
Part I

Supervised Learning

1
Linear Regression: An Introduction

This chapter introduces least squares linear regression, one of the sim-
plest and and most popular model in data science. Several of you
may have seen it in high school. In particular, we focus on under-
standing linear regression in the context of machine learning. Using
linear regression as an example, we will introduce the terminologies
and ideas (some of them were mentioned in the Preface) that are
widely applicable to more complicated models in ML.

1.1 A Warm-up Example

Figure 1.1: A dataset of heights
and weights of some male adults.
The figure on the right shows
the least squares regression line
that fits the data. Data from
https://gist.github.com/nstokoe/

7d4717e96c21b8ad04ec91f361b000cb

Suppose we have a dataset of heights and weights of some male
individuals randomly chosen from the population. We wish to
determine a relationship between heights and weights. The simplest
relationship would be a linear relationship; namely:

w = a0 + a1h (1.1)

where w is the weight, h is the height, and a0, a1 are constant coef-
ficients. We can think of this as a predictor that maps height h to a
predicted weight a0 + a1h, and we want this value to be similar to
the actual weight w. Obviously, a linear relationship won’t describe
the data exactly but we hope it is a reasonable fit to data. 1 In a ML 1 Similar linear models are used in

many disciplines. For instance, the
famous Philips model in economics
suggests a linear relationship between
inflation rate and unemployment rate,
at least when inflation rate is high.

setting, this relationship between h and w is called a model — a linear
model to be more specific.

https://gist.github.com/nstokoe/7d4717e96c21b8ad04ec91f361b000cb
https://gist.github.com/nstokoe/7d4717e96c21b8ad04ec91f361b000cb

16 introduction to machine learning lecture notes for cos 324 at princeton university

Based on the values of a0 and a1, there are infinitely many dif-
ferent choices of this linear model. Therefore, it is natural that we
want to find the values of a0, a1 that yield the “best” model. In a ML
setting, finding these optimal values of a0, a1 is known as fitting the
model. One can posit different criteria for defining “goodness” of the
model.

Here we use classic least squares fit, invented by Gauss. Given a
dataset {(h1, w1), (h2, w2), . . . , (hn, wn)} of n pairs of heights and
weights, the “goodness” of the model in (1.1) is

1
n

n

∑
i=1

(wi − a0 − a1hi)
2 (1.2)

Notice that wi − a0 − a1hi is the difference between the actual weight
wi and the predicted weight a0 + a1hi. This difference is called the
residual for the data point (hi, wi), and the full term in (1.2) is called
the average squared residuals, or equivalently the mean squared error
(MSE), of the dataset. The smaller the MSE, the closer the model’s
predictions are to actual weights, and the more accurate the model
is. Therefore, the “best” model according to the least squares method
would be the one defined by the values of a0, a1 that minimize (1.2).
In a ML setting, a mathematical expression like (1.2) that captures the
“goodness” of the model is called a loss function. In general, we find
the “best” model by minimizing the loss function.

Example 1.1.1. If the data points (h, w) are given as {(65, 130), (58, 120),
(73, 160)}, the least squares fit will find the values of a0, a1 that minimize

1
3
((130− a0 − 65a1)

2 + (120− a0 − 58a1)
2 + (160− a0 − 73a1)

2)

which are a0 = − 510
13 , a1 = 35

13 .

Problem 1.1.2. Between the two lines in Figure 1.2, which is more preferred
by the least squares regression method?

Figure 1.2: Two lines that describe the
relationship of the same dataset.

Problem 1.1.3. Using calculus, give an exact expression for a0, a1 that
minimize (1.2). (Hint: (1.2) is quadratic in both a0 and a1. Fix the value of

linear regression: an introduction 17

a1 and minimize for a0. Then minimize for a1. Completing the square may
be useful.) 2 2 A more general calculus based ap-

proach will be introduced in a later
chapter.

1.1.1 Multivariate Linear Regression

One can generalize the above example to multi-variable settings. In
general, we have k predictor variables and one effect variable. 3 The 3 In the above example k = 1. The

predictor variable was height and effect
variable was weight.

data points consist of k + 1 coordinates, where the last coordinate is
the value y of the effect variable and the first k coordinates contain
values of the predictor variables x1, x2, . . . , xk. Then the relationship
we are trying to fit has the form

y = a0 + a1x1 + a2x2 + · · ·+ akxk (1.3)

and the least squares fit method will find the values of a0, a1, · · · , ak

that minimize

1
n

n

∑
i=1

(yi − a0 − a1xi
1 − a2xi

2 − · · · − akxi
k)

2 (1.4)

where (xi
1, xi

2, . . . xi
k, yi) is the i-th data point.

