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6
Clustering

So far, we have considered ML models which require labeled data
in order to learn. However, there is a large class of models which
can learn from unlabeled data. From this chapter, we will begin to
introduce models from this modeling paradigm, called unsupervised
learning. In this chapter, we focus on one application of unsupervised
learning, called clustering algorithm.

6.1 Unsupervised Learning

Unsupervised learning is a branch of machine learning which only uses
unlabeled data. Examples of unlabeled data include a text corpus
containing the works of William Shakespeare (Chapter 8) or a set of
unlabeled images (Chapter 7). Some key goals in this setting include:

• Learn the structure of data: It is possible to learn if the data consists
of clusters, or if it can be represented in a lower dimension.

• Learn the probability distribution of data: By learning the probability
distribution where the training data came from, it is possible to
generate synthetic data which is “similar” to real data.

• Learn a representation for data: We can learn a representation that is
useful in solving other tasks later. With this new representation,
for example, we can reduce the need for labeled examples for
classification.

6.2 Clustering

Clustering is one of the main tasks in unsupervised learning. It is the
process of detecting clusters in the dataset. Often the membership
of a cluster can replace the role of a label in the training dataset. In
general, clusters reveal a lot of information about the underlying
structure of the data.
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Figure 6.1: Height vs weight scatter
plot of basketball players. In the plot on
the right, the points in green and blue
respectively correspond to female and
male players.

In Figure 6.1, we see a scatter plot of measurements of height and
weight of basketball players. If you look at the plot on the left, it is
easy to conclude that there is a usual linear relationship between the
height and the weight of the athletes. However, upon further inspec-
tion, it seems like there are two clusters of the data points, separated
around the middle of the plot. In fact, this is indeed the case! If we
label the dataset with the additional information of whether the data
point is from a male or female athlete, the plot on the right shows
something more than just the linear relationship. In practice, however,
we do not always have access to this additional label. Instead, one
uses clustering algorithms to find natural clusterings of the data. This
raises the question of what a “clustering” is, in the first place.

Technically, any partition of the dataset D into k subsets C1, C2, . . . , Ck

can be called a clustering. 1 That is, 1 Here k, the number of clusters may be
given as part of the problem, or k may
have to be decided upon after looking
at the dataset. We’ll revisit this soon.

k⋃
i=1

Ci = D and
k⋂

i=1

Ci = ∅

But we intuitively understand that not all partitions are a natural
clustering of the dataset; our goal therefore will be to define what a
“good” clustering is.

6.2.1 Some Attempts to Define a “Good” Cluster

The sample data in Figure 6.1 suggests that our vision system has
evolved to spot natural clusterings in two or three dimensional data.
To do machine learning, however, we need a more precise definition
in Rd: specifically, for any partition of the dataset into clusters, we try
to quantify the “goodness” of the clusters.

Definition 6.2.1 (Cluster: Attempt 1). A “good” cluster is a subset of
points which are closer to each other than to all other points in the dataset.

But this definition does not apply to the clusters in Figure 6.1. The
points in the middle of the plot are far away from the points on the
top right corner or the bottom left corner. So whichever cluster we
assign the middle points to, they will be farther away from some
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points in their assigned cluster than to some of the points on the
other cluster. Ok, so that did not work. Consider the following
definition.

Definition 6.2.2 (Cluster: Attempt 2). A “good” cluster is a subset of
points which are closer to the mean of their own cluster than to the mean of
other clusters.

Here Mean and Variance are defined as follows:

Definition 6.2.3 (Mean and Variance of Clusters). Let Ci be one of the
clusters for a dataset D. Let mi = |Ci| denote the cluster size. The mean of
the cluster Ci is

y⃗i =
1

mi
∑

x⃗∈Ci

x⃗

and the variance within the cluster Ci is

σ2
i =

1
mi

∑
x⃗∈Ci

∥⃗x− y⃗i∥2
2

You may notice that Definition 6.2.2 appears to be using circular
reasoning: it defines clusters using the mean of the clusters, but the
mean can only be calculated once the clusters have been defined. 2 2 Such circular reasoning occurs in most

natural formulations of clustering. Look
at the Wikipedia page on clustering for
some other formulations.6.3 k-Means Clustering

In this section, we present a particular partition of the dataset called
the k-means clustering. Given k, the desired number of clusters, the
k-means clustering partitions D into k clusters C1, C2, . . . , Ck so as to
minimize the cost function:

k

∑
i=1

∑
x⃗∈Ci

∥⃗x− y⃗i∥2
2 (6.1)

This can be seen as minimizing the average of the individual cost of
the k clusters, where cost of Ci is ∑

x⃗∈Ci

∥⃗x− y⃗i∥2
2. 3 This idea is similar 3 Notice that each cluster cost is the

cluster size times the variance.
in spirit to our earlier attempt in Definition 6.2.2 — we want the
distance of each data point to the mean of the cluster to be small. But
this method is able to circumvent the problem of circular reasoning.

The process of finding the optimal solution for (6.1) is called the
k-means clustering problem.

6.3.1 k-Means Algorithm

Somewhat confusingly, the most famous algorithm that is used
to solve the k-means clustering problem is also called k-means. It is
technically a heuristic, meaning it makes intuitive sense but it is not
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guaranteed to find the optimum solution.4 The following is the k- 4 There is extensive research on finding
near-optimal solutions to k-means. The
problem is known to be NP-complete,
so we believe that an algorithm that is
guaranteed to produce the optimum
solution on all instances must require
exponential time.

means algorithm. It is given some initial clustering (we discuss some
choices for initialization below) and we repeat the following iteration
until we can no longer improve the cost function:

Maintain clusters C1, C2, . . . , Ck

For each cluster Ci, find the mean y⃗i

Initialize new clusters C′i ← ∅
for x⃗ ∈ D do

ix = arg mini ∥⃗x− y⃗i∥2
C′ix
← C′ix

∪ {⃗x}
end for
Update clusters Ci ← C′i

At each iteration, we find the mean of each current cluster. Then
for each data point, we assign it to the cluster whose mean is the
closest to the point, without updating the mean of the clusters. In
case there are multiple cluster means that the point is closest to, we
apply the tie-breaker rule that the point gets assigned to the current
cluster if it is among the closest ones; otherwise, it will be randomly
assigned to one of them. Once we have assigned all points to the new
clusters, we update the current set of clusters, thereby updating the
mean of the clusters as well. We repeat this process until there is no
point that is mis-assigned.

6.3.2 Why Does k-Means Algorithm Terminate in Finite time?

The k-means algorithm is actually quite akin to Gradient Descent, in
the sense that the iterations are trying to improve the cost.

Lemma 6.3.1. Given a set of points x⃗1, x⃗2, . . . , x⃗m, their mean y⃗ = 1
m

m
∑

i=1
x⃗i

is the point that minimizes the average squared distance to the points.

Proof. For any vector z⃗, let C(⃗z) denote the sum of squared distance
to the set of points. That is,

C(⃗z) =
m

∑
i=1
∥⃗z− x⃗i∥2

2 =
m

∑
i=1

((⃗z− x⃗i) · (⃗z− x⃗i))

=
m

∑
i=1

(⃗z · z⃗− 2⃗z · x⃗i + x⃗i · x⃗i)

=
m

∑
i=1

(∥⃗z∥2
2 − 2⃗z · x⃗i + ∥⃗xi∥2

2)

To find the optimal z⃗, we set the gradient ∇C to 0

∇C(⃗z) =
m

∑
i=1

(2⃗z− 2⃗xi) = 0
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which yields the solution

z⃗ =
1
m

m

∑
i=1

x⃗i

We are ready to prove the main result.

Theorem 6.3.2. Each iteration of the k-means Algorithm 6.3.1, possibly
except for the last iteration before termination, strictly decreases the total
cluster cost (6.1).

Proof. We follow the same notation as in Algorithm 6.3.1. The total
cost at the end of one iteration is:

k

∑
i=1

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2

where y⃗′i is the mean of the newly defined cluster C′i . Notice that
each of the cluster cost ∑

x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 is the sum of the squared dis-

tance between a set of points x⃗ ∈ C′i and their mean. By Lemma 6.3.1,
this sum is smaller than the sum of squared distance between the
same set of points to any other point. In particular, we can compare
with y⃗i, the mean of Ci before the update. That is,

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 ≤ ∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2

for any 1 ≤ i ≤ k. If we sum over all clusters, we see that

k

∑
i=1

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 ≤
k

∑
i=1

∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2

Now notice that the summand ∥⃗x− y⃗i∥2
2 in the right hand side of the

inequality is the squared distance between the point x⃗ and the mean
y⃗i (before update) of the cluster C′i that x⃗ is newly assigned to. In
other words, we can rewrite this term as ∥⃗x− y⃗ix∥

2
2 and instead sum

over all points x⃗ in the dataset. That is,

k

∑
i=1

∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2 = ∑

x⃗∈D
∥⃗x− y⃗ix∥

2
2

Finally, recall that the index ix was defined as ix = arg mini ∥⃗x− y⃗i∥2.
In particular, if j was the index of the cluster that a data point x⃗
originally belonged to, then ∥⃗x− y⃗ix∥

2
2 ≤

∥∥⃗x− y⃗j
∥∥2

2. Therefore, we
have the following inequality,

∑
x⃗∈D
∥⃗x− y⃗ix∥

2
2 ≤

k

∑
j=1

∑
x⃗∈Cj

∥∥⃗x− y⃗j
∥∥2

2
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The equality holds in the inequality above if and only if when
∥⃗x− y⃗ix∥

2
2 =

∥∥⃗x− y⃗j
∥∥2

2 for each point x⃗, which means that the origi-
nal cluster Cj was one of the closest clusters to x⃗. By the tie-breaker
rule, ix would have been set to j. This is exactly the case when the
algorithm terminates immediately after this iteration since no point
is reassigned to a different cluster. In all other cases, we have a strict
inequality:

∑
x⃗∈D
∥⃗x− y⃗ix∥

2
2 <

k

∑
j=1

∑
x⃗∈Cj

∥∥⃗x− y⃗j
∥∥2

2

Notice that the right hand side of the inequality is the total cost at the
beginning of the iteration.

