculate the output layer as

o1 = −4 + 0 = −4

o2 = 2 · 4 + 0 = 8

o3 = 4 + 0 = 4

and the probabilities of each class as

ô1 = so f tmax(−4, 8, 4)1 =
e−4

e−4 + e8 + e4 ≃ 0.00

ô2 = so f tmax(−4, 8, 4)2 =
e8

e−4 + e8 + e4 ≃ 0.98

ô3 = so f tmax(−4, 8, 4)3 =
e4

e−4 + e8 + e4 ≃ 0.02

11.1.3 Matrix Notation

Let w(1)
i,j be the weight between the i-th node h(1)i in the first hidden

layer and the j-th input xj. Then (11.1) can be rewritten as

h(1)1 = ReLU(w(1)
1,1 x1 + w(1)

1,2 x2 + w(1)
1,3 x3)

h(1)2 = ReLU(w(1)
2,1 x1 + w(1)

2,2 x2 + w(1)
2,3 x3)

Notice that if we set x⃗ = (x1, x2, x3) ∈ R3 and h⃗(1) = (h(1)1 , h(1)2) ∈ R2

and define a matrix W(1) ∈ R2×3 where its (i, j) entry is w(1)
i,j , then we

can further rewrite (11.1) as 1 1 Here we interpret the vectors x⃗, h⃗(1) as
column vectors, or equivalently a 3× 1
matrix and a 2× 1 matrix respectively.
This will be a convention throughout
this chapter.

h⃗(1) = ReLU
(

W(1)x⃗
)

(11.5)

where the ReLU function is applied element-wise.
Similarly, if we let w(2)

i,j be the weight between the i-th node h(2)i

in the second hidden layer and the j-th node h(1)j in the first hidden
layer, (11.2) can be rewritten as

h(2)1 = ReLU(w(2)
1,1 h(1)1 + w(2)

1,2 h(1)2)

h(2)2 = ReLU(w(2)
2,1 h(1)1 + w(2)

2,2 h(1)2)

or in a matrix notation as

h⃗(2) = ReLU
(

W(2)h⃗(1)
)

(11.6)

where h⃗(2) = (h(2)1 , h(2)2) ∈ R2 and W(2) ∈ R2×2 is a matrix whose

(i, j) entry is w(2)
i,j .

feedforward neural network and backpropagation 129

Next, if we let w(o)
i,j be the weight between the i-th output node oi

(before softmax) and the j-th node h(2)j in the second hidden layer,
(11.3) can be rewritten as

o1 = w(o)
1,1 h(2)1 + w(o)

1,2 h(2)2

o2 = w(o)
2,1 h(2)1 + w(o)

2,2 h(2)2

o3 = w(o)
3,1 h(2)1 + w(o)

3,2 h(2)2

or in a matrix notation as

o⃗ = W(o)h⃗(2) (11.7)

where o⃗ = (o1, o2, o3) ∈ R3 and W(o) ∈ R3×2 is a matrix whose (i, j)
entry is w(o)

i,j .

Finally, if we let ⃗̂o = (ô1, ô2, ô3) ∈ R3, then (11.4) can be rewritten
as

⃗̂o = so f tmax(⃗o) (11.8)

We summarize the results above into the following matrix equations

h⃗(1) = ReLU
(

W(1)⃗x
)

h⃗(2) = ReLU
(

W(2)h⃗(1)
)

o⃗ = W(o)h⃗(2)

⃗̂o = so f tmax(⃗o)

(11.9)

Example 11.1.3. If the provided input vector to the neural network in
Figure 11.2 is x⃗ = (1, 1, 1), we can calculate the first hidden layer as

h⃗(1) = W(1)x⃗ = ReLU

[2 −3 0
−1 1 2

] 1
1
1

 =

[
0
2

]

and the second hidden layer as

h⃗(2) = W(2)h⃗(1) = ReLU

([
1 2
2 −2

] [
0
2

])
=

[
4
0

]

and the output layer o⃗ (before the softmax) as

o⃗ = W(o)h⃗(2) =

−1 2
2 1
1 2

 [4
0

]
=

−4
8
4

The probability distribution ⃗̂o of the three classes can then be calculated as

⃗̂o = so f tmax(⃗o) =
(

e−4

e−4 + e8 + e4 ,
e8

e−4 + e8 + e4 ,
e4

e−4 + e8 + e4

)

130 introduction to machine learning lecture notes for cos 324 at princeton university

11.2 Forward Propagation: The General Case

We now consider an arbitrary feedforward neural network with L ≥ 1
layers. Let x⃗ ∈ Rd0 be the vector of d0 inputs to the network. For
k = 1, 2, . . . , L, let h⃗(k) = (h(k)1 , h(k)2 , . . . , h(k)dk

) ∈ Rdk represent the dk

outputs (values of each of the nodes) of the k-th layer. The L-th layer
is also known as the output layer, and we alternatively denote d0 = din

and dL = dout to emphasize that they are respectively the number of
inputs and the number of output nodes. Each of the k-th layer where
1 ≤ k ≤ L− 1 is considered a hidden layer, but for convenience, we may
abuse notation and refer to the input/output layers as respectively
the 0-th and L-th hidden layers as well.

Additionally, we consider W(k) ∈ Rdk×dk−1 to represent the weights
for the k-th hidden layer. Its (i, j) entry is the weight between the
i-th node h(k)i of the k-th hidden layer and the j-th node h(k−1)

j of the

(k− 1)-th hidden layer. We also alternatively denote W(L) = W(o) to
emphasize that it represents the weights for the output layer.

Finally, let f (k) be the nonlinear activation function for layer k.
For instance, consider the output layer. If dout = 1 (i. e., there is one
output node), we can assume that f (L) is the identity function. On
the other hand, if dout > 1 (i. e., there are multiple output nodes), we
can assume that f (L) is the softmax function. It is also possible to use
different activation functions for each layer.

With all these new notations in mind, we can express the nodes of
layer k as:

h⃗(k) = f (k)(W(k)h⃗(k−1))

for each k = 1, 2, . . . , L.
If dout = 1, we let o = W(L)h⃗L−1 denote the final output of the

model. If dout > 1, we let o⃗ = W(L)h⃗L−1 denote the output layer
before the softmax and ⃗̂o = f (L) (⃗o) denote the output layer after the
softmax.

11.2.1 Number of Weights

We now briefly consider the number of weights in a feedforward
network. There are din · d1 weights (or variables) for the first hidden
layer. Similarly, there are d1 · d2 weights for the second hidden layer. In

total, the number of weights is
L−1
∑

i=0
di · di+1.

Example 11.2.1. The number of weights in the model in Figure 11.2 can be
calculated as

3× 2 + 2× 2 + 2× 3 = 16

feedforward neural network and backpropagation 131

11.2.2 What If We Remove Nonlinearity?

If we removed the nonlinear activation function ReLU in our model
from (11.9), we would have the following forward propagation equa-
tions:

h⃗(1) = W(1)⃗x
h⃗(2) = W(2)h⃗(1)

o⃗ = W(o)h⃗(2)

⃗̂o = so f tmax(⃗o)

Notice that if we set W′ = W(o)W(2)W(1) ∈ R3×3, then

⃗̂o = so f tmax(W′⃗x)

We have thus reduced our neural net to a standard multi-classification
logistic regression model! As we have discussed the limitation of lin-
ear models earlier, this indicates the importance of having nonlinear
activation functions between layers.

11.2.3 Training Loss

Just like we have defined a loss function for ML models so far, we
also define an appropriate loss function for neural networks, where
the objective of the network becomes finding a set of weights that
minimize the loss. While there are many different definitions of loss
functions, here we present two — one that is more appropriate when
there is a single output node, and another that is more appropriate
for multi-class classification.

When there is only one scalar node in the output layer (i. e., dout =

1), we can use a squared error loss, similar to the least squares loss
from (1.4):

∑
(⃗x,y)∈D

(y− o)2 (Squared Error Loss)

where x⃗ ∈ Rdin is the input vector, y is its gold value (i. e., actual value
in the training data), and o = W(o)h⃗(L−1) is the final output (i. e.,
prediction) of the neural network.