We can simplify the notation by rewriting everything above in
a vectorized notation. If we set x⃗ = (1, x1, x2, · · · , xk)

4 and a⃗ = 4 The 1 in the first coordinate is a
dummy variable to naturally include
the constant term into the vectorized
notation.

(a0, a1, · · · , ak), then the relationship we are trying to fit has the form

y = a⃗ · x⃗ (1.5)

and the least squares fit method will find a⃗ ∈ Rk+1 that minimize

1
n

n

∑
i=1

(yi − a⃗ · x⃗i)2 (1.6)

where (⃗xi, yi) is the i-th data point. We discuss how to find the best
values of a0, a1, . . . , ak later in Chapter 3; for now just assume that the
solution can be found.

1.1.2 Testing a model (Held-out Data)

A crucial step in machine learning is to test the trained/fitted model
on newly seen data, or held-out data, that was not used during training.
If we were to test the model in the above example, we would hold
out a portion of the data points (say 20%) — i. e., not use them during
training — and check the average squared residual of the model on
the held-out data points.

We can think of the average squared residual of the held-out data
as an estimate of the average squared residual of the fitted model on
the entire population of male adults. 5 The reason is that if the train- 5 If later in life you ever write up the

results of a regression study, be sure
to report the RMSE error, which is
the square root of the average square
residual on held-out data. Also report
the R2 value, which is closely related.

ing data points were a random sample of the adult male population,

18 introduction to machine learning lecture notes for cos 324 at princeton university

then so is the set of held-out data points. This is quite analogous to
opinion polls, where the opinions of a few thousand randomly sam-
pled individuals can be a reasonable estimate for the average opinion
across the US. The math for such sampling estimates is covered in
Chapter 18.

1.1.3 More about Linear Regression

In the above example, we used the least squares method, which uses
the average squared residual to assess the model. The least squares
fit is very common but other notions of fit may also be used. For
instance, instead of taking the sum of squares of residuals, one could
consider the sum of absolute values, or expressions using logarithms,
etc. We see some of these examples in Chapter 4.

It is important to note that the relationship learnt via regression —
and machine learning in general — is (a) approximate and (b) only
holds for the population that the data was drawn from. Therefore,
we cannot use the relationship to predict the output of a data that is
not from the same distribution. Additionally, if the distribution of
the data is shifted, the relationship no longer holds. We will discuss
more about this in depth in Chapter 2.

1.2 Using Linear Regression for Sentiment Prediction

1.2.1 Introduction

While you might have seen linear regression as early as in high
school, you probably did not see this cool application. In sentiment
classification, we are given a piece of text and have to label it with +1
if it expresses positive sentiment and −1 otherwise.

Example 1.2.1. Consider the following dataset, collected by showing snippets
of text to humans and asking them to label them as positive (+1) or negative
(−1)

The film’s performances are thrilling. +1
It’s not a great monster movie. −1

It is definitely worth seeing. +1
Unflinchingly bleak and desperate. −1

Table 1.1: Data from Stanford Sentiment
Treebank (SST). https://nlp.stanford.
edu/sentiment/treebank.html

How can we train a model to label text snippets with the correct
sentiment value, given a dataset of training examples? Here is an
idea to try to solve it using a linear regression model. We first enu-
merate all English words and assign a real-valued score to each word,
where the score for the i-th word is denoted by wi. These scores will

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html

linear regression: an introduction 19

be the parameters of the model. The output of the model, given a
training example, is defined as ∑j∈S wj where S is the multiset of
words in the text. 6 Then the least squares method needs to solve 6 Unlike in a set, an element can appear

multiple times in a multiset. For
example, if the word good appears twice
in a text, then S contains two copies of
good.

the following optimization problem for a dataset of (text, sentiment)
pairs

minimize ∑
i

yi − ∑
j∈Si

wj

2

(1.7)

where Si is the multiset of words in the i-th piece of text. Each of the

values

(
yi − ∑

j∈Si
wj

)2

is called a least squares error or more generally

the loss for that particular training example. The full summation is
called a training loss of the dataset.

Example 1.2.2. Assume we are training a sentiment prediction model on
a dataset. Table 1.1 shows some of the model parameter values. Then the
output of the model on the sentence “I like this movie” from the training
data will be 0.15 + 0.55 + 0.03− 0.07 = 0.66. The output for “I dislike this
movie” from the training data will be 0.15− 0.74 + 0.03− 0.07 = −0.63

i word wi

1 I 0.15
2 like 0.55
3 dislike −0.74
4 this 0.03
5 movie −0.07
6 a 0

Table 1.2: Some of the parameter values
of a sentiment prediction model.