Now we are ready to prove that the k-means algorithm is guaran-
teed to terminate in finite time. Since each iteration strictly reduces
the cost, we conclude that the current clustering (i. e., partition) will
never be considered again, except at the last iteration when the al-
gorithm terminates. Since there is only a finite number of possible
partitions of the dataset D, the algorithm must terminate in finite
time.

6.3.3 k-Means Algorithm and Digit Classification

You might be familiar with the MNIST hand-written digits dataset.
Here, each image, which depicts some digit between 0 and 9, is
represented as a an 8× 8 matrix of pixels and each pixel can take on a
different luminosity value from 0 to 15.

We can apply k-means clustering to differentiate between images
depicting the digit “1” and the digit “0.” After running the model
with k = 2 on 360 images of the two digits, we achieve the clusters in
Figure 6.2. 5 Note the presence of two colored regions: a point is col- 5 This 2D visualization of the clusters

is achieved through a technique called
low dimensional representation, which
is covered in Chapter 7.

ored red if a hypothetical held-out data point at that location would
get assigned a “0;” otherwise it is colored blue. This assignment is
based on which cluster center is closer.

Figure 6.2: Sample images from the
MNIST dataset (left) and 2D visu-
alization of the k-means clusters
differentiating between the digits “1”
and “0” (right). Only two images were
misclassified!
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This example also shows that clustering into two clusters can be
turned into a technique for binary classification — use training data
to come up with two clusters; at test time, compute a ±1 label for
each data point according to which of the two cluster centers it is
closer to.

6.3.4 Implementation Detail: How to Pick the Initial Clustering

The choice of initial clusters greatly influences the quality of the
solution found by the k-means algorithm. The most naive method is
to pick k data points randomly to serve as the initial cluster centers
and create k clusters by assigning each data point to the closest
cluster center. However, this approach can be problematic. Suppose
there exists some “ground truth” clustering of the dataset. By picking
the initial clusters randomly, we may end up splitting one of these
ground truth clusters (e.g., two initial centers are drawn from within
the same ground truth cluster), and the final clustering ends up
being very sub-optimal. Thus one tries to select the initial clustering
more intelligently. For instance the popular k-means++ initialization
procedure 6 is the following: 6 It was invented by Arthur and Vassil-

vitskii in 2007.

1. Choose one center uniformly at random among all data points.

2. For each data point x⃗ compute D(⃗x), the distance between x⃗ and
the nearest center which has already been chosen.

3. Choose a new data point at random as a new center, where a
point x⃗ is chosen with probability proportional to D(⃗x)2.

4. Repeat steps 2 and 3 until k centers have been chosen.

In COS 324, we will not expect you to understand why this is a
good initialization procedure, but you may be expected to be able to
implement this or similar procedures in code.

6.3.5 Implementation Detail: Choice of k

Above we assumed that the number of clusters k is given, but in
practice you have to choose the appropriate number of clusters k.

Example 6.3.3. Is there a value of k that guarantees an optimum cost of
0? Yes! Just set k = n (i.e., each point is its own cluster). Of course, this is
useless from a modeling standpoint!

Problem 6.3.4. Argue that the optimum cost for k + 1 clusters is no more
than the optimum cost for k clusters.
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Note that Problem 6.3.4 only concerns the optimum cost, which
as we discussed may not be attained by the k-means algorithm.
Nevertheless, it does suggest that we can try various values of k and
see when the cost is low enough to be acceptable.

A frequent heuristic is the elbow method: create a plot of the num-
ber of clusters vs. the final value of the cost as in Figure 6.3 and look
for an “elbow” where the objective tapers off. Note that if the dataset
is too complicated for a simple Euclidean distance cost, the data
might not be easy to cluster “nicely” meaning there is no “elbow”
shown on the plot.

Figure 6.3: Two graphs of number of
clusters vs. final value of cost. There is
a distinct elbow on the left, but not on
the right.

6.4 Clustering in Programming

In this section, we briefly discuss how to implement k-means algo-
rithm for digit classification in Python. As usual, we use the numpy
package to speed up computation and the matplotlib package for vi-
sualization. Additionally, we use the sklearn package to help perform
the clustering.

# import necessary packages

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load_digits

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

# prepare dataset

X, y = load_digits(n_class=2, return_X_y=True)

X = scale(X)

X_train, X_test = ...

# define functions

def initialize_cluster_mean(X, k):

# X: array of shape (n, d), each row is a d-dimensional data point

# k: number of clusters

# returns Y: array of shape (k, d), each row is the center of a cluster

def assign_cluster(X, Y)

# X: array of shape (n, d), each row is a d-dimensional data point

# Y: array of shape (k, d), each row is the center of a cluster

# returns loss, the sum of squared distance from each point to its

assigned cluster
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# returns C: array of shape (n), each value is the index of the closest

cluster

def update_cluster_mean(X, k, C):

# X: array of shape (n, d), each row is a d-dimensional data point

# k: number of clusters

# C: array of shape (n), each value is the index of the closest cluster

# returns Y: array of shape (k, d), each row is the center of a cluster

def k_means(X, k, max_iters=50, eps=1e-5):

Y = initialize_cluster_mean(X, k)

for i in range(max_iters):

loss, C = assign_cluster(X, Y)

Y = update_cluster_mean(X, k, Y)

if loss_change < eps:

break

return loss, C, Y

def scatter_plot(X, C):

plt.figure(figsize=(12, 10))

k = int(C.max()) + 1

from itertools import cycle

colors = cycle(’bgrcmk’)

for i in range(k):

idx = (C == i)

plt.scatter(X[idx, 0], X[idx, 1], c=next(colors))

plt.show()

# run k-means algorithm and plot the result

loss, C, Y = k_means(X_train, 2)

low_dim = PCA(n_components=2).fit_transform(X_train)

scatter_plot(low_dim, C)

We start by importing outside packages.

from sklearn.datasets import load_digits

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

The load_digits() method loads the MNIST digits dataset, with around
180 data points per digit. The scale() method linearly scales each of
the data points such that the mean is 0 and variance is 1. The PCA()
method helps visualize the MNIST digits data points, which are 64-
dimensional, in the Cartesian plane (i. e., R2). See the next Chapter 7

for details on this process.
Next we prepare the dataset by calling the load_digits() method.

X, y = load_digits(n_class=2, return_X_y=True)

X = scale(X)

X_train, X_test = ...

Notice that we discard the target array y because we are performing
clustering, a type of unsupervised learning. If we were to perform
supervised learning instead, we would need to make use of y.
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Then we define the functions necessary for the k-means algorithm.

def initialize_cluster_mean(X, k):

return Y

def assign_cluster(X, Y)

return loss, C

def update_cluster_mean(X, k, C):

return Y

def k_means(X, k, max_iters=50, eps=1e-5):

Y = initialize_cluster_mean(X, k)

for i in range(max_iters):

loss, C = assign_cluster(X, Y)

Y = update_cluster_mean(X, k, Y)

if loss_change < eps:

break

return loss, C, Y

In practice, it is common to limit the number of cluster update itera-
tions (i. e., the parameter max_iters) and specify the smallest amount
of loss change allowed for one iteration (i. e., the constant ϵ). By termi-
nating the algorithm once either one of the conditions is reached, we
can get an approximate solution within a reasonable amount of time.

Next, take a look at the helper function used to plot the result of
the k-means algorithm.

def scatter_plot(X, C):

plt.figure(figsize=(12, 10))

k = int(C.max()) + 1

from itertools import cycle

colors = cycle(’bgrcmk’)

for i in range(k):

idx = (C == i)

plt.scatter(X[idx, 0], X[idx, 1], c=next(colors))

plt.show()

The cycle() method from the itertools package lets you iterate through
an array indefinitely, with the index wrapping around back to the
start, once it reaches the end of the array.

Now, consider the for loop section in the helper function above. We
first use Boolean conditions to concisely generate a new array.

idx = (C == i)

This generates a Boolean array with the same length as C, where each
entry is either True/False based on whether the corresponding entry in
C is equal to i. The following code is equivalent.

idx = np.zeros(C.size)

for j in range(C.size):
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idx[j] = (C[j] == i)

We then use a technique called Boolean masking to extract a particular
subset of rows of X.

X[idx, 0]

Notice that in place of a list of indices of rows to extract, we are
indexing with the Boolean array we just defined. The code will extract
only the rows where the Boolean value is True. For example, if the
value of idx is [True, False, True], then the code above is equivalent to

X[[0, 2], 0]

Finally, we make use of the helper functions we defined earlier to
run the k-means algorithm and plot results.

_, C, _ = k_means(X_train, 2)

low_dim = PCA(n_components=2).fit_transform(X_train)

scatter_plot(low_dim, C)

The first line of this code snippet shows how we can use the _ symbol
to selectively disregard individual return values of a function call.
The second line of code uses the PCA() method to transform the
64-dimensional data X_train into 2-dimensional data so that we can
visualize it with the scatter_plot() method. We will learn the details of
this process in the next Chapter 7.





7
Low-Dimensional Representation

High-dimensional datasets arise in quite a few settings. This chapter
concerns a phenomenon that arises frequently: the data points (i.
e., vectors) collectively turn out to be “approximately low rank.” A
running theme in this chapter is that arrays and matrices, which in
introductory courses like COS 126 and COS 226 were thought of as
data structures (i. e., an abstraction from programming languages),
are treated now as objects that we can pass through some remarkable
(but simple) mathematical procedures.

If a large dataset of N vectors in Rd has rank k, then we can think
of a natural compression method. Let U be the k-dimensional sub-
space spanned by the vectors, and identify k basis vectors for U. For
each of the N vectors, find the k coefficients of their representation
in terms of the basis vectors. Following this method, instead of spec-
ifying the N vectors using Nd real numbers, we can represent them
using k(N + d) real numbers, which is a big win if d is much larger
than k.