Example 11.2.2. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1) and the training output is y = 0, we can
calculate the squared error loss as

(y− o)2 = (0− (−4))2 = 16

When there are multiple nodes in the output layer (e.g., for multi-
class classification), we can use a loss function that is similar to the
logistic loss. Recall that in logistic regression, we defined the logistic

132 introduction to machine learning lecture notes for cos 324 at princeton university

loss as a sum of log loss over a set of data points:

∑
(⃗x,y)∈D

− log Pr[label y on input x⃗] (4.5 revisited)

where y ∈ {−1, 1} denotes the gold label. For neural networks, we
can analogously define the cross-entropy loss:

∑
(⃗x,y)∈D

− log ôy (Cross-Entropy Loss)

where y ∈ {1, . . . , dout} denotes the gold label, and ôy denotes the
probability that the model assigns to class y — that is, the y-th coordi-
nate of the output vector ⃗̂o = so f tmax(⃗o) after applying the softmax
function.

Example 11.2.3. If the provided input vector to the neural network in
Figure 11.2 is x⃗ = (1, 1, 1) and the training output is y = 2, we can
calculate the cross-entropy loss for this data point as

− log ôy = − log
e4

e−4 + e8 + e4 ≃ 4.02

11.3 Backpropagation: An Example

Just like in previous ML models we have learned, the process of
training a neural network model involves three steps:

1. Defining an an appropriate loss function.

2. Calculating the gradient of the loss with respect to the training
data and the model parameters.

3. Iteratively updating the parameters via the gradient descent
algorithm.

But once a neural network grows in size, the second step of cal-
culating the gradients starts to become a problem. Naively trying to
calculate each of the gradients separately becomes inefficient. Instead,
Backpropagation 2 is an efficient way to calculate the gradients with 2 Reference: https://www.nature.com/

articles/323533a0respect to the network parameters such that the number of steps for
the computation is linear in the size of the neural network.

The key idea is to perform the computation in a very specific
sequence — from the output layer to the input layer. By the Chain
Rule, we can use the already computed gradient value of a node in a
higher layer in the computation of the gradient of a node in a lower
layer. This way, the gradient values propagate back from the top layer
to the bottom layer.

https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

feedforward neural network and backpropagation 133

11.3.1 The Delta Method: Reasoning from First Principles

The main goal of backpropagation is to compute the partial deriva-
tive ∂ f /∂w where f is the loss and w is the weight of an edge. This
will allow us to apply the gradient descent algorithm and appro-
priately update the weight w. Students often find backpropagation
a confusing idea, but it is actually just a simple application of the
Chain Rule in multivariate calculus.

In this subsection, we motivate the topic with the Delta Method,
which is an intuitive way to compute ∂ f /∂w. We perturb a weight w
by a small amount ∆ and measure how much the output changes. In
doing so, we also measure how the rest of the network changes. As
we will see later, the process of computing the partial derivative of
the form ∂ f /∂w requires us to also compute the partial derivative of
the form ∂ f /∂h where h is the value at a node.

Readers who are familiar with the Chain Rule can quickly browse
through the rest of this subsection.

Example 11.3.1. Consider the model from Figure 11.2 but now with the
inputs x⃗ = (3, 1, 2). We use the same notation for the nodes and the weights
that we used throughout Section 11.1. The goal of this simple example is to
illustrate what the derivatives mean.

Figure 11.3: The model from Figure 11.2
with inputs x⃗ = (3, 1, 2).

Suppose we want to take the partial derivative of first output node o1

with respect to the weight w(1)
2,2 (i.e., the weight on the edge between the

second input x2 and the second node h(1)2 of first hidden layer). This is

denoted as ∂o1/∂w(1)
2,2 . Its definition involves considering how changing

w(1)
2,2 by an infinitesimal amount ∆ changes o1, whose current value is −3.

Adding ∆ to w(1)
2,2 will change the values of the first hidden layer to

h(1)1 = ReLU(2 · 3 + (−3) · 1 + 0 · 2) = 3

h(1)2 = ReLU((−1) · 3 + (1 + ∆) · 1 + 2 · 2) = 2 + ∆

Letting ∆→ 0, we see that the rate of change of h(1)1 and h(1)2 with respect to

134 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 11.4: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2 is

changed by a small number ∆, the first
hidden layer is also affected.

change of w(1)
2,2 is 0 and 1 respectively. In more formal terms, ∂h(1)1 /∂w(1)

2,2 =

0 and ∂h(1)2 /∂w(1)
2,2 = 1.

Figure 11.5: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2

is changed by a small number ∆, the
second hidden layer is also affected.

Using the updated values of the first hidden layer, the second hidden layer
will be calculated as

h(2)1 = ReLU(1 · 3 + 2 · (2 + ∆)) = 7 + 2∆

h(2)2 = ReLU(2 · 3 + (−2) · (2 + ∆)) = 2− 2∆

This shows that the rate of change of h(2)1 and h(2)2 with respect to change of

w(1)
2,2 is 2 and −2 respectively.
Finally the output layer can now be calculated as

o1 = (−1) · (7 + 2∆) + 2 · (2− 2∆) = −3− 6∆

o2 = 2 · (7 + 2∆) + 1 · (2− 2∆) = 16 + 2∆

o3 = 1 · (7 + 2∆) + 2 · (2− 2∆) = 11− 2∆

This shows that the rate of change of o1 with respect to change of w(1)
2,2 is −6.

Example 11.3.2. Now we consider the meaning of ∂o1/∂h(2)1 : how changing

the value of h(2)1 by an infinitesimal ∆ affects o1. Note that this is a thought

feedforward neural network and backpropagation 135

Figure 11.6: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2

is changed by a small number ∆, the
output layer is also affected.

experiment that does not correspond to a change that is possible if the net
were a physical object constructed of nodes and wires — the value of h(2)1 is
completely decided by the previous layers and cannot be changed in isolation
without touching the previous layers. However, treating these values as
variables, it is possible to put on a calculus hat and and think about the rate
of change of one with respect to the other.

If only the value of h(2)1 is changed from 7 to 7 + ∆ in Figure 11.3, then o1

can be calculated as

o1 = (−1) · (7 + ∆) + 2 · 2 = −3− ∆

which shows that ∂o1/∂h(2)1 = −1.

Problem 11.3.3. Following the calculations in Example 11.3.1 and Ex-
ample 11.3.2, calculate ∂o1/∂h(2)2 , ∂h(2)1 /∂w(1)

2,2 , and ∂h(2)2 /∂w(1)
2,2 . Verify

that
∂o1

∂w(1)
2,2

=
∂o1

∂h(2)1

·
∂h(2)1

∂w(1)
2,2

+
∂o1

∂h(2)2

·
∂h(2)2

∂w(1)
2,2

Problem 11.3.4. Following the calculations in Example 11.3.1 and Exam-
ple 11.3.2, calculate ∂h(2)1 /∂h(1)2 , ∂h(2)2 /∂h(1)2 , and ∂h(1)2 /∂w(1)

2,2 . Verify that

∂o1

∂w(1)
2,2

=
∂o1

∂h(2)1

·
∂h(2)1

∂h(1)2

·
∂h(1)2

∂w(1)
2,2

+
∂o1

∂h(2)2

·
∂h(2)2

∂h(1)2

·
∂h(1)2

∂w(1)
2,2

(11.10)

Some readers may notice that (11.10) is just the result of the Chain
Rule in multivariable calculus. It shows that the effect of w(1)

2,2 on o1 is
the sum of its effect through all possible paths that the values prop-
agate through the network, and the amount of effect for each path
can be calculated by multiplying the appropriate partial derivative
between each layer.

In this section, we calculated by hand one partial derivative
∂o1/∂w(1)

2,2 . But in general, to compute the loss gradient, we see below
that we want to calculate the partial derivative of each output node

136 introduction to machine learning lecture notes for cos 324 at princeton university

oi with respect to each weight in the network. Manually applying the
Chain Rule for each partial derivative as in (11.10) is too inefficient.3 3 Putting on your COS 226 hat, you can

check that the computational cost of
this naive method scales quadratically
in the size of the network.

Instead, in the next section, we will learn how to utilize matrix opera-
tions to combine the computation for multiple partial derivatives into
one process.4 4 This efficiency holds even without

taking into account the fact that today’s
GPUs are optimized for fast matrix
operations.11.4 Backpropagation: The General Case

11.4.1 Jacobian Matrix

Suppose some vector y⃗ = (y1, y2, . . . , ym) ∈ Rm is a function of
x⃗ = (x1, x2, . . . , xn) ∈ Rn — that is, there is a mapping f : Rn → Rm

such that y⃗ = f (⃗x), or equivalently, there are m functions fi : Rn → R

for each i = 1, 2, . . . , m such that yi = fi (⃗x).
Then the Jacobian matrix of y⃗ with respect to x⃗, denoted as J(⃗y, x⃗),

is an m× n matrix whose (i, j) entry is the partial derivative ∂yi/∂xj.
Note that each entry of this matrix is itself a function of x⃗. A bit
confusingly, a Jacobian matrix is also often denoted as ∂⃗y/∂⃗x when it
is clear from the context that x⃗, y⃗ are vectors and hence this object is
not a partial derivative or gradient. 5 5 Note that the i-th row of the Jacobian

matrix contains the gradient of yi , i. e.
the gradient of the i-th coordinate of y⃗.