We can also cast this in the standard formulation of linear regres-
sion as follows. The bag of words (BoW) representation of a piece of
text is a vector in RN where N is the number of dictionary words.
The i-th coordinate is the number of times the i-th word appears in
the piece of text. This represents the text as a very long vector, one
coordinate per one English word in the dictionary. The vector usually
contains a lot of zeros, since most words probably do not appear in
this piece of text. If we denote the BoW vector as x⃗, the output of the
model is seen to be

∑
j∈S

wj = ∑
i

wixi

which shows that the linear model we have proposed for sentiment
prediction is just a subcase of linear regression (see (1.5)).

Example 1.2.3. Consider the same model in Example 1.2.2. The BoW repre-
sentation for the sentence “I like this movie” is (1, 1, 0, 1, 1, 0 · · ·). The BoW
representation for the sentence “I dislike this movie” is (1, 0, 1, 1, 1, 0 · · ·).

20 introduction to machine learning lecture notes for cos 324 at princeton university

1.2.2 Testing the Model

Here we use the model from Example 1.2.2 to illustrate the training
and testing process of a model. Assume that the following four
sentences were a part of the training dataset.

I like this movie. +1
I dislike this movie. −1

I like this. +1
I dislike this. −1

Table 1.3: A portion of the training data
for a sentiment prediction model.

Assuming that the model parameters are the same as reported in
Table 1.2, we can calculate the training loss of the sentence “I like this
movie” as (+1− 0.66)2 ≃ 0.12. Similarly, the squared residual for each
of the four training sentences in Table 1.3 can be calculated as

I like this movie. 0.12
I dislike this movie. 0.14

I like this. 0.07
I dislike this. 0.19

Table 1.4: The squared residual for four
training examples.

Now it is time to test the model. Assume that the sentence “I like
a movie” is provided to the model as a test data. The test loss can be
calculated in a way similar to the training loss as (+1− 0.63)2 ≃ 0.14.
But to actually test if the model produces the correct sentiment label
for this newly seen data, we now wish the model to output either +1
or −1, the only two labels that exist in the population. An easy fix
is to change the output of the model at test time to be sign(∑j∈S wj).
For this test data, the model will output sign(0.63) = +1.

On the Stanford Standard Treebank, this approach of training a
least squares model yields a success rate of 78% 7. By contrast, the 7 To be more exact, this result is from

a model called ridge regression model,
which is linear regression model
augmented by an ℓ2 regularizer, which
will be explained in Chapter 3

state-of-the-art deep learning methods yield success rate exceeding
96%!

One thing to note is that while the training loss is calculated and
explicitly used in the training process, the test loss is only a statistics
that is generated after the training is over. It is a metric to assess if
the model fitted on the training data also performs well for a more
general data.

1.2.3 Test Loss, Generalization, and Test accuracy

As mentioned already, the goal of training a model is that it should
make good predictions on new, previously-unseen data. Most models
will exhibit a low training loss, but not all of them show a low test
loss. This observation motivates the following definition:

Generalization Error = |training loss− test loss|

linear regression: an introduction 21

A trained model is said to generalize well if the generalization error
is small. In our case, the loss is the average squared residual. Thus
good generalization means that the average squared residual on test
data points is similar to that on the training data.

Let us see what happens on our sentiment model when it is fitted
and tested on the SST dataset.

Train MSE 0.0727
Test MSE 0.7523

Training accuracy 99.55%
Test accuracy 78.09%

Table 1.5: Accuracy refers to the classi-
fication accuracy when we make the
model to output only ±1 labels.

Example 1.2.4. The generalization error above is the difference between
MSE on test points and the MSE on training points, namely 0.75− 0.07 =

0.68.

Let’s try to understand the relationship between low test loss (the
squared residual) and high test accuracy (for what fraction of test
data points the sentiment was correct). Heuristically, the test loss
(average squared residual) being 0.75 means that the the absolute
value of the residual on a typical point is

√
0.75 ≈ 0.87. This means

that for a data point with an actual positive sentiment (i. e., label +1),
the output of the model is roughly expected to lie in the interval
[1 − 0.87, 1 + 0.87], and similarly, for a data point with an actual
negative sentiment (i. e., label −1), the output of the model is roughly
expected to lie in the interval [−1− 0.87,−1 + 0.87]. Once we take
the sign sign(∑j∈S wj) of the output of the model, the output is thus
likely to be rounded off to the correct label. We also note that the
training accuracy is almost 100%. This usually happens in settings
where the number of parameters (i. e., number of predictor variables)
exceeds the number of training data points (or is close to it). The
following problem explores this.