Figure 7.1: v⃗1, v⃗2, v⃗3 ∈ R3 (left) and
their 2-dimensional representationŝ⃗v1, ̂⃗v2, ̂⃗v3 ∈ R2.

Example 7.0.1. Figure 7.1 shows three vectors v⃗1 = (3.42,−1.33, 6.94), v⃗2 =

(7.30, 8.84, 1.95), v⃗3 = (−7.92,−6.37,−5.66) in R3. The three vectors
have rank 2 — they are all in the 2-dimensional linear subspace generated
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by u⃗1 = (8, 8, 4) and u⃗2 = (1,−4, 6). Specifically,

v⃗1 = 0.31⃗u1 + 0.95⃗u2

v⃗2 = 0.95⃗u1 − 0.31⃗u2

v⃗3 = −0.95⃗u1 − 0.31⃗u2

Therefore, we can represent these vectors in a 2-dimensional plane, aŝ⃗v1 = (0.31, 0.95), ̂⃗v2 = (0.95,−0.31), ̂⃗v3 = (−0.95,−0.31)

7.1 Low-Dimensional Representation with Error

Of course, in general, high dimensional datasets are not exactly
low rank. We’re interested in datasets which have low-dimension
representations once we allow some error.

Definition 7.1.1 (Low-dimensional Representation with Error). We
say a set of vectors v⃗1, v⃗2, . . . , v⃗N ∈ Rd has rank k with mean-squared
error ϵ if there exist some basis vectors u⃗1, u⃗2, . . . , u⃗k ∈ Rd and N vectorŝ⃗v1, ̂⃗v2, . . . , ̂⃗vN ∈ span(⃗u1, u⃗2, . . . , u⃗k) such that

1
N ∑

i

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

2
≤ ϵ (7.1)

We say that ̂⃗v1, . . . , ̂⃗vN are the low-rank or low-dimensional approxi-
mation of v⃗1, . . . , v⃗N . Typically we will assume without loss of generality
that the basis vectors are orthonormal (i.e., have ℓ2 norm equal to 1 and are
pairwise orthogonal).

Definition 7.1.1 can be thought of as a lossy compression of the
dataset of vectors since the low-dimensional representation of vectors
is roughly correct, but with a bound of ϵ on the MSE. This compres-
sion view will be used in Section 7.3.

Figure 7.2: v⃗1, v⃗2, v⃗3 ∈ R3 (left) and
their 2-dimensional approxima-
tions ̂⃗v1, ̂⃗v2, ̂⃗v3 represented in the
2-dimensional subspace spanned by
u⃗1, u⃗2.
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Example 7.1.2. Figure 7.2 shows three vectors v⃗1 = (3.42,−1.33, 6.94), v⃗2 =

(7.30, 8.84, 1.95), v⃗3 = (−6.00,−7.69,−6.86) in R3. The three vectors
have rank 2 with mean-squared error 2.5. If you choose the basis vec-
tors u⃗1 = (8, 8, 4), u⃗2 = (1,−4, 6) and the low-rank approximationŝ⃗v1 = v⃗1, ̂⃗v2 = v⃗2, ̂⃗v3 = (−7.92,−6.37,−5.66) ∈ span(⃗u1, u⃗2) then,

1
3 ∑

i

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

2
≃ 2.28 ≤ 2.5

Note that the basis vectors in this example are only orthogonal and not
orthonormal, but it is easy to set them as orthonormal by normalizing them.

Problem 7.1.3. Show that if u⃗1, u⃗2, . . . , u⃗k ∈ Rd is any set of orthonor-
mal vectors and v⃗ ∈ Rd then the vector ̂⃗v in span(⃗u1, u⃗2, . . . , u⃗k) that

minimizes
∥∥∥⃗v− ̂⃗v∥∥∥2

2
is

k

∑
j=1

(⃗v · u⃗j )⃗uj (7.2)

(Hint: If α1, α2, . . . , αk minimize
∥∥∥⃗v−∑j α j⃗uj

∥∥∥2

2
then the gradient of this

expression with respect to α1, α2, . . . , αk must be zero.)

Problem 7.1.3 illustrates how to find the low-dimensional represen-
tation of the vectors, once we specify the k basis vectors. Notice that
(7.2) is the vector projection of v⃗ onto the subspace U spanned by the

vectors u⃗1, u⃗2, . . . , u⃗k. Therefore, the approximation error
∥∥∥⃗v− ̂⃗v∥∥∥2

2
is

the squared norm of the component of v⃗ that is orthogonal to U. 1 1 Also known as the vector rejection of v⃗
from U.Problem 7.1.4 is only for more advanced students but all students

should read its statement to understand the main point. It highlights
how miraculous it is that real-life datasets have low-rank represen-
tations. It shows that generically one would expect ϵ in (7.1) to be
1− k/n, which is almost 1 when k≪ n. And yet in real life ϵ is small
for fairly tiny k.

Problem 7.1.4. Suppose the v⃗i’s are unit vectors 2 and the vectors 2 Note: the maximum possible value
of ϵ when v⃗i’s are unit vectors is 1.
Convince yourself!

u⃗1, u⃗2, . . . , u⃗k were the basis vectors of a random k-dimensional subspace in
Rd. (That is, chosen without regard to the v⃗i’s.) Heuristically argue that the
ϵ one would need in (7.1) would be 1− k/n.

7.1.1 Computing the Low-Dimensional Representation with Error

In Problem 7.1.3, we have already seen how to find the low-dimension
representation with error, once we are given the basis vectors. All
there remains is to identify a suitable value of k and find the corre-
sponding basis vectors that will minimize the error.

There is a simple linear algebraic procedure, the Singular Value
Decomposition (SVD). Given a set of vectors v⃗i and a positive integer
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k, SVD can output the best orthonormal basis in sense of Defini-
tion 7.1.1 that has the lowest possible value of ϵ. In practice, we treat
k as a hyperparameter and use trial and error to find the most suit-
able k. Problem 7.1.5 shows that the accuracy of the low-dimensional
representation will decrease when we choose a smaller number of
dimensions. So we are making a choice between the accuracy of the
representations against how condensed our compression is.

Problem 7.1.5. Show that as we decrease k in Definition 7.1.1, the corre-
sponding ϵ can only increase (i.e., cannot decrease).

Formally, SVD takes a matrix as its input; the rows of this matrix
are the vector v⃗i’s. The procedure operates on this matrix to output
a low-rank approximation. We discuss details in Section 20.3. To
follow the rest of this chapter, you do not need to understand details
of the procedure. You just need to remember the fact that the best
k-dimensional representation is computable for each k. In practice,
programming languages have packages that will do the calculations
for you. Below is a Python code snippet that will calcuate the SVD.

import sklearn.decomposition.TruncatedSVD

# n * n matrix

data = ...

# prepare transform on dataset matrix "data"

svd = TruncatedSVD(n_components=k)

svd.fit(data)

# apply transform to dataset and output an n * k matrix

transformed = svd.transform(data)

Now we see some fun applications.

7.2 Application 1: Stylometry

In many cases in old literature, the identity of the author is disputed.
For instance, the King James Bible (i. e., the canonical English bible
from the 17th century) was written by a team whose identities and
work divisions are not completely known. Similarly the Federalist
Papers, an important series of papers explicating finer points of the
US government and constitution, were published in the early days of
the republic with the team of authors listed as Alexander Hamilton,
James Madison, and John Jay. But it was not revealed which paper
was written by whom. In such cases, can machine learning help
identify who wrote what?

Here we present a fun example about the books in the Wizard of
Oz series. 3 L. Frank Baum was the author of the original Wonderful 3 Original paper at http://dh.

obdurodon.org/Binongo-Chance.pdf.
A survey paper by Erica Klarreich in
Science News Dec 2003: Statistical tests
are unraveling knotty literary mysteries
at http://web.mit.edu/allanmc/www/
stylometrics.pdf

Wizard of Oz, which was a best-seller in its day and remains highly
popular to this day. The publisher saw a money-making opportunity

http://dh.obdurodon.org/Binongo-Chance.pdf
http://dh.obdurodon.org/Binongo-Chance.pdf
http://web.mit.edu/allanmc/www/stylometrics.pdf
http://web.mit.edu/allanmc/www/stylometrics.pdf
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and convinced Baum to also write 15 follow-up books. After Baum’s
death the publisher managed to pass on the franchise to Ruth Plumly
Thompson, who wrote many other books.

Figure 7.3: Royal Book of Oz
(1921). Cover image from https:

//en.wikipedia.org/wiki/The_Royal_

Book_of_Oz

However, the last of the Baum books, Royal Book of Oz (RBOO), al-
ways seemed to Oz readers closer in style to Thompson’s books than
to Baum’s. But with all the principals in the story now dead, there
seemed to be no way to confirm the suspicion. Now we describe how
simple machine learning showed pretty definitively that this book
was indeed written by Ruth Plumly Thompson. The main idea is to
represent the books vectors in some way and then find their low-rank
representations.

The key idea is that different authors use English words at differ-
ent frequencies. Surprisingly, the greatest difference lies in frequen-
cies of function words such as with, however, upon, rather than
fancy vocabulary words (the ones found on your SAT exam).

Example 7.2.1. Turns out Alexander Hamilton used upon about 10
times more frequently than James Madison. We know this from analyzing
their individual writing outside their collaboration on the Federalist Papers.
Using these kinds of statistics, it has been determined that Hamilton was
the principal author or even the sole author of almost all of the Federalist
Papers.

The statistical analysis of the Oz books consisted of looking at the
frequencies of 50 function words. All Oz books except RBOO were
divided into text blocks of 5000 words each. For each text block, the
frequency (i. e., number of occurrences) of each function word was
computed, which allows us to represent the block as a vector in R50.
There were 223 text blocks total, so we obtain 223 vectors in R50.