The mathematical interpretation of the Jacobian matrix is that if
we change x⃗ such that each coordinate xi is updated to xi + δi for an
infinitesimal value δi, then the output y⃗ changes to y⃗ + J(⃗y, x⃗)⃗δ.

Example 11.4.1. Suppose y⃗ is a linear function of x⃗ — that is, there exists
a matrix A ∈ Rm×n such that y⃗ = A⃗x. Then notice that yi, the i-th
coordinate of y⃗, can be expressed as

yi = Ai,∗⃗x = Ai,1x1 + Ai,2x2 + . . . + Ai,nxn

Notice that the partial derivative ∂yi/∂xj is equal to Aij. This means that
the (i, j) entry of the Jacobian matrix is the (i, j) entry of the matrix A, and
hence J(⃗y, x⃗) = A.

Problem 11.4.2. If y⃗ ∈ R2 is a function of x⃗ ∈ R3 such that

y1 = 2x1 − x2 + 3x3

y2 = −x1 + 2x3

then what is the Jacobian matrix J(⃗y, x⃗)?

Example 11.4.3. If x⃗ ∈ Rn and y⃗ = ReLU(⃗x) ∈ Rn, then notice that

∂yi
∂xi

=

1 xi > 0

0 otherwise

We can also denote this with an indicator function 1(xi > 0). Also for any
j ̸= i, we see that ∂yi/∂xj = 0. Therefore, the Jacobian matrix J(⃗y, x⃗) is a

feedforward neural network and backpropagation 137

diagonal matrix whose entry down the diagonal is 1(xi > 0); that is

J(⃗y, x⃗) = diag(1(⃗x > 0))

where we take the indicator function element-wise to the vector x⃗.

Definition 11.4.4 (Jacobian Chain Rule). Suppose vector z⃗ ∈ Rk is a
function of y⃗ ∈ Rm and y⃗ is a function of x⃗ ∈ Rn, then by the Chain Rule,
the Jacobian matrix J(⃗z, x⃗) ∈ Rk×n is represented as the matrix product:

J(⃗z, x⃗) = J(⃗z, y⃗)J(⃗y, x⃗) (11.11)

In context of the feedforward neural network, each hidden layer is
a function of the previous layer. Specifically, vector of activations of a
hidden layer is a function of the vector of activations of the previous
layer as well as of the trainable weights within the layer.

Example 11.4.5 (Gradient calculation for a single layer with ReLU’s).
If x⃗ ∈ Rn, A ∈ Rm×n, y⃗ = A⃗x ∈ Rm and z⃗ = ReLU(⃗y) ∈ Rm, then the
Jacobian matrix J(⃗z, x⃗) can be calculated as

J(⃗z, x⃗) = J(⃗z, y⃗)J(⃗y, x⃗) = diag(1(A⃗x > 0))A

11.4.2 Backpropagation — Efficiency Using Jacobian Viewpoint

Now we return to backpropagation, and show how the Jacobian
viewpoint allows computing the gradient of the loss (with respect to
network parameters) with a number of mathematical operations (i.
e., additions and multiplications) proportional to the size of the fully
connected net.

Recall that we want to find the weights W(1), W(2), . . . , W(o) that
minimize the cross-entropy loss ℓ. To apply the standard/stochastic
gradient descent algorithm, we need to find the partial derivative

∂ℓ

∂W(k)
i,j

of the loss function with respect to each weight W(k)
i,j of each

layer k.
To simplify notations, we introduce a new matrix ∂ℓ

∂W(k) which has

the same dimensions as W(k) (e.g., ∂ℓ
∂W(1) ∈ R2×3 in Figure 11.2) and

the (i, j) entry of the matrix is:(
∂ℓ

∂W(k)

)
i,j
=

∂ℓ

∂W(k)
i,j

(11.12)

for any layer k. The matrix ∂ℓ
∂W(k) will be called the gradient with

respect to the weights of the k-th layer. 6 Now the update rule for the 6 Alternatively, you can think of flat-
tening W(k) into a single vector, then
finding the Jacobian matrix ∂ℓ/∂W(k),
and later converting it back to a matrix
form.

gradient descent algorithm can be written as the following:

W(k) → W(k) − η · ∂ℓ

∂W(k)
(11.13)

138 introduction to machine learning lecture notes for cos 324 at princeton university

where η is the learning rate. Now the question remains as how to
calculate these gradients. As the name “backpropagation” suggests,
we will first compute the gradient of the loss ℓ with respect to the
output nodes; we then inductively compute the gradient for the
previous layers, until we reach the input layer.

1. Output Layer: First recall that the cross-entropy loss due to one
data point is

ℓ = − log

 eoy

dout
∑

i=1
eoi

= − log(eoy) + log

(
dout

∑
i=1

eoi

)

= −oy + log

(
dout

∑
i=1

eoi

)

where y ∈ {1, 2, . . . , dout} is the ground truth value. Therefore, the
gradient with respect to the output layer is

∂ℓ

∂oi 1≤i≤dout

=

−1 + ôi y = i

ôi y ̸= i

To simplify notations, we introduce a one-hot encoding vector e⃗y, which
has 1 only at the y-th coordinate and 0 everywhere else. Then, we can
rewrite the equation above as: 7 7 Note that ∂ℓ/∂⃗o, the term on the

left hand side, is a Jacobian matrix in
R1×dout . But ⃗̂o and e⃗y, the terms on
the right hand side, are both column
vectors, or equivalently a dout × 1 matrix.
We resolve the problem by taking the
transpose.

∂ℓ

∂⃗o
=
(⃗

ô− e⃗y

)⊺
∈ R1×dout (11.14)

This is the Jacobian matrix of the loss ℓ with respect to the output
layer o⃗.

2. Jacobian With Respect To Hidden Layer: We first compute ∂ℓ/∂⃗h(L−1),
the Jacobian matrix with respect to the last hidden layer before the
output layer. Since o⃗ = W(o)h⃗(L−1), we can apply the result from
Example 11.4.1 and get

∂ℓ

∂⃗h(L−1)
=

∂ℓ

∂⃗o
J(⃗o, h⃗(L−1))

=
∂ℓ

∂⃗o
W(o) (11.15)

Now as an inductive hypothesis, assume that we have already com-
puted the gradient (or Jacobian matrix) ∂ℓ/∂⃗h(k+1). We now compute

feedforward neural network and backpropagation 139

∂ℓ/∂⃗h(k) using the result from Example 11.4.5.

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
J(⃗h(k+1), h⃗(k))

=
∂ℓ

∂⃗h(k+1)
diag(1(W(k+1)h⃗(k) > 0))W(k+1) (11.16)

3. Gradient With Respect to Weights: We first compute ∂ℓ/∂W(o), the
gradients with respect to the weights of the output layer. Notice that
a particular weight w(o)

i,j is only used in computing oi out of all output
nodes:

oi = w(o)
i,1 h(L−1)

1 + . . . + w(o)
i,j h(L−1)

j + . . . + w(o)
i,dL−1

h(L−1)
dL−1

Therefore, the gradient with respect to w(o)
i,j can be calculated as

∂ℓ

∂w(o)
i,j

=
∂ℓ

∂oi
· ∂oi

∂w(o)
i,j

=
∂ℓ

∂oi
· h(L−1)

j

We can combine these results into the following matrix form

∂ℓ

∂W(o)
=

(
∂ℓ

∂⃗o

)⊺ (
h⃗(L−1)

)⊺
(11.17)

Now as an inductive hypothesis, assume that we have already
computed the gradient (or Jacobian) ∂ℓ/∂⃗h(k). We now compute
∂ℓ/∂W(k).