Problem 1.2.5. An expert on TV claims to have a formula to predict outcome
of presidential election. It uses 31 measurements of various economic and so-
cietal quantities (inflation, divorce rate, etc). The formula correctly predicts
the winner of all elections 1928-2020. Should you believe the formula’s pre-
diction for the 2024 election? (Hint: Under fairly general conditions, T + 1
completely nonsense variables — i.e., having nothing to do with presidential
politics — can be used to perfectly fit (via linear regression) the outcomes for
T past presidential elections. 8) 8 If a model does not generalize well,

then it is said to overfit the training
data.

1.2.4 Interpreting the Model

In many settings (e.g., medicine), an important purpose of regres-
sion modeling is to understand the data or the phenomenon a bit

22 introduction to machine learning lecture notes for cos 324 at princeton university

better. In this case, the phenomenon is “sentiment” and we are natu-
rally curious about what positive or negative sentiment amounts to.
Specifically, what caused the model’s output to be +1 or −1 given a
specific sentence?

Figure 1.3 shows a histogram of the values of wi, the parameters
of a sentiment prediction model that was trained on the Stanford
Sentiment Treebank. Positive values of wi imply that the words
carry a positive sentiment, while negative values of wi imply that the
words carry a negative sentiment. Also, the greater the absolute value
of wi is, the stronger the sentiment. Notice that most words have a
value of wi close to zero, meaning the model views most words as
neutral. The model “pays attention” to only a tiny set of words.

Words with high positive wi values (i. e., positive words) include
enjoyable, fun, and remarkable. Words with high negative values (i. e.,
negative words) include suffers, dull, and worst. Words with wi values
close to 0 (i. e., neutral words) include duty and desire.

Figure 1.3: A histogram of the learned
parameters wi of a sentiment predic-
tion model trained on the Stanford
Sentiment Treebank.

1.3 Importance of Featurization

In the sentiment model, we chose a particular method to represent
a piece of text with a vector. The coordinates of this vector are often
referred to as features and this process of converting data into vectors
is called featurization. One can conceive of other choices for featuriz-
ing text. For example, bigram featurization consists of the following:
the coordinates of the vector correspond to pairs of words and the
coordinate contains the number of times this pair of words appeared
consecutively in the piece of text. In contrast, the choice of featuriza-
tion from the earlier example matches each coordinate with a single
word, and is called a unigram featuraization.

linear regression: an introduction 23

Bigram features allow the model to access information about
phrases that were present in the text. For instance, in isolation
“pretty” is a positive word and “bad” is a negative word. If they
both occur in text one would imagine that they cancel each other out
as far as overall sentiment is concerned. But the phrase “pretty bad”
is more negative than “bad.” Thus bigram features can improve the
model’s ability to capture sentiment.

The required number of dimension for bigram representations can
get rather large. If the number of words is N, then the number of
coordinates is N(N − 1). Realize that the number of model parameters
in linear regression is the same as the number of coordinates. Thus if
N is 30, 000 then the number of coordinates in bigram feature vector
(and hence number of model parameters) is close to a billion, which
a rather large number. In practice one might throw away information
for all pairs except say the 10, 000 most common ones in the dataset.
Usually models that incorporate bigram features do better than
unigram-only models.

If one is trying to do studies of medical treatment with regression,
there can be many potential featurizations of patient data. Doctors’
annotations, test results, x-ray scans, etc. all have to be converted
somehow into real-valued features, and the experimenter uses their
prior knowledge and intuitions while featurizing the data.

Example 1.3.1. Patients’ raw data might include height and weight.
If we use linear regression, the effect variable can only depend upon a
linear combination of height and weight. But it is known that several
health outcomes are better modeled using Body Mass Index, defined as
weight/height2. Thus the experimenter may include a separate coordinate
for BMI, even though it duplicates information already present in the other
coordinates.

Example 1.3.2. In the above dataset, the weight in pounds may span a range
of [90, 350], whereas cholesterol ratio may span a range of [1, 10]. It is often
a good idea to normalize the coordinate, which means to replace x with
(x− µ)/σ where µ is the mean of the coordinate values in the dataset and σ

is the standard deviation.

Thus the same raw dataset can have multiple featurizations, with
different number of coordinates. Problem 1.2.5 may make us wary
of using featurizations with too many coordinates. We will learn a
technique called regularization in Chapter 3, which helps mitigate the
issue identified in Problem 1.2.5.