Figure 7.4: The top 50 most frequently
used function words in the Wizard
of Oz series. Their occurrences were
counted in 223 text blocks. Figure from
Binongo’s paper.

Then we compute a rank 2 approximation of these 223 vectors.
Figure 7.5 shows the scatter plot in the 2-dimensional visualization.

The two axes correspond to the two basis vectors we found for the
rank 2 approximation. It becomes quickly clear that the vectors from
the Baum books are in a different part of the space than those from
the Thompson books. It is also clear that RBOO vectors fall in the

https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz
https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz
https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz
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Figure 7.5: Rank-2 visualization of the
223 text block vectors from books of
Oz. The dots on the left correspond
to vectors from Oz books known to be
written by Ruth Plumly Thompson. The
hearts on the left correspond to vectors
from RBOO. The ones on the right
correspond to ones written by L. Frank
Baum. Figure from Binongo’s paper.

same place as those from other Thompson books. Conclusion: Ruth
Plumly Thompson was the true author of Royal Book of Oz!

By the way, if one takes the non-Oz writings of Baum and Thomp-
son and plot their vectors in the 2D-visualization in Figure 7.6, they
also fall on the appropriate side. So the difference in writing style
came across clearly even in non-Oz books!

Figure 7.6: Rank-2 visualization of text
block vectors from books written by
Baum and Thompson outside of the Oz
series. Figure from Binongo’s paper.
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7.3 Application 2: Eigenfaces

This section uses the lossy compression viewpoint of low-rank rep-
resentations. As you may remember from earlier computer science
courses (e.g., Seam Carver from COS 226), images are vectors of
pixel values. In this section, let us only consider grayscale (i. e., B&W)
images where each pixel has an integer value in [−127, 127]. −127
corresponds to the pixel being pitch black; 0 corresponds to middle
gray; and 127 corresponds to total white. We can also reorganize the
entries to form a single vector:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

→ (a11, a12, · · · , a1n, a21, · · · , a2n, · · · , amn)

Once we have this vectorized form of an image, it is possible to
perform linear algebraic operations on the vectors. For example, we
can take 0.3 times the first image and add it to −0.8 times the second
image, etc. See Figure 7.7 for some of these examples.

Figure 7.7: Example of linear algebra on
images.

Eigenfaces was an idea for face recognition 4. The dataset in this 4 L. Sirovich; M. Kirby (1987). Low-
dimensional procedure for the character-
ization of human faces. Journal of the
Optical Society of America.

lecture is from a classic Olivetti dataset from 1990s. Researchers
took images of people facing the camera in good light, downsized
to 64× 64 pixels. This makes them vectors in R4096. Now we can
find a 64-rank approximation of the vectors using procedures we will
explore in more detail in Section 20.3.

Figure 7.8 shows four basis vectors in the low-rank approximation
of the images. The first image looks like a generic human with a
ill-defined nose and lips; the second image looks like having glasses
and a wider nose; the third image potentially looks like a female
face; the fourth image looks like having glasses, a moustache, and
a beard. All images in the dataset can be approximated as a linear
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Figure 7.8: Some basis vectors (which
turn out to be face-like) in the low-rank
approximation of the Olivetti dataset.

combination of 128 of these basis images, and the approximations are
surprisingly accurate. Figure 7.9 shows four original images of the
dataset, compared with their 64-rank approximations and 128-rank
approximations.

Figure 7.9: 4 original images in the
Olivetti dataset (left), compared with
their 64-rank approximations (middle)
and 128-rank approximations (right).

From Figure 7.9, we also see that the approximations are more
accurate when the corresponding value of k is larger. In fact, Fig-

ure 7.10 shows the average value of ∥⃗vi−̂⃗vi∥2
2

∥⃗vi∥2
2

as a function of the

rank of the approximation. Note that this value roughly represents
the fraction of v⃗ lost in the approximation. It can be seen that the error
is a decreasing function in terms of k. 5 However, note that doing 5 This was also explored in Prob-

lem 7.1.5machine learning — specifically face recognition — on low-rank
representations is computationally more efficient particularly because
the images are compressed to a lower dimension. With a smaller
value of k, we can improve the speed of the learning.

Figure 7.10: What fraction of norm
of the image is not captured in the
low-dimensional representation, plotted
versus the rank k.



8
n-Gram Language Models

In this chapter, we continue our investigation into unsupervised
learning techniques and now turn our attention to language mod-
els. You may have heard of natural language processing (NLP) and
models such as GPT-3 in the news lately. The latter is quite impres-
sive, being able to write and publish its own opinion article on a
reputable news website! 1 While most of these models are trained 1 The full piece can be found at

https://www.theguardian.com/

commentisfree/2020/sep/08/

robot-wrote-this-article-gpt-3

using state-of-the-art deep learning techniques which we will discuss
later on in this text, this chapter explores a key idea, which is to view
language as the output of a probabilistic process, which leads to an
interesting measure of the “goodness” of the model. Specifically, we
will investigate the so-called n-gram language model.

8.1 Probabilistic Model of Language

Classical linguistics focused on the syntax or the formal grammar of
languages. The linguists believed that a language can be modeled
by a set of sentences, constructed from a finite set of vocabularies
and a finite set of grammatical rules. But this approach in language
modeling had limited success in machine learning.

Figure 8.1: An example of a syntax tree
of an English sentence.

Instead, the approach of machine learning in language models,

https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
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pioneered by Claude Shannon, has been to learn the distribution of
pieces of text.

Figure 8.2: Claude Shannon, inventor
of the n-gram language model in
https://languagelog.ldc.upenn.edu/

myl/Shannon1950.pdf. Picture from
https://en.wikipedia.org/wiki/

Claude_Shannon.

In other words, the model assigns a probability to all conceivable
finite pieces of English text (even those that have not yet been spoken
or written). For example, the sentence “how can I help you” will be
assigned some probability, most likely larger than the probability
assigned to the sentence “can I how you help.” Note that we don’t
expect to find a “correct” model; all models found to date are ap-
proximations. But even an approximate probabilistic model can have
interesting uses, such as the following:

1. Speech recognition: A machine processes a recording of a human
speech that sounds somewhere between “I ate a cherry” and “eye
eight a Jerry.” If the model assigns a higher probability score to the
former, speech recognition can still work in this instance.

2. Machine translation: “High winds tonight” should be considered a
better translation than “large winds tonight.”

3. Context sensitive spelling correction: We can compare the proba-
bilities of sentences that are similar to the following sentence —
“Their are problems wit this sentence.” — and output the cor-
rected version of the sentence.

4. Sentence completion: We can compare the probabilities of sentences
that will complete the following phrase — “Please turn off your ...”
— and output the one with the highest probability.

8.2 n-Gram Models

Say we are in the middle of the process of assigning a probability
distribution over all English sentences of length 5. We want to find
the probability of the sentence “I love you so much.” If we let Xi be
the random variable that represents the value of the i-th word, the
probability we are looking for is the joint probability

Pr[X1 = ”I”, X2 = ”love”, X3 = ”you”, X4 = ”so”, X5 = ”much”] (8.1)

By the Chain Rule, we can split this joint probability into the product
of a marginal probability and four conditional probabilities:

(8.1) = Pr[X1 = ”I”] (8.2)

× Pr[X2 = ”love” | X1 = ”I”]

× Pr[X3 = ”you” | X1 = ”I”, X2 = ”love”]

× Pr[X4 = ”so” | X1 = ”I”, X2 = ”love”, X3 = ”you”]

× Pr[X5 = ”much” | X1 = ”I”, X2 = ”love”, X3 = ”you”, X4 = ”so”]

https://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf
https://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Claude_Shannon
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If we estimate all components of the product in (8.2), we will be able
to estimate the joint probability (8.1).

Now consider the bigram model, which has the following two
assumptions:

1. The probability of a word is only dependent on the immediately
previous word.

2. That probability does not depend on the position of the word in
the sentence.

The first assumption says that, for example, the conditional proba-
bility

Pr[X3 = ”you” | X1 = ”I”, X2 = ”love”]

can be simplified as

Pr[X3 = ”you” | X2 = ”love”]

The second assumption says that

Pr[X3 = ”you” | X2 = ”love”] = Pr[Xi+1 = ”you” | Xi = ”love”]

for any 1 ≤ i ≤ 4. We abuse notation and denote any of these
probabilities as Pr[”you” | ”love”].

Applying these assumptions to (8.2), we can simplify it as

(8.1) = Pr[”I”]× Pr[”love” | ”I”]× Pr[”you” | ”love”]

× Pr[”so” | ”you”]× Pr[”much” | ”so”] (8.3)

Now we are going to estimate each component of (8.3) from a
large corpus of text. The estimation for the marginal probability of
the word “I” is given as

Pr[”I”] ≈ Count("I")
total number of words

(8.4)

where Count refers to the number of occurrences of the word in
the text. In other words, this is the proportion of the occurrence of
the word “I” in the entire corpus. Similarly, we can estimate the
conditional probability of the word “love” given its previous word is
“I” as

Pr[”love” | ”I”] ≈ Count("I love")

∑
w

Count("I" + w)
(8.5)

where in the denominator, we sum over all possible words in the
dictionary. This is the proportion of the word “love” occurring im-
mediately after the word “I” out of every time some word w in the
dictionary occurring immediately after the word “I.” 2 In general, we 2 Notice that there is no word occurring

immediately after the word “I” when
“I” is at the end of the sentence in
the training corpus. Therefore, the
denominator in (8.5) is equal to the
Count of “I” minus the Count of “I”
at the end of a sentence. This is not
necessarily the case when we introduce
the sentence stop tokens in Section 8.3.
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can estimate the following conditional probability as

Pr[wi+1 | wi] ≈
Count(wiwi+1)

∑
w

Count(wiw)
(8.6)

where wi is the i-th word of the sentence. Once we calculate these
estimates from the corpus, we are able to define the probability of the
sentence "I love you so much."