To do this, we introduce an intermediate variable z⃗(k) = W(k)h⃗(k−1)

such that h⃗(k) = ReLU(⃗z(k)). Then the gradient with respect to a par-
ticular weight w(k)

i,j can be calculated as

∂ℓ

∂w(k)
i,j

=
∂ℓ

∂z(k)i

·
∂z(k)i

∂w(k)
i,j

=
∂ℓ

∂z(k)i

· h(k−1)
j

We can combine these results into the following matrix form

∂ℓ

∂W(k)
=

(
∂ℓ

∂⃗z(k)

)⊺ (
h⃗(k−1)

)⊺
=

(
∂ℓ

∂⃗h(k)
J(⃗h(k), z⃗(k))

)⊺ (
h⃗(k−1)

)⊺
=
(

J(⃗h(k), z⃗(k))
)⊺ (∂ℓ

∂⃗h(k)

)⊺ (
h⃗(k−1)

)⊺
= diag(1(W(k)h⃗(k−1) > 0))

(
∂ℓ

∂⃗h(k)

)⊺ (
h⃗(k−1)

)⊺
(11.18)

4. Full Backpropagation Process We summarize the results above into
the following four steps:

140 introduction to machine learning lecture notes for cos 324 at princeton university

1. Compute the Jacobian matrix with respect to the output layer,
∂ℓ
∂⃗o ∈ R1×dout :

∂ℓ

∂⃗o
=
(⃗

ô− e⃗y

)⊺
((11.14) revisited)

2. Compute the Jacobian matrix with respect to the last hidden layer,
∂ℓ

∂⃗h(L−1) ∈ R1×dL−1 :

∂ℓ

∂⃗h(L−1)
=

∂ℓ

∂⃗o
W(o) ((11.15) revisited)

Then, compute the gradient with respect to the output weights,
∂ℓ

∂W(o) ∈ Rdout×dL−1 :

∂ℓ

∂W(o)
=

(
∂ℓ

∂⃗o

)⊺ (
h⃗(L−1)

)⊺
((11.17) revisited)

3. For each successive layer k, calculate the Jacobian matrix with
respect to the k-th hidden layer ∂ℓ

∂⃗h(k) ∈ R1×dk :

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
diag(1(W(k+1)h⃗(k) > 0))W(k+1) ((11.16) revisited)

Next, compute the gradient with respect to the (k + 1)-th hidden
layer weights ∂ℓ

∂W(k+1) ∈ Rdk+1×dk :

∂ℓ

∂W(k+1)
= diag(1(W(k+1)h⃗(k) > 0))

(
∂ℓ

∂⃗h(k+1)

)⊺ (
h⃗(k)

)⊺
((11.18) revisited)

4. Repeat Step 3 until we reach the input layer.

Note that these instructions are based on a model that adopts the
cross-entropy loss and the ReLU activation function. Using alterna-
tive losses and/or activation functions would result in a similar form,
although the actual derivatives may be slightly different.

Problem 11.4.6. (i) Show that if A is an m× n matrix and h⃗ ∈ Rn then
computing Ah⃗ requires mn multiplications and m vector additions. (ii)
Using the previous part, argue that the number of arithmetic operations
(additions or multiplications) in backpropagation algorithm on a fully
connected net with ReLU activations is proportional to the number of
parameters in the net.

While the above calculation is in line with your basic algorithmic
training, it doesn’t exactly describe running time in modern ML
environments with GPUs, since certain operations are parallelized,
and compilers are optimized to run backpropagation as fast as
possible.

feedforward neural network and backpropagation 141

11.4.3 Using a Different Activation Function

We briefly consider what happens if we choose a different activation
function for the hidden layers. Consider the sigmoid activation
function σ(z) = 1

1+e−z . Its derivative is given by:

σ′(z) =
(

1
1 + e−z

)′
=

e−z

(1 + e−z)2

= σ(z) ·
(

e−z

1 + e−z

)
= σ(z) · (1− σ(z))

(11.19)

There is also the hyperbolic tangent function tanh(z) = e2z−1
e2z+1 .

Problem 11.4.7. Compute f ′(z) for f (z) = tanh(z); show how f ′(z) can
be written in terms of f (z).

Problem 11.4.8. Say a neural network uses an activation function f (z) at
layer k + 1 such that f ′(z) is a function of f (z). That is, f ′(z) = g(f (z))
for some function g. Then verify that (11.16, 11.18) can be rewritten as:

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
diag(g(W(k+1)h⃗(k)))W(k+1)

∂ℓ

∂W(k+1)
= diag(g(W(k+1)h⃗(k)))

(
∂ℓ

∂⃗h(k+1)

)⊺ (
h⃗(k)

)⊺

11.4.4 Final Remark

Directly following the steps of backpropagation is complicated and
involves a lot of calculations. But remember that backpropagation
is simply computing gradients by the Chain Rule. At a high level, we
can think of the loss as a function of inputs and all the weights and
note that backpropagation simply entails calculating derivatives
with respect to each variable. The good news is that modern deep
learning software does all the gradient calculations for users. All
the model designer needs to do is to determine the neural network
architecture (e.g., choose number of layers, number of hidden units,
and the activation functions).

One note of caution is that the loss function for deep neural nets
is highly non-convex with respect to the parameters of the network.
Just as we discussed in Chapter 3, the gradient descent algorithm is
not guaranteed to find the actual minimizer in such situation, and the
choice of the initial values of the parameters matter a lot.

142 introduction to machine learning lecture notes for cos 324 at princeton university

11.5 Feedforward Neural Network in Python Programming

In this section, we discuss how to write Python code to build neural
network models and perform forward propagation and backpropaga-
tion. As usual, we use the numpy package to speed up computation.
Additionally, we use the torch package to easily design and train the
neural network.

import necessary packages

import numpy as np

import torch

import torch.nn as nn

define the neural network

class Net(nn.Module):

def __init__(self, input_size=2, hidden_dim1=2, hidden_dim2=3,

hidden_dim3=2):

super(Net, self).__init__()

self.hidden1 = nn.Linear(input_size, hidden_dim1, bias=False)

self.hidden1.weight = nn.Parameter(torch.tensor([[-2., 1.], [3., -1.

]]))

self.hidden2 = nn.Linear(hidden_dim1, hidden_dim2, bias=False)

self.hidden2.weight = nn.Parameter(torch.tensor([[0., 1.], [2., -1.]

, [1., 2.]]))

self.hidden3 = nn.Linear(hidden_dim2, hidden_dim3, bias=False)

self.hidden3.weight = nn.Parameter(torch.tensor([[-1., 2., 1.], [3.,

0., 0.]]))

self.activation = nn.ReLU()

single step of forward propagation

def forward(self, x):

h1 = self.hidden1(x)

h1 = self.activation(h1)

h2 = self.hidden2(h1)

h2 = self.activation(h2)

h3 = self.hidden3(h2)

return h3

net = Net()

forward propagation with sample input

x = torch.tensor([3., 1.])

y_pred = net.forward(x)

print(’Predicted value:’, y_pred)

backpropagation with sample input

loss = nn.functional.cross_entropy(y_pred.unsqueeze(0), torch.LongTensor([1]

))

loss.backward()

print(loss)

print(net.hidden1.weight.grad)

We start the code by importing all necessary packages.

import numpy as np

import torch

feedforward neural network and backpropagation 143

import torch.nn as nn

With PyTorch, we can design the architecture of any neural net-
work by defining the corresponding class.

class Net(nn.Module):

def __init__(self, input_size=2, hidden_dim1=2, hidden_dim2=3,

hidden_dim3=2):

super(Net, self).__init__()

self.hidden1 = nn.Linear(input_size, hidden_dim1, bias=False)

self.hidden1.weight = nn.Parameter(torch.tensor([[-2., 1.], [3., -1.

]]))

self.hidden2 = nn.Linear(hidden_dim1, hidden_dim2, bias=False)

self.hidden2.weight = nn.Parameter(torch.tensor([[0., 1.], [2., -1.]

, [1., 2.]]))

self.hidden3 = nn.Linear(hidden_dim2, hidden_dim3, bias=False)

self.hidden3.weight = nn.Parameter(torch.tensor([[-1., 2., 1.], [3.,

0., 0.]]))

self.activation = nn.ReLU()

def forward(self, x):

h1 = self.hidden1(x)

h1 = self.activation(h1)

h2 = self.hidden2(h1)

h2 = self.activation(h2)

h3 = self.hidden3(h2)

return h3

In the constructor, we define all the layers and activation functions
we are going to use in the network. In particular, we specify that we
need fully-connected layers by making instances of the nn.Linear class
and that we need ReLU activation function by making an instance of
the nn.Relu class. Then in the forward() function, we specify the order
in which to apply the layers and activations. See Figure 11.7 for a
visualization of this neural network architecture.

Figure 11.7: A sample feedforward
neural network with two hidden layers
and two output nodes.

We can simulate one step of forward propagation by calling the
forward() function of the class Net we defined.

x = torch.tensor([3., 1.])

y_pred = net.forward(x)

print(’Predicted value:’, y_pred)

144 introduction to machine learning lecture notes for cos 324 at princeton university

Similarly, we can implement backpropagation by specifying which
loss function we want to use, and calling its backward() function.

loss = nn.functional.cross_entropy(y_pred.unsqueeze(0), torch.LongTensor([1]

))

loss.backward()

print(loss)

Each function call of backward() will evaluate the gradients of loss
with respect to every parameter in the network. Gradients can be
manually accessed through the following code.

print(net.hidden1.weight.grad)

Note that calling backward() multiple times will cause gradients to
accumulate. While we do not update model weights in this code
sample, it is important to periodically clear the gradient buffer when
doing so to prevent unintended training. 8 We will discuss how to do 8 For more information, see https://

pytorch.org/docs/stable/generated/

torch.Tensor.backward.html
this in the next chapter.

https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html

12
Convolutional Neural Network

In Chapter 11, we focused on a type of a neural network called feed-
forward neural networks. But different data has different structure
(e.g., image, text, audio, etc.) and we need better ways of exploiting
them. This can help reduce the number of parameters needed in the
network, which may allow easier or more data-efficient training. In
this chapter, we present a type of a neural network common in image
processing called Convolutional Neural Network (CNN); these models
use a mathematical technique called convolution in order to extract
important visual features from input images.

12.1 Introduction to Convolution

Roughly speaking, convolution refers to a mathematical operation
where two functions are “mixed” to output a new function. In ma-
chine learning, the main idea of convolution is to reuse the same set
of parameters on different portions of input. This is particularly effec-
tive at exploiting the structure of images. It was originally motivated
by studies of the structure of cortical cells in the V1 visual cortex of
the human brain (Hubel and Wiesel won the Nobel Prize in 1981 for
this breakthrough discovery). 1 Let’s first consider an example of a 1 Paper: https://www.jstor.org/

stable/24965293.1D convolution.

Figure 12.1: The effects of 1D convo-
lution on graph of COVID-19 positive
cases.

https://www.jstor.org/stable/24965293
https://www.jstor.org/stable/24965293

146 introduction to machine learning lecture notes for cos 324 at princeton university

Example 12.1.1. Consider the 3-day moving average of daily COVID-19
cases as shown in Figure 12.1. Let xt denote the number of daily cases on
day t. We can then take three consecutive values, compute their average and
create a new output sequence from averages: yt = 1

3 (xt−1 + xt + xt+1).
Then if we set w1 = w2 = w3 = 1

3 and denote w⃗ = (w1, w2, w3), we can
write: 2 2 If we set the weights to a different

value, we can find a weighted moving
average.yt = w1xt−1 + w2xt + w3xt+1 = w⃗ · (xt−1, xt, xt+1)

yt+1 = w1xt + w2xt+1 + w3xt+2 = w⃗ · (xt, xt+1, xt+2)

yt+2 = w1xt+1 + w2xt+2 + w3xt+3 = w⃗ · (xt+1, xt+2, xt+3)

Notice that we are reusing the same weights and applying them to multiple
different values of xt to calculate yt. It is almost like sliding a filter down the
array of xt’s and applying it to every set of 3 consecutive inputs. For this
reason, we call w⃗ the convolution filter weight of length 3.

Example 12.1.2. Consider an input sequence x⃗ = (2, 1, 1, 7,−1, 2, 3, 1) and
a convolution filter w⃗ = (3, 2,−1). The first two output values will be:

y1 = 2× 3 + 1× 2 + 1× (−1) = 7

y2 = 1× 3 + 1× 2 + 7× (−1) = −2

Following a similar calculation for the other values, we see that the full
output sequence is y⃗ = (7,−2, 18, 17,−2, 11). Note that the length of y⃗
should be |⃗x| − |w⃗|+ 1 = 8− 3 + 1 = 6.

Problem 12.1.3. If yt = 2xt−1 − xt+1, yt+1 = 2xt − xt+2, and yt+2 =

2xt+1 − xt+3, what is the convolution filter weight?

12.2 Convolution in Computer Vision

In this section, we now focus on the application of convolution in
computer vision. By the nature of image data, we will be primarily
dealing with 2D convolution. Generally, 2D convolution filters are
called kernels.

Figure 12.2: The effect of local smooth-
ing on a sample image. (The person
depicted here is Admiral Grace Murray
Hopper, a computing pioneer.)

Example 12.2.1 (Local Smoothing (Blurring)). An image can be blurred
by constructing a filter that replaces each pixel by the average of neighboring
pixels:

yi,j =
1
9 ∑

b1,b2∈{−1,0,1}
xi+b1,j+b2

convolutional neural network 147

An example is shown in Figure 12.2.

Figure 12.3: The effect of local sharpen-
ing on a sample image

Example 12.2.2 (Local Sharpening (Edge Detection)). The edge of objects
in an image can be detected by constructing a filter that replaces each pixel
by its difference with the average of neighboring pixels:

yi,j = xi,j −
1
9 ∑

b1,b2∈{−1,0,1}
xi+b1,j+b2

An example is shown in Figure 12.3.

12.2.1 Convolution Filters for Images

Computationally, we perform 2D convolution on an image by "slid-
ing" the filter around every possible location in the image and taking
the inner product:

yi,j = ∑
−k≤r,s≤k

wr,sxi+r,j+s (12.1)

The result is a new image and we can view each filter as a transfor-
mation which takes an image and returns an image. In the above
equation, the filter size is (2k + 1)× (2k + 1). For example, if k = 1, we
can consider the convolution weight filter to bew−1,−1 w−1,0 w−1,+1

w0,−1 w0,0 w0,+1

w+1,−1 w+1,0 w+1,+1

The filter can only be applied to an image of size m× n at a location
where the filter completely fits inside the image. Therefore, the
locations in the input image where the center of the filter can be
placed are k < i ≤ m− k, k < j ≤ n− k and the size of the output
image is (m− 2k)× (n− 2k).

Example 12.2.3. If the input and convolution filter are given as follows:

X =

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

 and W =

1 0 1
0 1 0
1 0 1

148 introduction to machine learning lecture notes for cos 324 at princeton university

then the pixel at (1, 1) of the resulting image can be calculated by applying
the filter at the top left corner of the input image. That is, we take the inner
product of the following parts (in red) of the two matrices

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

 and

1 0 1
0 1 0
1 0 1

which is

1× 1+ 1× 0+ 1× 1+ 0× 0+ 1× 1+ 1× 0+ 0× 1+ 0× 0+ 1× 1 = 4

Therefore, the (1, 1) entry of the resulting image is 4. Similarly, the remain-
ing pixels of the resulting image can be calculated by moving around the
filter as in Figure 12.4. The output image is given as:

Y =

4 3 4
2 4 3
2 3 4

In this example, X ∈ R5×5, W ∈ R3×3, k = 1 and Y ∈ R3×3.

Figure 12.4: Visual representation of
applying a 3× 3 convolutional filter to a
5× 5 image.

Problem 12.2.4. Suppose we have a 10× 10 image and a 5× 5 filter. What
is the size of the output image?

Figure 12.5 shows some common filters used in image processing.
Note that all these filters are hand-crafted and require domain-
specific knowledge. However, in convolutional neural networks, we
don’t set these weights by hand and we learn all the filter weights
from the data!

12.2.2 Padding

In standard 2D convolution, the size of the output image is not equal
to the size of the input image because we only consider locations
where the filter fits completely in the image. However, sometimes
we may want their sizes to be the same. In such a case, we apply a

convolutional neural network 149

Figure 12.5: Some common filters
and corresponding weights used in
image processing. Source: https:
//en.wikipedia.org/wiki/Kernel_

(image_processing)

technique called padding. The idea is to pad pixels to all four edges
of the input image (left, right, up, and down) so that the number of
valid locations for the filter is the same as the number of pixels in the
original image. In particular, if the filter size is (2k + 1)× (2k + 1), we
need to pad k pixels on each side.

There are multiple ways to implement padding. Zero padding is
when the values at all padded pixels are set to 0. “Same” padding is
when the values at padded pixels are set to the value of the nearest
pixel at the edge of the input image. In practice, zero padding is a
more common form of padding (it is equivalent to adding a black
frame around the image).