8.2.1 Defining n-Gram Probabilities

We can extend the example above to a more general setting. Now we
want to define the probability distribution over all sentences of length
k (grammatical or not). Say we want to find the joint probability of
the sentence w1w2 . . . wk where wi is the i-th word of the sentence. We
will employ an n-gram model which has two assumptions:

1. The probability of a word is only dependent on the immediately
previous n− 1 words. 3 3 If n = 1, the model is called a unigram

model, and the probability is not de-
pendent on any previous word. When
n = 2 and n = 3, the model is respec-
tively called a bigram and a trigram
model.

2. That probability does not depend on the position of the word in
the sentence.

By a similar logic from the earlier example, we abuse notation
and denote the joint probability of the sentence w1w2 · · ·wk as
Pr[w1w2 . . . wk]; the marginal probability of the first word being
w1 as Pr[w1]; and so on. We can apply the Chain Rule again to define
the n-gram model.

Definition 8.2.1 (n-Gram Model). An n-gram model assigns the following
probability to the sentence w1w2 . . . wk if n > 1: 4 4 max(1, i− n + 1) in the third line is to

ensure that we access the correct indices
for the first n− 1 words, where there are
less than n− 1 previous words to look
at.

Pr[w1w2 . . . wk] = Pr[w1]Pr[w2 | w1] · · ·Pr[wk | w1w2 . . . wk−1]

= Pr[w1]×
k

∏
i=2

Pr[wi | w1 . . . wi−1]

= Pr[w1]×
k

∏
i=2

Pr[wi | wmax(1,i−n+1) . . . wi−1] (8.7)

and the following probability if n = 1:

Pr[w1w2 . . . wk] =
k

∏
i=1

Pr[wi] (8.8)

where the n-gram probabilities are estimated from a training corpus as the
following

Pr[wi] ≈
Count(wi)

total number of words

Pr[wj | wi . . . wj−1] ≈
Count(wi . . . wj−1wj)

∑
w

Count(wi . . . wj−1w)
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This defines the “best” possible probabilistic model in terms of the
Maximum Likelihood Principle from Subsection 4.2.1. 5 We now turn 5 We will prove this for n = 1 later.

to the following example.

Example 8.2.2. We investigate a cowperson language which has two words
in the dictionary: {Yee, Haw}. Suppose the training corpus is given as “Yee
Haw Haw Yee Yee Yee Haw Yee.” Then the unigram probabilities can be
estimated as

Pr[”Yee”] =
5
8

Pr[”Haw”] =
3
8

We can also create the bigram frequency table as in Table 8.1 and we normal-
ize the rows of the bigram frequency table to get the bigram probability table
in Table 8.2.

previous
next

“Yee” “Haw” Total

“Yee” 2 2 4
“Haw” 2 1 3

Table 8.1: Bigram frequency table of the
cowperson language.

previous
next

“Yee” “Haw” Total

“Yee” 2/4 2/4 1
“Haw” 2/3 1/3 1

Table 8.2: Bigram probabilty table of the
cowperson language.

From Table 8.2, we get the following bigram probabilities:

Pr[”Yee” | ”Yee”] =
2
4

Pr[”Haw” | ”Yee”] =
2
4

Pr[”Yee” | ”Haw”] =
2
3

Pr[”Haw” | ”Haw”] =
1
3

Then by the bigram model, the probability that we see the sentence “Yee Haw
Yee” out of all sentences of length 3 can be calculated as

Pr[”Yee”]×Pr[”Haw” | ”Yee”]×Pr[”Yee” | ”Haw”] =
5
8
× 2

4
× 2

3
≃ 0.21

8.2.2 Maximum Likelihood Principle

Recall the Maximum Likelihood Principle introduced in Subsec-
tion 4.2.1. It gave a way to measure the “goodness” of a model with
probabilistic outputs.

Now we formally prove that the estimation methods given in
Definition 8.2.1 satisfy the Maximum Likelihood Principle for the
n = 1 case. A probabilistic model is “better” than another if it assigns
more probability to the actual outcome. Here, the actual outcome is
the training corpus, which also consists of words. So let us denote



94 introduction to machine learning lecture notes for cos 324 at princeton university

the training corpus as a string of words w1w2 . . . wT . By definition, a
unigram model will assign the probability

Pr[w1w2 . . . wT ] =
T

∏
i=1

Pr[wi] (8.9)

to this string. Remember that each of the wi’s are a member of a
finite set of dictionary words. If we let V be the size of the dictionary,
then the model is defined by the choice of V values, the probabilities
we assign to each of the dictionary words. Let pi be the probability
that we assign to the i-th dictionary word, and let ni be the number
of times that the i-th dictionary word appears in the training corpus.
Then (8.9) can be rewritten as

Pr[w1w2 . . . wT ] =
V

∏
i=1

pni
i (8.10)

We want to maximize this value under the constraint
V
∑

i=1
pi = 1. A

solution to this type of a problem can be found via the Lagrange
multiplier method. We will illustrate with an example.

Example 8.2.3. We revisit the cowperson language from Example 8.2.2. Here
V = 2 and T = 8. Let p1 = Pr[”Yee”] and p2 = Pr[”Haw”]. Then the
probability assigned to the training corpus by the unigram model is

Pr[”Yee Haw Haw Yee Yee Yee Haw Yee”] = p5
1 p3

2

We want to maximize this value under the constraint p1 + p2 = 1. Therefore,
we want to find the point where the gradient of the following is zero.

f (p1, p2) = p5
1 p3

2 + λ(p1 + p2 − 1)

for some λ. The gradients are given as

∂ f
∂p1

= 5p4
1 p3

2 + λ
∂ f
∂p2

= 3p5
1 p2

2 + λ

From 5p4
1 p3

2 + λ = 3p5
1 p2

2 + λ = 0, we get p1
p2

= 5
3 . Combined with the fact

that p1 + p2 = 1, we get the optimal solution p1 = 5
8 and p2 = 3

8 .

Problem 8.2.4. Following the same Lagrange multiplier method as in
Example 8.2.3, verify that the heuristic solution pi =

ni
T (the empirical fre-

quency) is the optimal solution that maximizes (8.10) under the constraint
V
∑

i=1
pi = 1.

8.3 Start and Stop Tokens

In this section, we present a convention that is often useful: start
token ⟨s⟩ and stop token ⟨/s⟩. They signify the start and the end
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of each sentence in the training corpus. They are a special type of
vocabulary item that will be augmented to the dictionary, so you
will want to pay close attention to the way they contribute to the
vocabulary size, number of words, and the n-gram probabilities.
Also, by introducing these tokens, we are able to define a probability
distribution over all sentences of finite length, not just a given length
of k. For the sake of exposition, we will only consider the bigram
model for most parts of this section.

8.3.1 Re-estimating Bigram Probabilities

Consider the cowperson language again.

Example 8.3.1. The training corpus “Yee Haw Haw Yee Yee Yee Haw Yee”
actually consists of three different sentences: (1) "Yee Haw," (2) "Haw Yee
Yee," and (3) "Yee Haw Yee." We can append the start and stop tokens to the
corpus and transform it into

⟨s⟩ Yee Haw ⟨/s⟩
⟨s⟩ Haw Yee Yee ⟨/s⟩
⟨s⟩ Yee Haw Yee ⟨/s⟩

With these start and stop tokens in mind, we slightly relax the As-
sumption 2 of the n-gram model and investigate the probability of a
word w being the first or the last word of a sentence, separately from
other probabilities. We will denote these probabilities respectively as
Pr[w | ⟨s⟩] and Pr[⟨/s⟩ | w]. The former probability will be estimated
as

Pr[w | ⟨s⟩] ≈ Count(⟨s⟩ w)
total number of sentences

(8.11)

which is the proportion of sentences that start with the word w in the
corpus. The latter probability is estimated as

Pr[⟨/s⟩ | w] ≈ Count(w ⟨/s⟩)
Count(w)

(8.12)

which is the proportion of the occurrence of w that is at the end of a
sentence in the corpus.

Also, notice that other bigram probabilities are also affected when
introducing the stop tokens. In (8.6), the denominator originally did
not include the occurrence of the substring at the end of the sentence
because there was no word to follow that substring. However, if we
consider ⟨/s⟩ as a word in the dictionary, the denominator can now
include the case where the substring is at the end of the sentence.
Therefore, the denominator is just equivalent to the Count of the
substring in the corpus. Therefore, the bigram probabilities after
introducing start, stop tokens can be estimated instead as 6 6 If we consider ⟨s⟩ , ⟨/s⟩ as vocabularies

of the dictionary, (8.13) can also include
(8.11), (8.12).



96 introduction to machine learning lecture notes for cos 324 at princeton university

Pr[wj | wj−1] ≈
Count(wj−1wj)

Count(wj−1)
(8.13)

Example 8.3.2. We revisit Example 8.2.2. The bigram frequency table and
the bigram probability table can be recalculated as in Table 8.3 and Table 8.4.
7

7 Note that the values in the Total
column now correspond to the unigram
count of that word.

previous
next

“Yee” “Haw” ⟨/s⟩ Total

⟨s⟩ 2 1 0 3
“Yee” 1 2 2 5

“Haw” 2 0 1 3

Table 8.3: Bigram frequency table of the
cowperson language with start and stop
tokens.

previous
next

“Yee” “Haw” ⟨/s⟩ Total

⟨s⟩ 2/3 1/3 0/3 1
“Yee” 1/5 2/5 2/5 1

“Haw” 2/3 0/3 1/3 1

Table 8.4: Bigram probabilty table of the
cowperson language with start and stop
tokens.