12.2.3 Downsampling Input with Stride

Another common operation in convolutional neural networks is
called stride. Stride controls how the filter convolves around the
input image. Instead of moving the filter by 1 pixel every time, we
can also move the filter every 2 (or in general, s) pixels. Essentially,
we are applying each of the filter weights at fewer locations of the
image than before. This can be viewed as a downsampling strategy,
which gives a smaller output image while greatly preserving the
information from the original input.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

150 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 12.6: A visual comparison
between two common types of padding:
zero padding and “same” padding

Suppose we have an input image of size m× n and a filter of size
(2k + 1) × (2k + 1). If padding is applied to the image, the output
image size is ⌊(m + s− 1)/s⌋ × ⌊(n + s− 1)/s⌋. 3 If padding is not 3 As a sanity check, you can verify that

in the special case of s = 1 the output
image size will be the same as the input
image size

applied to the image, the output image size is ⌊(m + s− 2k− 1)/s⌋ ×
⌊(n + s− 2k− 1)/s⌋; this is because convolution with stride is per-
formed directly on the input image itself, making the effective input
image size (m− 2k)× (n− 2k).

Example 12.2.5. Suppose we have an input image of size 5× 5 and a filter of
size 3× 3. If we apply padding and take stride size s = 2, then output size is
3× 3.

Figure 12.7: Visual representation of
applying a 3× 3 convolutional filter to
a 5× 5 image with padding and stride
size 2.

12.2.4 Nonlinear Convolution

For each location in the image (original or padded) and a single
convolution filter, we can apply a nonlinear activation function after
the convolution

yi,j = g

(
∑

−k≤r,s≤k
wr,sxi+r,j+s

)
(12.2)

where g is some function like ReLU, sigmoid, tanh. The intuition is
similar to what we had earlier in feedforward neural networks — if
we don’t add non-linear activation functions, a multi-layered convolu-
tional neural network can be easily reduced to a linear model!

convolutional neural network 151

12.2.5 Channels

In general, we do not only use one convolution filter. We construct
a network of multiple layers, and for each of the layers, we apply
multiple convolutional filters. Different filters will be able to detect
different features of the image (e.g., one filter detects edges and one
filter detects dots), and we want to apply different filters indepen-
dently on the input image. The result of applying a given filter on a
single input image is called a channel. We can stack the channels to
create a 3D structure, as shown in Figure 12.8.

Figure 12.8: Each filter creates one
channel. The output of a convolutional
layer has multiple output channels.

Next, let’s imagine that we want to build a deep neural network
with multiple convolutional layers (state-of-the-art CNNs have 100 or
even 1000 layers!). A typical convolutional layer in the middle of the
network will have several input channels (equivalent to the number
of output channels from the previous layer) and multiple output
channels. How can we determine the number of filters needed?

Figure 12.9: A convolutional layer
which has multiple input and multiple
output channels.

In this case, we want to define a filter for every possible pair of
input and output channels. The output image of a particular output
channel will be the summation of the output images from each of
the input channels, after applying the corresponding filter. We can
also add a nonlinear activation function g after taking the summation
of the output images. That is, (12.2) can be rewritten for the output

152 introduction to machine learning lecture notes for cos 324 at princeton university

image in the v-th output channel as:

y(v)i,j = g

(
nin

∑
u=1

∑
−k≤r,s≤k

w(u,v)
r,s x(u)i+r,j+s

)
(12.3)

where nin is the number of input channels, X(u) is the image at the
u-th input channel, Y(v) is the image at the v-th output channel, and
W(u,v) is the filter between the u-th input channel and the v-th output
channel.

Example 12.2.6. Assume there are 6 input channels and 3 output channels,
and the filter size is 5× 5. Then for every 6× 3 pair of input and output
channel, we have a kernel of weights of size 5× 5, so there are a total of
6× 3× 5× 5 = 450 weights.

12.2.6 Pooling

Pooling is another popular way to reduce the size of the output of a
convolutional layer. In contrast to stride, which applies convolution
operation every s pixels, pooling partitions each image (channel) to
patches of size ∆ × ∆ and performs a reduction operation on each
patch. You can think of this as similar to what happens when you
lower the resolution of an image. The reduction operation can either
involve taking the max of all the values in the patch (“max-pooling”):

yi,j = max
1≤r,s≤∆

X(i−1)·∆+r,(j−1)·∆+s

or taking the average of all the values in the patch (“mean-pooling”):

yi,j =
1

∆2

∆

∑
r,s=1

X(i−1)·∆+r,(j−1)·∆+s

The pooling operation can reduce the image size by a factor of ∆2.
If the input image is of size m × n, the size of the image after

pooling will be ⌊m/∆⌋ × ⌊n/∆⌋.

Example 12.2.7. If the size of an input image to a pooling layer is 6× 6 and
∆ = 2, then the output is of size 3× 3.

12.2.7 A Full Convolutional Neural Network

Let’s put everything together and consider a full convolutional neural
network. Figure 12.11 shows a typical example of a convolutional
neural network. A convolutional neural network typically begins
by stacking multiple convolutional layers and pooling layers. Each
convolutional layer has its own kernel size and number of output
channels; similarly, each pooling layer has its own kernel size. This is

convolutional neural network 153

Figure 12.10: Max-pooling vs mean-
pooling.

Figure 12.11: A illustration of a full
convolutional neural network.

followed by several fully-connected layers at the end. Since the out-
put images of convolutional layers are 2-dimensional, it is customary
to “flatten” the images into a 1D vector (i. e., append one row after an-
other) before applying the fully connected layers. Intuitively, we can
think of the convolutional and pooling layers as learning interesting
image features (e.g., stripes or dots) while the fully-connected layers
map these features to output classes (e.g., zebras have a lot of stripes).

All the weights in a convolutional neural network (including
weights in kernels, fully-connected layers) can be learned via the
backpropagation algorithm in Chapter 11. Again, modern deep
learning libraries (e.g., PyTorch, TensorFlow) have all the convolu-
tional and pooling layers implemented and can compute gradients

154 introduction to machine learning lecture notes for cos 324 at princeton university

automatically!
Finally, the above convolutional neural network is still a simple

network, compared to modern convolutional neural networks. Inter-
ested students can look up architectures such as AlexNet, Inception,
VGG, ResNet and DenseNet.

12.2.8 Designing a Convolutional Network

While we described convolutional nets above, we did not give a
good explanation of why they are well-suited to solve vision tasks.
Working through the next few examples will help you understand
their power. The idea is that convolution is a parameter-efficient 4 4 Which usually goes with sample-

efficiency!architecture that can “search for patterns” anywhere in the image.
For example, suppose the net has to decide if the input image has
a triangle anywhere in it. If the net were fully connected, it would
have to learn how to detect triangles centered at every possible pixel
location (i, j). By contrast, if a simple convolutional filter can detect
a triangle, we can just replicate this filter in all patches to detect a
triangle anywhere in the image.

Now consider the CNN architecture in Figure 12.12. The architec-
ture has two convolutional layers, the first with a ReLU activation
function, and the second with a sigmoid activation function. 5 We 5 In both Example 12.2.8 and Exam-

ple 12.2.9, the second convolutional
layer can be considered a fully con-
nected layer if we flatten image Y

will choose an appropriate convolutional weight and bias such that
the architecture can detect a particular simple visual pattern.

Input X Image Y Output o Output ôConv 1
ReLU

Conv 2 σ

Figure 12.12: A sample CNN archi-
tecture that can be used to detect the
patterns as aligned in Example 12.2.8
and Example 12.2.9.

Example 12.2.8. The input to the network is a gray-scale image of size
8× 8 (1 channel), and each pixel takes an integer value between 0 and 255,
inclusive. If at least one pixel of the image has value exactly 255, the output
of the CNN should have a value close to 1 and otherwise the output should
have a value close to 0.

We will now solve Example 12.2.8 by individually configuring
the parameters for each convolutional layer in Figure 12.12. The first

convolutional neural network 155

convolutional layer will have a 1× 1 filter of weight 1, a bias of −254,
and a ReLU activation function. The convolution will be applied with
no padding, and with stride 1. That is, the (i, j)-th entry of the output
image of the first convolutional layer will be

yi,j = ReLU(xi,j − 254) 1 ≤ i, j ≤ 8

where xi,j is the (i, j)-th entry of the input image. Notice that this
value is zero everywhere, except if xi,j = 255, in which case yi,j takes
the value 1. That is,

yi,j =

1 xi,j = 255

0 otherwise

See Figure 12.13 to see the effect of this choice of convolutional layer
on a sample image. We see that we have now successfully identified
the pixels in the input image that take the value 255.

 0 100 200
50 150 250
55 155 255

 Conv 1−→

−254 −154 −54
−204 −104 −4
−199 −99 1

 ReLU−→

0 0 0
0 0 0
0 0 1

Figure 12.13: The effect of the choice
of the first convoluational layer for
Example 12.2.8 on a sample image.
Only a portion of the image is shown.

Next, consider the second convolutional layer with a 8× 8 filter
of all weights equal to 10, a bias of −5, and a sigmoid activation
function. The convolution will be applied with no padding, and with
stride 1. 6 The output, before the sigmoid, will be 6 Once the output image of the first

convolutional layer is flattened to a
vector of length 64, this can also be
thought of as a fully-connected layer
with input size 64 and output size 1.

o =

(
8

∑
i,j=1

10yi,j

)
− 5

Notice that this value is −5 if and only if there is no pixel such that
yi,j = 1 (i. e., xi,j = 255). If there is one such pixel, the output is 5; if
there are two, the output is 15. The important thing is, the output is
at least 5 if there is at least one pixel in the input image whose value
is 255, and otherwise the output is ≤ 0. That is

o =

≥ 5 ∃(i, j) : xi,j = 255

−5 otherwise

Finally, when we apply the sigmoid function, the final output of the
model will be

ô = σ(o) =

≥ 0.99 ∃(i, j) : xi,j = 255

0.01 otherwise

This is exactly what we wanted in Example 12.2.8.

156 introduction to machine learning lecture notes for cos 324 at princeton university

Example 12.2.9. The input to the network is a gray-scale image of size
8× 8 (1 channel), and each pixel takes an integer value between 0 and 255,
inclusive. If any part of the input image contains the following pattern: ∗ 255 ∗

255 255 255
∗ 255 ∗

 (12.4)

the output of the CNN should have a value close to 1 and otherwise the
output should have a value close to 0.

We use the same architecture as in Figure 12.12, but now with a
different choice of parameters for the convolutional layers. The first
convolutional layer will have a 3× 3 filter with the following weights:0 1 0

1 1 1
0 1 0

a bias of −1274, and a ReLU activation function. The convolution will
be applied with no padding, and with stride 1. That is, the (i, j)-th
entry of the output image of the first convolutional layer will be

yi,j = ReLU
(
xi−1,j + xi,j−1 + xi,j + xi,j+1 + xi+1,j − 1274

)
2 ≤ i, j ≤ 7

where xi,j is the (i, j)-th entry of the input image. 7 Notice that this 7 Since there is no padding, the values
y1,1, y1,8, y8,1, y8,8 are not defined.value is zero everywhere, except if xi,j + xi−1,j + xi,j−1 + xi,j+1 +

xi+1,j = 1275, in which case yi,j takes the value 1. This can only
happen if xi−1,j = xi,j−1 = xi,j = xi,j+1 = xi+1,j = 255. That is, if the
input image has the pattern in (12.4) centered around (i, j).

yi,j =

1 Pattern in (12.4) exists at (i, j)

0 otherwise

See Figure 12.14 to see the effect of this choice of convolutional layer
on two sample images.

 0 255 0
255 250 255

0 255 0

 Conv 1−→

∗ ∗ ∗
∗ −4 ∗
∗ ∗ ∗

 ReLU−→

∗ ∗ ∗∗ 0 ∗
∗ ∗ ∗

 0 255 0

255 255 255
0 255 0

 Conv 1−→

∗ ∗ ∗
∗ +1 ∗
∗ ∗ ∗

 ReLU−→

∗ ∗ ∗∗ 1 ∗
∗ ∗ ∗

Figure 12.14: The effect of the choice
of first convoluational layer for Exam-
ple 12.2.9 on two sample images. Only
a portion of the images is shown.

convolutional neural network 157

Next, consider the second convolutional layer with a 6× 6 filter
of all weights equal to 10, a bias of −5, and a sigmoid activation
function. The convolution will be applied with no padding, and with
stride 1. The output, before the sigmoid, will be

o =

(
7

∑
i,j=2

10yi,j

)
− 5

Notice that this value is −5 if and only if there is no pixel such that
yi,j = 1 (i. e., the pattern exists at (i, j)). If there is one such pixel, the
output is 5; if there are two, the output is 15. The important thing
is, the output is at least 5 if there is at least one copy of the given
pattern, and otherwise the output is ≤ 0. That is

o =

≥ 5 ∃(i, j) : Pattern in (12.4) exists at (i, j)

−5 otherwise

Finally, when we apply the sigmoid function, the final output of the
model will be

ô = σ(o) =

≥ 0.99 ∃(i, j) : Pattern in (12.4) exists at (i, j)

0.01 otherwise

This is exactly what we wanted in Example 12.2.9.

12.3 Backpropagation for Convolutional Nets

A convolutional neural network is a special case of a feedforward
neural network where we use convolutional layers, instead of fully-
connected layers as in Chapter 11. Therefore, we can apply the
same basic idea of backpropagation so that we can run the gradient
descent algorithm, although the details of the calculation are slightly
different.

The biggest difference is that in a fully-connected layer, each
weight is used exactly once, while in a convolutional layer, each
weight is applied multiple times throughout the input image. 8 This 8 This phenomenon is also known as

weight sharing.makes the computation for the gradient slightly more convoluted.
But the basic idea is the same — identify all paths through which the
corresponding weight affects the output of the model and add up the
amount of effect for each path.

Figure 12.15 shows a portion of a sample neural network where
weight sharing occurs. That is, the same weight w is used between
the following four pairs of nodes: (x1, y1), (x2, y2), (x2, y3), (x3, y4).
If we wanted to find the gradient ∂o/∂w, we need to consider the
four paths that the weight w affects the output: w → yi → o where
1 ≤ i ≤ 4.

158 introduction to machine learning lecture notes for cos 324 at princeton university

x1

x2

x3

y1

y2

y3

y4

· · ·

· · ·

· · ·

· · ·

o

w(1)

w(2)

w(3)

w(4)

Figure 12.15: A sample neural net-
work where weight sharing occurs.
w(1), w(2), w(3), w(4) are the copies of the
same weight w.

What we will do is consider the four copies of the weight w as
separate weights that will be denoted as w(i) where 1 ≤ i ≤ 4. Since
these weights are only used in one place in the layer, we are already
familiar with computing the gradients ∂o/∂w(i). Then we will add
(or pool) these values to get the gradient ∂o/∂w. This works because
we can think of each w(i) as a function of w where w(i) = w. Then by
Chain Rule, we have

∂o
∂w

=
4

∑
i=1

∂o
∂w(i)

· ∂w(i)

∂w
=

4

∑
i=1

∂o
∂w(i)

12.3.1 Deriving Backpropagation Formula for Convolutional Layers

In this subsection, we derive the backpropagation formula for a
convolutional layer. (As in many other places, if your instructor did
not teach it in COS 324, consider this to be advanced reading.)

Recall that in a fully-connected layer (without an activation func-
tion), which computes h⃗k = W(k)h⃗(k−1), the gradient with respect to a
particular weight w(k)

i,j can be simply computed as

∂ℓ

∂w(k)
i,j

=
∂ℓ

∂h(k)i

·
∂h(k)i

∂w(k)
i,j

=
∂ℓ

∂h(k)i

· h(k−1)
j

This is because the weight w(k)
i,j is only used to compute h(k)i out

of all nodes in the next hidden layer. In comparison, consider a
convolutional layer, which computes an output image Y ∈ Rn×n from
an input image X ∈ Rm×m and filter W ∈ R(2k+1)×(2k+1). Notice
that the weight wi,j is used to compute all of the pixels in the output
image. Therefore, we just need to add (or pool) the gradient flow from
each of these paths. The gradient with respect to a particular weight

convolutional neural network 159

wi,j will be

∂ℓ

∂wi,j
=

(
∂ℓ

∂y1,1
· ∂y1,1

∂wi,j
+

∂ℓ

∂y1,2
· ∂y1,2

∂wi,j
+ . . . +

∂ℓ

∂y1,n
· ∂y1,n

∂wi,j

)

+

(
∂ℓ

∂y2,1
· ∂y2,1

∂wi,j
+

∂ℓ

∂y2,2
· ∂y2,2

∂wi,j
+ . . . +

∂ℓ

∂y2,n
· ∂y2,n

∂wi,j

)
+ . . .

+

(
∂ℓ

∂yn,1
· ∂yn,1

∂wi,j
+

∂ℓ

∂yn,2
· ∂yn,2

∂wi,j
+ . . . +

∂ℓ

∂yn,n
· ∂yn,n

∂wi,j

)

Assuming there is zero padding, this can be calculated as

∂ℓ

∂wi,j
=

(
∂ℓ

∂y1,1
· xi+1,j+1 +

∂ℓ

∂y1,2
· xi+1,j+2 + . . . +

∂ℓ

∂y1,n
· xi+1,j+n

)
+

(
∂ℓ

∂y2,1
· xi+2,j+1 +

∂ℓ

∂y2,2
· xi+2,j+2 + . . . +

∂ℓ

∂y2,n
· xi+2,j+n

)
+ . . .