Therefore, the bigram probabilities of the cowperson language, once we
introduce the start and stop tokens, are given as

Pr[”Yee” | ⟨s⟩] = 2
3

Pr[”Haw” | ⟨s⟩] = 1
3

Pr[”Yee” | ”Yee”] =
1
5

Pr[”Haw” | ”Yee”] =
2
5

Pr[⟨/s⟩ | ”Yee”] =
2
5

Pr[”Yee” | ”Haw”] =
2
3

Pr[”Haw” | ”Haw”] =
0
3

Pr[⟨/s⟩ | ”Haw”] =
1
3

8.3.2 Redefining the Probability of a Sentence

The biggest advantage of introducing stop tokens is that now we can
assign a probability distribution over all sentences of finite length,
not just a given length k. Say we want to assign a probability to the
sentence w1w2 . . . wk (without the start and stop tokens). By introduc-
ing start and stop tokens, we can interpret this as the probability of
w0w1 . . . wk+1 where w0 = ⟨s⟩ and wk+1 = ⟨/s⟩. Following the similar
logic from (8.2), we can define this probability by the Chain Rule.

Definition 8.3.3 (Bigram Model with Start, Stop Tokens). A bigram
model, once augmented with start, stop tokens, assigns the following proba-
bility to a sentence w1w2 . . . wk

8 8 Notice that we do not have the term
Pr[w0] in the expansion. A sentence
always starts with a start token, so the
marginal probability that the first word
is ⟨s⟩ can be understood to be 1.

Pr[w1w2 . . . wk] =
k+1

∏
i=1

Pr[wi | wi−1] (8.14)

where the bigram probabilities are estimated as in (8.13).
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Example 8.3.4. The probability that we see the sentence “Yee Haw Yee” in
the cowperson language can be calculated as

Pr[”Yee” | ⟨s⟩]× Pr[”Haw” | ”Yee”]× Pr[”Yee” | ”Haw”]× Pr[⟨/s⟩ | ”Yee”]

=
2
3
× 2

5
× 2

3
× 2

5
≃ 0.07

Note that this probability is taken over all sentences of finite length.

Problem 8.3.5. Verify that (8.14) defines a probability distribution over all
sentences of finite length.

8.3.3 Beyond Bigram Models

In general, if we have an n-gram model, then we may need to in-
troduce more than 1 start or stop tokens. For example, in a trigram
model, we will need to define the probability that the word is the first
word of the sentence as Pr[w | ⟨s⟩ ⟨s⟩]. Based on the number of start
and stop tokens introduced, the n-gram probabilities will need to be
adjusted accordingly.

8.4 Testing a Language Model

So far, we discussed how to define an n-gram language model given
a corpus. This is analogous to training a model given a training
dataset. Naturally, the next step is to test the model on a newly
seen held-out data to ensure that the model generalizes well. In this
section, we discuss how to test a language model.

8.4.1 Shakespeare Text Production

First consider a bigram text generator — an application of the bi-
gram model. The algorithm initiates with the start token ⟨s⟩. It then
outputs a random word w1 from the dictionary, according to the
probability Pr[w1 | ⟨s⟩]. It then outputs the second random word
w2 from the dictionary, according to the probability Pr[w2 | w1]. It
repeats this process until the newly generated word is the stop to-
ken ⟨/s⟩. The final output of the algorithm will be the concatenated
string of all outputted words.

It is possible to define a text generator for any n-gram model in
general. Figure 8.4 shows the output of the unigram, bigram, trigram,
quadrigram text generators when the models were trained on all
Shakespeare texts.

Notice the sentence “I will go seek the traitor Gloucester.” in the
output of the quadrigram text generator. This exact line appears in
King Lear, Act 3 Scene 7. This is not a coincidence. Figure 8.5 presents
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Figure 8.3: An example run of the
bigram text generator.

Figure 8.4: The outputs of unigram,
bigram, trigram, quadrigram text
generators trained on Shakespeare texts.

the snapshot of the bigram, trigram, and quadrigram text generators
once they have outputted the phrase “go seek the.” You can see that
bigram models and trigram models assign very small probabilities to
the word “traitor” because there are many more instances of phrases
“the” or “seek the” in the corpus than “go seek the.” On the other
hand, the quadrigram model assigns a very large probability to the
word “traitor” because there is only a limited number of times that
the phrase “go seek the” appears in the corpus.

Figure 8.5: The probability of the next
word given the previous three words
are “go seek the” in the n-gram model,
where n = 2, 3, 4.

Once the quadrigram model outputs the word “traitor” after the
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phrase “go seek the,” the problem is even worse. As can be seen
in Figure 8.6, the quadrigram model assigns probability of 1 to the
word “Gloucester” meaning that the phrase “seek the traitor” only
appears before the word “Gloucester.” So the model has memorized
one completion of the phrase from the training text. From this exam-
ple, we can see that text production based on n-grams is sampling
and remixing text fragments seen in the training corpus.

Figure 8.6: The probability of the next
word given the previous three words
are “seek the traitor.”

The Shakespeare corpus consists of N = 884, 647 words and V =

29, 066 distinct words from the dictionary. There are about V2 ≈ 845
million possible combinations of bigrams, but Shakespeare only used
around 300, 000 of them in his text. So 99.96% of the possible bigrams
were never seen. The percentage is much higher for quadrigrams!
Furthermore, for the quadrigrams that do appear in the corpus,
most do not even repeat. Thus what comes out of the quadrigram
model looks like Shakespeare because it is a memorized fragment of
Shakespeare.9 9 Do this remind you of overfitting?

8.4.2 Perplexity

Having described a way to train a simple language model, we now
turn our attention to a formal way of testing 10 a language model. 10 This method is used even for testing

state of the art models.Just like any other model in ML, a language model will be given
a corpus w1w2 . . . wT . Then we can assess the performance of the
model by its perplexity on the corpus.

Definition 8.4.1 (Perplexity). The perplexity of a language model on the
corpus w1w2 . . . wT is defined as

Pr[w1w2 . . . wT ]
− 1

T = T

√
1

Pr[w1w2 . . . wT ]
(8.15)

Note that, perplexity is defined for any probabilistic language
model: the Chain Rule of joint probability applies to every model,
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and does not require the n-gram assumptions. That is, 11 11 Assume for now that start and stop
tokens do not exist in the corpus.

Pr[w1w2 . . . wT ] = Pr[w1]×
T

∏
i=2

Pr[wi | w1 . . . wi−1]

Then the perplexity of the model can be rewritten as

T

√√√√ 1
Pr[w1]

×
T

∏
i=2

1
Pr[wi | w1 . . . wi−1]

(8.16)

Example 8.4.2. Consider the uniform (“clueless”) model which assumes that
the probability of all words are equal in any given situation. That is, if V is
the vocabulary size (i.e., size of the dictionary),

Pr[wi] = Pr[wi | w1 . . . wi−1] =
1
V

for any given w1, . . . , wi ∈ V. This model assigns
(

1
V

)T
to every sequence

of T words, including the corpus. Therefore, the perplexity of the model is((
1
V

)T
)− 1

T

= V

Now we try to understand perplexity at an intuitive level. (8.16) is
the geometric mean 12 of the following T values: 12 The geometric mean of T numbers

a1, a2, . . . , aT is defined as (∏i ai)
1/T

1
Pr[w1]

,
1

Pr[w2 | w1]
, . . . ,

1
Pr[wT | w1 . . . wT−1]

Now note that a probabilistic model splits the total probability of 1
to fractions and distributes them to the potential options for the next
word. So the inverse of an assigned probability for a word can be
thought roughly as the number of choices the model considered for the
next word. With this viewpoint, perplexity as written in (8.16) means:
how much has the model narrowed down the number of choices for the next
word on average? The clueless model had not narrowed down the
possibilities at all and had the worst-possible perplexity equal to the
number of vocabulary words.

Example 8.4.3. Consider a well-trained language model. At any given place
of text, it can identify a set of 20 words and assigns probability 1

20 to each of
them to be the next word. It happens that the next word is always one of
the 20 words that the model identifies. The perplexity of the model is((

1
20

)T
)− 1

T

= 20

Interestingly enough, the true perplexity of English is believed to
be between 15 and 20. That is, if at an “average” place in text, you
ask humans to predict the next word, then they are able to narrow
down the list of potential next words to around 15 to 20 words. 13 13 The perplexity of state of the art

language models is under 20 as well.
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8.4.3 Perplexity on Test Corpus

The perplexity of a language model is analogous to a loss of an ML
model. 14 Similar to ML models we have been studying so far, it is 14 It is customary to use the logarithm

of the perplexity, as we also did for
logistic loss in Chapter 4.

possible to define a train perplexity and a test perplexity. The “good-
ness” of the model will be defined by how low the perplexity was on
a previously unseen, held-out data.

For example, when n-gram models are trained on 38 million words
and tested on 1.5 million words from Wall Street Journal articles,
they show the following test perplexities in Table 8.5. 15 Note that 15 To be more exact, the models were

augmented with smoothing, which will
be introduced shortly.

the state-of-the-art deep learning models achieve a test perplexity of
around 20 on the same corpus.

Unigram Bigram Trigram
962 170 109

Table 8.5: Test perplexities of n-gram
models on WSJ corpus.

8.4.4 Perplexity With Start and Stop Tokens

When start and stop tokens are introduced to a corpus, we also need
to redefine how to calculate the perplexity of the model. Again, we
will only focus on a bigram model for the sake of exposition.

Say the corpus consists of t sentences:

⟨s⟩w1,1w1,2, . . . , w1,T1 ⟨/s⟩
⟨s⟩w2,1w2,2, . . . , w2,T2 ⟨/s⟩

...

⟨s⟩wt,1wt,2, . . . , wt,Tt ⟨/s⟩

The probability of the corpus w1,1w1,2 . . . wt,Tt is redefined as the
product of the probability of each of the sentences:

Pr[w1,1w1,2 . . . wt,Tt ] =
t

∏
i=1

Pr[wi,1wi,2 . . . wi,Ti ]

=
t

∏
i=1

Ti+1

∏
j=1

Pr[wi,j | wi,j−1] (8.17)

Now we apply the interpretation of the perplexity that it is the geo-
metric mean of probabilities of each word. Notice that we multiplied

t
∑

i=1
(Ti + 1) probabilities to calculate the probability of the corpus.