+

(
∂ℓ

∂yn,1
· xi+n,j+1 +

∂ℓ

∂yn,2
· xi+n,j+2 + . . . +

∂ℓ

∂yn,n
· xi+n,j+n

)

Notice that the equation above can be rewritten as

∂ℓ

∂wi,j
= ∑

1≤r,s≤n

∂ℓ

∂yr,s
· xi+r,j+s (12.5)

That is, the Jacobian matrix ∂ℓ/∂W is the output when applying a
convolution filter ∂ℓ/∂Y to the input matrix X.

Similarly, we can try to calculate the Jacobian matrix with respect
to the input matrix X. Each input pixel xi,j is used to calculate the
output pixels yi+r,j+s where −k ≤ r, s ≤ k. The gradient with respect
to a particular input pixel will be

∂ℓ

∂xi,j
=

(
∂ℓ

∂yi−k,j−k
·

∂yi−k,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi−k,j+k
·

∂yi−k,j+k

∂xi,j

)

+

(
∂ℓ

∂yi−k+1,j−k
·

∂yi−k+1,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi−k+1,j+k
·

∂yi−k+1,j+k

∂xi,j

)
+ . . .

+

(
∂ℓ

∂yi+k,j−k
·

∂yi+k,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi+k,j+k
·

∂yi+k,j+k

∂xi,j

)

160 introduction to machine learning lecture notes for cos 324 at princeton university

Assuming zero padding, this is calculated as

∂ℓ

∂xi,j
=

(
∂ℓ

∂yi−k,j−k
· wk,k + . . . +

∂ℓ

∂yi−k,j+k
· wk,−k

)

+

(
∂ℓ

∂yi−k+1,j−k
· wk−1,k + . . . +

∂ℓ

∂yi−k+1,j+k
· wk−1,−k

)
+ . . .

+

(
∂ℓ

∂yi+k,j−k
· w−k,k + . . . +

∂ℓ

∂yi+k,j+k
· w−k,−k

)

which can be rewritten as

∂ℓ

∂xi,j
= ∑
−k≤r,s≤k

∂ℓ

∂yi+r,j+s
· w−r,−s (12.6)

That is, the Jacobian matrix ∂ℓ/∂X is the output when applying the
horizontally and vertically inverted image of W as the convolutional
filter to the input matrix ∂ℓ/∂Y.

12.4 CNN in Python Programming

In this section, we discuss how to write Python code to implement
Convolutional Neural Networks (CNN). As usual, we use the numpy
package to speed up computation and the torch package to easily
design and train the neural network. We also introduce the torchvision
package:

• torchvision: This package focuses on computer vision applications
and is integrated with the broader PyTorch framework. It provides
access to pre-built models, popular datasets, and a variety of
image transform capabilities. 9 9 Documentation is available at https:

//pytorch.org/vision/stable/index.

htmlThe following code sample implements a CNN and trains it on a
single image.

import necessary packages

import random

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

set random seeds to ensure reproducibility

torch.manual_seed(0)

np.random.seed(0)

random.seed(0)

https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html

convolutional neural network 161

load CIFAR10 data

transform = transforms.Compose(

[transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_data = torchvision.datasets.CIFAR10(root=’./data’, train=True,

download=True, transform=transform)

test_data = torchvision.datasets.CIFAR10(root=’./data’, train=False,

transform=transform)

helps iterate through the train/test data in batches

train_loader = DataLoader(dataset=train_data, batch_size=8, shuffle=True,

num_workers=0)

test_loader = DataLoader(dataset=test_data, batch_size=8, shuffle=False,

num_workers=0)

define the CNN architecture

class ConvNet(nn.Module):

def __init__(self):

super(ConvNet, self).__init__()

Conv2d takes # input channels, # output channels, kernel size

self.conv1 = nn.Conv2d(3, 3, 5)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(3, 16, 5)

self.pool2 = nn.AvgPool2d(2, 2)

self.fc1 = nn.Linear(16*5*5, 120)

self.fc2 = nn.Linear(120, 10)

def forward(self, x):

x = F.relu(self.conv1(x))

x = self.pool1(x)

x = F.relu(self.conv2(x))

x = self.pool2(x)

x = x.view(-1, 16*5*5)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

extract one image from the dataset

images, labels = next(iter(train_loader))

image = images[0].unsqueeze(0)

forward propagation

net = ConvNet()

output = net(image)

choose the optimization technique to invoke

optimizer = torch.optim.SGD(net.parameters(), lr=0.01)

backpropagation

loss = torch.norm(output - torch.ones(output.shape[1]))**2

loss.backward()

optimizer.step()

optimizer.zero_grad()

As usual, we start by importing packages.

import random

import numpy as np

import torch

import torch.nn as nn

162 introduction to machine learning lecture notes for cos 324 at princeton university

import torch.nn.functional as F

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

The DataLoader class helps iterate through a dataset in batches.
Next, we fix all random seeds to ensure reproducibility.

torch.manual_seed(0)

np.random.seed(0)

random.seed(0)

Recall that programming languages on a classical computer can only
implement pseudorandom methods, which always produce the same
result for a given seed.

Then we load the CIFAR-10 dataset.

transform = transforms.Compose(

[transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_data = torchvision.datasets.CIFAR10(root=’./data’, train=True,

download=True, transform=transform)

test_data = torchvision.datasets.CIFAR10(root=’./data’, train=False,

transform=transform)

The CIFAR-10 dataset contains simple images of a single object, and
the images are labeled with the category of the objects they contain.
Note that we normalize the dataset with a mean of 0.5 and standard
deviation of 0.5 per color channel. Figure 12.16 shows a sampling of
images from the dataset after the normalization.

Figure 12.16: Sample images from the
CIFAR10 dataset.

Next we create DataLoader objects to help iterate through the
dataset in batches. Each batch will consist of 8 images and 8 labels.

train_loader = DataLoader(dataset=train_data, batch_size=8, shuffle=True,

num_workers=0)

test_loader = DataLoader(dataset=test_data, batch_size=8, shuffle=False,

num_workers=0)

Then we define our CNN architecture in the ConvNet class.

class ConvNet(nn.Module):

def __init__(self):

super(ConvNet, self).__init__()

conv2d takes # input channels, # output channels, kernel size

self.conv1 = nn.Conv2d(3, 3, 5)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(3, 16, 5)

self.pool2 = nn.AvgPool2d(2, 2)

convolutional neural network 163

self.fc1 = nn.Linear(16*5*5, 120)

self.fc2 = nn.Linear(120, 10)

def forward(self, x):

x = F.relu(self.conv1(x))

x = self.pool1(x)

x = F.relu(self.conv2(x))

x = self.pool2(x)

x = x.view(-1, 16*5*5)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

Just like the FFNN code from the previous chapter, we define all the
layers and activations we are going to use in the constructor. Note
that in addition to instances of the nn.Linear class and the nn.ReLU
class, we also make use of classes like nn.Conv2d and nn.MaxPool2d
which are specifically designed for CNNs.

We extract one training image with the following code.

images, labels = next(iter(train_loader))

image = images[0].unsqueeze(0)

The unsqueeze() function adds one dimension to the training data.
This is called a batch dimension. Normally, we would run the training
in batches, and the size of the data along the batch dimension will be
equal to the number of images in each batch. Here, we only use one
image for the sake of exposition.

We can now run forward propagation on a sample image with the
code below.

net = ConvNet()

output = net(image)

We then implement the squared error loss. Alternatively, we could
have chosen the cross-entropy loss or any other valid loss function.

loss = torch.norm(output - torch.ones(output.shape[1]))**2

Next, we calculate the gradients of the loss with the following line of
code

loss.backward()

and update each of the parameters according to the Gradient Descent
algorithm with the following line.

optimizer.step()

Finally, we reset the values of the gradients to zero with the following
code.

optimizer.zero_grad()

164 introduction to machine learning lecture notes for cos 324 at princeton university

Recall as discussed in the previous chapter that failing to do so
will cause unintended training during subsequent iterations of
backpropagation. Here, we called the zero_grad() function at the end
of one iteration of backpropagation, but it may be a good idea to
call this function right before calling backward(), just in case there
are already gradients in the buffer before program execution (e.g., if
someone was working with the model beforehand in the interpreter).

In this section, we only showed how to run forward propagation
and backpropagation on a single data point. In general, we train the
model on the entire dataset multiple times. A single pass over the
entire dataset is called an epoch.