If we let T =
t

∑
i=1

Ti denote the total number of words (excluding

start and stop tokens) of the corpus, the number of probabilities we
multiplied can be written as T∗ = T + t. 16 16 This can also be thought as adding

the number of stop tokens to the
number of words in the corpus.
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Definition 8.4.4 (Perplexity with Start, Stop Tokens). The perplexity of a
bigram model with start, stop tokens can be redefined as

T∗

√√√√√√ 1
t

∏
i=1

Ti+1
∏
j=1

Pr[wi,j | wi,j−1]

(8.18)

8.4.5 Smoothing

One big problem with our naive definition of the perplexity of a
model is that it does not account for a zero denominator. That is,
if the model assigns probability exactly 0 to the corpus, then the
perplexity of the model will be ∞! 17 17 Mathematically, it is undefined, but

here assume that the result is a positive
infinity that is larger than any real
number.

Example 8.4.5. Suppose the phrase “green cream” never appeared in the
training corpus, but the test corpus contains the sentence “You like green
cream.” Then a bigram model will have a perplexity of ∞ because it assigns
probability 0 to the bigram “green cream.”

To address this issue, we generally apply smoothing techniques,
which never allow the model to output a zero probability. By reducing
the naive estimate of seen events and increasing the naive estimate
of unseen events, we can always assign nonzero probabilities to
previously unseen events.

The most commonly used smoothing technique is the 1-add
smoothing (a.k.a, Laplace smoothing). We describe how the smooth-
ing works for a bigram model. The main idea of the 1-add smoothing
can be summarized as “add 1 to all bigram counts in the bigram
frequency table.” Then the bigram probability as defined in Defini-
tion 8.2.1 can be redefined as

Pr[wj | wj−1] ≈
Count(wj−1wj) + 1

∑
w
(Count(wj−1w) + 1)

=
Count(wj−1wj) + 1

∑
w
(Count(wj−1w)) + V

(8.19)
where V is the size of the dictionary. If we had augmented the corpus
with the start and the stop tokens, the denominator in (8.19) is just
equal to Count(wj−1) + V∗ 18 and so the bigram probability can be 18 V∗ = V + 1 is the size of the dictionary

after adding the start and the stop
tokens. It is customary to add only
one to the vocabulary count. It may
help to look at the number of rows and
columns in the bigram frequency table
8.3.

written as

Pr[wj | wj−1] ≈
Count(wj−1wj) + 1
Count(wj−1) + V∗

(8.20)

Notice that the denominator is just V∗, the new vocabulary size,
added to the unigram count of wj−1.

Example 8.4.6. Recall the cowperson language with the start and stop
tokens from Example 8.3.2. Upon further research, it turns out the language
actually consists of three words: {Yee, Haw, Moo}, but the training corpus
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“Yee Haw Haw Yee Yee Yee Haw Yee” left out one of the vocabularies in
the dictionary. By applying add-1 smoothing to the bigram model, we can
recalculate the bigram frequency and the bigram probability table as in
Table 8.6 and Table 8.7

previous
next

“Yee” “Haw” “Moo” ⟨/s⟩ Total

⟨s⟩ 3 2 1 1 7
“Yee” 2 3 1 3 9

“Haw” 3 1 1 2 7
“Moo” 1 1 1 1 4

Table 8.6: Bigram frequency table of the
cowperson language with start and stop
tokens with smoothing.

previous
next

“Yee” “Haw” “Moo” ⟨/s⟩ Total

⟨s⟩ 3/7 2/7 1/7 1/7 1
“Yee” 2/9 3/9 1/9 3/9 1

“Haw” 3/7 1/7 1/7 2/7 1
“Moo” 1/4 1/4 1/4 1/4 1

Table 8.7: Bigram probability table of
the cowperson language with start and
stop tokens with smoothing.

The probability that we see the sentence "Moo Moo" in the cowperson
language, which would have been 0 before smoothing, is now assigned a
non-zero value:

Pr[”Moo” | ⟨s⟩]× Pr[”Moo” | ”Moo”]× Pr[⟨/s⟩ | ”Moo”]

=
1
7
× 1

4
× 1

4
≃ 0.01

Problem 8.4.7. Verify that (8.19) defines a proper probability distribution
over the conditioned event. That is, show that

∑
w

Pr[w | w′] = 1

for any w in the dictionary.

Another smoothing technique is called backoff smoothing. The
intuition is that n-gram probabilities are less likely to be zero if n is
smaller. So when we run into an n-gram probability that is zero, we
replace it with a linear combination of n-gram probabilities of lower
values of n.

Example 8.4.8. Recall Example 8.4.5. The bigram probability of “green
cream” can be approximated instead as

Pr[“cream′′ | “green′′] ≈ Pr[“cream′′]

Also, say we want to calculate the trigram probability of “like green cream,”
which is also zero in the naive trigram model. We can approximate it instead
as

Pr[“cream′′ | “like green′′] ≈ α Pr[“cream′′]+ (1− α)Pr[“cream′′ | “green′′]
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where α is a hyperparameter for the model.

There are other variants of the backoff smoothing, 19 with some 19 For instance, Good-Turing and
Kneser-Ney smoothing.theory for what the “best” choice is, but we will not cover it in these

notes.



9
Matrix Factorization and Recommender Systems

9.1 Recommender Systems

Cataloging and recommender systems have always been an essential
asset for consumers who find it difficult to choose from the vast scale
of available goods. As early as 1876, the Dewey decimal system was
invented to organize libraries. In 1892, Sears released their famed
catalog to keep subscribers up to date with the latest products and
trends, which amounted to 322 pages. Shopping assistants at depart-
ment stores or radio disc jockeys in the 1940s are also examples of
recommndations via human curation. In more contemporary times,
bestseller lists at bookstores, or Billboard Hits list aim to capture
what is popular among people. The modern recommender system
paradigm now focuses on recommending products based on what is
liked by people “similar” to you. In this long history of recommender
systems, the common theme is that people like to follow trends, and
recommender systems can help catalyze this process.

9.1.1 Movie Recommendation via Human Curation

Suppose we want to design a recommender system for movies. A
human curator identifies r binary attributes that they think are im-
portant for a movie (e.g., is a romance movie, is directed by Steven
Spielberg, etc.) Then they assign each movie an r-dimensional at-
tribute vector, where each element represents whether the movie has
the corresponding attribute (e.g., coordinate 2 will have value 1 if a
movie is a “thriller” and 0 otherwise).

Now, using a list of movies that a particular user likes, the curator
assigns an r-dimensional taste vector to a given user in a similar
manner (e.g., coordinate w will have value 1 if a user likes “thrillers”
and 0 otherwise). With these concepts in mind, we can start with
defining the affinity of a user for a particular movie:
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Definition 9.1.1 (User Affinity). Given a taste vector Ai = (ai,1, ai,2, . . . , ai,r)

for user i and the genre vector Bj = (b1,j, b2,j, . . . , br,j) for movie j, we de-
fine the affinity of user i for movie j as

Ai · Bj =
r

∑
k=1

ai,kbk,j (9.1)

Intuitively, this metric counts the number of attributes which are
1 in both vectors, or equivalently how many of the user’s boxes are
“checked off” by the movie. Mathematically, the affinity is defined as
a dot product, which can be extended to matrix multiplication. Thus
if we have a matrix A ∈ Rm×r where each of m rows is a taste vector
for a user and a matrix B ∈ Rr×n where each of n columns is a genre
vector for a movie, the (i, j) entry of the matrix product M = AB
represents the affinity score of user i for movie j.

We can also define an additional similarity metric:

Definition 9.1.2 (Similarity Metric). Given taste vector Ai for user i and
taste vector Aj for user j, we define the similarity of user i and user j as

r

∑
k=1

ai,kaj,k (9.2)

Similarly, the similarity of movie i and movie j is defined as

r

∑
k=1

bk,ibk,j (9.3)

Finally, in practice, each individual is unique and has a different
average level of affinity for movies (for example, some users like
everything while others are very critical). This means that directly
comparing the affinity of one user to another might not be helpful.
One way to circumvent this problem is to augment (9.1) in Defini-
tion 9.1.1 as

r

∑
k=1

ai,kbk,j + ai,0 (9.4)

with a bias term ai,0.
Based on the affinity scores or similarity scores, the human curator

will be able to recommend movies to users. This model design seems
like it does the job as a recommender system. In practice, developing
such models through human curation comes with a set of pros and
cons:

• Pros: Using human curation allows domain expertise to be lever-
aged and this intuition can be critical in the development of a
good model (i. e., which attribute is important). In addition, a
human curated model will naturally be interpretable.
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• Cons: The process is tedious and expensive; thus it is difficult to
scale. In addition, it can be difficult to account for niche demo-
graphics and genres and this becomes a problem for companies
with global reach.

We conclude that while human curated models can certainly be
useful, the associated effort is often too great.

9.2 Recommender Systems via Matrix Factorization

In this section, we provide another technique that can be used for
recommender systems — matrix factorization. This method started to
become popular since 2005.

9.2.1 Matrix Factorization

Matrix factorizations are a common theme throughout linear alge-
bra. Some common techniques include LU and QR decomposition,
Rank Factorization, Cholesky Decomposition, and Singular Value
Decomposition.

Definition 9.2.1 (Matrix Factorization). Suppose we have some matrix
M ∈ Rm×n. A matrix factorization is the process of finding matrices
A ∈ Rm×r, B ∈ Rr×n such that M = AB for some r < m, n.

Unfortunately, these techniques become less directly applicable
once we consider the case where most of the entries of M are missing
(i. e., a missing-data setting). As we saw in Section 9.1.1, this is very
common in real-world applications — for example, if the (m, n) entry
of M represents the rating of user m for movie n, most entries in M
are missing because not everyone has seen every movie. What can we
do in such a case?

In turns out, if we assume that M is a low-rank matrix (which is
true for many high-dimensional datasets, as noted in Chapter 7), then
we can consider an approximate factorization M ≈ AB on the known
entries. We express this as the following optimization problem:

Definition 9.2.2 (Approximate Matrix Factorization). Suppose we have
some matrix M ∈ Rm×n where Ω ⊂ [m]× [n] is the subset of (i, j) where
Mij is known. An approximate matrix factorization is the process of
finding matrices A ∈ Rm×r, B ∈ Rr×n for some r < m, n that minimize the
loss function:

L(A, B) =
1
|Ω| ∑

(i,j)∈Ω
(Mij − (AB)ij)

2 (9.5)

We denote the approximation as M ≈ AB.
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Notice this form is familiar: we are effectively trying to find op-
timal matrices A, B which will minimize the MSE between known
entries of M and corresponding entries in the matrix product AB!
One thing to note is that by calculating the matrix product AB, we
can “predict” entries of M that are unknown.

You can take the following result from linear algebra as granted.

Theorem 9.2.3. Given M ∈ Rm×n, we can find the matrix factorization
M = AB, with A ∈ Rm×r and B ∈ Rr×n if and only if M has rank at most
r. Also, we can find the approximate matrix factorization M ≈ AB, with
A ∈ Rm×r, B ∈ Rr×n if and only if M is “close to” rank r.

9.2.2 Matrix Factorization as Semantic Embeddings

Recall the setup in Section 9.1.1. But instead of calculating the affinity
matrix M as the product of the matrices A, B, we will approach
from the opposite direction. We will start with an affinity matrix
M ∈ Rm×n (which is only partially known) and find its approximate
matrix factorization M ≈ AB. We can understand that A ∈ Rm×r

represents a set of users and that B ∈ Rr×n represents a set of
movies.

Figure 9.1: Matrix factorization on
movie recommendations. Usually the
inner dimension r would be much
smaller than m, n.

Specifically, if we let Ai∗ denote the i-th row of A and B∗j denote
the j-th column of B, then Ai∗ can be understood as the taste vector
of user i and B∗j can be understood as the attribute vector of movie
j. One difference to note is that the output of a matrix factorization
is real-valued, unlike the the 0/1 valued matrices A, B from Sec-
tion 9.1.1. We can then use the vectors Ai∗ and B∗j to find similar
users or movies and make recommendations.

Example 9.2.4. Assume all columns of B have ℓ2 norm 1. That is,
∥∥B∗j

∥∥
2 =

1 for all j. When the inner product B∗j · B∗j′ of two movie vectors is actually
1, the two vectors are exactly the same! They have the same inner product
with every user vector Ai∗ — in other words these movies have the same
appeal to all users. Now suppose B∗j · B∗j′ is not quite 1 but close to 1, say
0.9. This means the movie vectors are quite close but not the same. Still,
their inner product with typical user vectors will not be too different. We
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conclude that two movies j, j′ with inner product B∗j · B∗j′ close to 1 tend
to get recommended together to users. One can similarly conclude that high
value of inner product between two user vectors is suggestive that the users
have similar tastes.

9.2.3 Netflix Prize Competition: A Case Study

During 2006-09, DVDs were all the rage. Companies like Netflix were
quite interested in recommending movies as accurately as possible
in order to retain clients. At the time, Netflix was using an algorithm
which had stagnated around RMSE = 0.95. 1 Seeking fresh ideas, 1 RMSE is shorthand for

√
MSE.

Netflix curated an anonymized database of 100M ratings (each rating
was on a 1− 5 scale) of 0.5M users for 18K movies. Adding a cash
incentive of $1, 000, 000, Netflix challenged the world to come up
with a model that could achieve a much lower RMSE! 2 It turned out 2 This was an influential competi-

tion, and is an inspiration for today’s
hackathons, Kaggle, etc.

that matrix factorization would be the key to achieving lower scores.
In this example, m = 0.5M, n = 18k, and Ω corresponds to the 100M
ratings out of m · n = 10B affinities. 3 3 Less than 1% of possible elements are

accounted for by Ω.After a lengthy competition, 4 the power of matrix factorization is
4 Amazingly, a group of Princeton
undergraduates managed to achieve the
second place!

on full display when we consider the final numbers:

• Netflix’s algorithm: RMSE = 0.95

• Plain matrix factorization: RMSE = 0.905

• Matrix factorization and bias: RMSE = 0.9

• Final winner (an ensemble of many methods) : RMSE = 0.856

Figure 9.2: 2D visualization of embed-
dings of film vectors. Note that you
see clusters of “artsy” films on top
right, and romantic films on the bottom.
Credit: Koren et al., Matrix Factorization
Techniques for Recommender Systems,
IEEE Computer 2009.
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9.2.4 Why Does Matrix Factorization Work?

In general, we need mn entries to completely describe a m× n matrix
M. However, if we find factor M into the product M = AB of m× r
matrix A and r× n matrix B, then we can describe M with essentially
only (m + n)r entries. When r is small enough such that (m + n)r ≪
mn, some entries of M (including the missing entries) are not truly
“required” to understand M.

Example 9.2.5. Consider the matrix

M =


1 1 ∗ 2
1 1 ∗ ∗
4 ∗ 8 ∗
4 ∗ ∗ ∗


Is it possible to fill in the missing elements such that the rank of M is 1?
Since r = 1, it means that all the rows/columns of M are the same up to
scaling. By observing the known entries, the second row should be equal to
the first row, and the third and the fourth row should be equal to the the first
row multiplied by 4. Therefore, we can fill in the missing entries as

M =


1 1 2 2
1 1 2 2
4 4 8 8
4 4 8 8


It is not hard to infer that M = AB where A = (1, 1, 4, 4)T and B =

(1, 1, 2, 2)

Example 9.2.6. Consider another matrix

M =


1 1 ∗ ∗
1 7 ∗ ∗
4 ∗ ∗ 2
∗ 4 ∗ ∗


Is it possible to fill in the missing elements such that the rank of M is 1?
This time, the answer is no. Following a similar logic from Example 9.2.5,
the second row should be equal to the first row multiplied by a constant.
This is not feasible since M2,1/M1,1 = 1 and M2,2/M1,2 = 7.

9.3 Implementation of Matrix Factorization

In this section, we look more deeply into implementing matrix fac-
torization in an ML setting. As suggested in Definition 9.2.2, we can
consider the process of approximating a matrix factorization to be an
optimization problem. Therefore, we can use gradient descent.
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9.3.1 Calculating the Gradient of Full Loss

Recall that for an approximate matrix factorization of a matrix M, we
want to find matrices A, B that minimize the following loss:

L(A, B) =
1
|Ω| ∑

(i,j)∈Ω
(Mij − (AB)ij)

2 (9.5 revisited)

Here (AB)ij = Ai∗ · B∗j. Now we find the gradient of the loss
L(A, B) by first finding the derivatives of L with respect to elements
of A (a total of mr derivatives), then finding the derivatives of L with
respect to elements of B (a total of nr derivatives).

First, consider an arbitrary element Ai′k′ :

∂

∂Ai′k′
L(A, B) =

1
|Ω| ∑

(i,j)∈Ω
2(Mij − (AB)ij)

∂

∂Ai′k′
(−(AB)ij)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
2(Mi′ j − (AB)i′ j)

∂

∂Ai′k′
(−(AB)i′ j)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
2(Mi′ j − (AB)i′ j) · (−Bk′ j)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
−2Bk′ j(Mi′ j − (AB)i′ j) (9.6)

Note that the second step is derived because (AB)ij = ∑k AikBkj and

if i ̸= i′, then
∂(AB)ij
∂Ai′k′

= 0. Enumerating (i, j) ∈ Ω can be changed to
only enumerating (i′, j) ∈ Ω. Similarly, we can consider an arbitrary
element Bk′ j′ :

∂

∂Bk′ j′
L(A, B) =

1
|Ω| ∑

(i,j)∈Ω
2(Mij − (AB)ij)

∂

∂Bk′ j′
(−(AB)ij)

=
1
|Ω| ∑

i: (i,j′)∈Ω
2(Mij′ − (AB)ij′)

∂

∂Bk′ j′
(−(AB)ij′)

=
1
|Ω| ∑

i: (i,j′)∈Ω
2(Mij′ − (AB)ij′) · (−Aik′)

=
1
|Ω| ∑

i: (i,j′)∈Ω
−2Aik′(Mij′ − (AB)ij′) (9.7)

Whew! That’s a lot of derivatives, but we now have ∇L(A, B) at our
disposal.

9.3.2 Stochastic Gradient Descent for Matrix Factorization

Of course, we could use ∇L(A, B) for a plain gradient descent as
shown in Chapter 3. However, given that each derivative in the
gradient involves a sum over a large number of indices, it would be
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worthwhile to use stochastic gradient descent in order to estimate the
overall gradient via a small random sample (as shown in Section 3.2).

If we take a sample S ⊂ Ω of the known entries at each iteration,
the loss becomes

L̂(A, B) =
1
|S| ∑

i,j∈S
(Mij − (AB)ij)

2 (9.8)

and the gradient becomes

∂

∂Ai′k′
L̂(A, B) =

1
|S| ∑

j: (i′ ,j)∈S
−2Bk′ j(Mi′ j − (AB)i′ j) (9.9)

∂

∂Bk′ j′
L̂(A, B) =

1
|S| ∑

i: (i,j′)∈S
−2Aik′(Mij′ − (AB)ij′) (9.10)

However, if we take a uniform sample S of Ω, the computation will
not become much cheaper, since (i, j) ∈ S can spread into many
different rows and columns. One clever (and common) way to do
so is to select a set of columns C by sampling k out of the overall n
columns. This method is called column sampling. We then only need
to consider entries (i, j) ∈ Ω where j ∈ C and compute gradients only
for the entries Bk,j where j ∈ C. We can also perform row sampling
in a very similar manner. In practice, whether we should use column
sampling or row sampling, or gradient descent of full loss, depends
on the actual sizes of m and n.