24 introduction to machine learning lecture notes for cos 324 at princeton university

1.4 Linear Regression in Programming

In this section, we briefly discuss how to write the Python code to
perform linear regression (e.g., sentiment prediction). Python is often
the language of choice for many machine learning applications due
to its relative ease of use and the large variety of external packages
available to automate the process. Here, we introduce a few of these
packages:

• numpy: This package is ubiquitous throughout the machine learn-
ing community. It provides access to specialized array data struc-
tures which are implemented in highly optimized C code. Linear
algebra computations and array restructuring operations are sig-
nificantly faster with numpy compared to using Python directly.
9 9 Documentation is available at https:

//numpy.org/

• matplotlib: This package enables Python programmers to create
high quality plots and graphs. Visualizations are highly config-
urable and interoperable with several other Python packages.
10 10 Documentation is available at https:

//matplotlib.org/

• sklearn: This package provides a potpourri of machine learning
and data science models through an easy to use object-oriented
API. In addition to linear regression, sklearn makes it possible to
implement SVMs, clustering, neural networks, and much more;
you will learn about a some of these models later in the course. 11 11 Documentation is available at https:

//scikit-learn.org/stable/index.

htmlThroughout this course, you will be asked to make use of func-
tions defined in some of these external packages. You may not always
be familiar with the usage of these functions. It is important to check
the official documentation to learn about the usage and the signature
of the functions.

The code snippet below uses these the three aforementioned
packages to perform linear regression on any given dataset.

import necessary packages

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error as mse

import matplotlib.pyplot as plt

prepare train, test data

X = ...

y = ...

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

perform linear regression on train data

linreg = LinearRegression().fit(X_train, y_train)

pred_train = linreg.predict(X_train)

pred_test = np.sign(linreg.predict(X_test))

https://numpy.org/
https://numpy.org/
https://matplotlib.org/
https://matplotlib.org/
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html

linear regression: an introduction 25

print train results

print(’Train MSE: ’, ’{0:.4f}’.format(mse(y_train, pred_train)))

print(’Test MSE: ’, ’{0:.4f}’.format(mse(y_test, pred_test)))

print(’Train Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_train)==y_train).

mean()))

print(’Test Acc: ’, ’{0:.2f}’.format(100*(pred_test==y_test).mean()))

plot gold vs predicted value

plt.scatter(y_test, pred_test, c="red")

plt.xlabel("actual y value (y)")

plt.ylabel("predicted y value (y hat)")

plt.title("y vs y hat")

For readers who are not familiar with Python, we discuss some
key details. In the first section of the code, we import the relevant
packages

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error as mse

import matplotlib.pyplot as plt

As seen in this example, there are two ways to load a package. The
first option is to import the full package with the import keyword

import numpy as np

Notice that the we can assign the imported package a customized
name with the as keyword. In this case, we decided refer to the
package numpy with the name np throughout the rest of the code.
This is indeed the case when we call

np.sign()

Here we refer to the method sign() of the numpy package with the
customized name np. Alternatively, we can selectively import particu-
lar methods or classes with the from keyword

from sklearn.model_selection import train_test_split

The next part of the code is preparing the train, test data.

X = ...

y = ...

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

X will have to be an array of arrays, and y will have to be an array
of values, with the same length as X. These arrays can be defined di-
rectly by specifying each of their entries, or they could be read from
some external data (most commonly a csv file). Here, we present an
example dataset where x⃗ ∈ R2:

X = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]

y = [1, 1, 1, -1, -1]

26 introduction to machine learning lecture notes for cos 324 at princeton university

Then we call the train_test_split() method to split the dataset into
data for model training and testing. Alternatively, we can split the
dataset by manually slicing the data arrays. 12 In general, slicing 12 In Python, the term slicing refers to

the process of creating a subarray of an
array.

a Python array involves the : operator along with start and end
indices. For instance, consider an arbitrary array a. Then, the output
of a[i:j] will be a subarray of a from the index i (inclusive) to the
index j (exclusive). In the following code sample, we slice the data by
specifying the number of training data points

train_size = ...

X_train = X[:train_size]

X_test = X[train_size:]

y_train = y[:train_size]

y_test = y[train_size:]

Note that we have omitted some of the bounding indices. If the start
index is omitted, Python assumes it to be 0 (so that the subarray is
from the start of the array); for example, X[:train_size] is the first
train_size entries of X. If the end index is omitted, Python assumes it
to be n, the length of the array (so that the subarray ends at the end
of the array); for instance, X[train_size:] is the remaining entries of X,
once we remove the first train_size entries. Another way to slice the
arrays is by specifying the number of test data points

test_size = ...

X_train = X[:-test_size]

X_test = X[-test_size:]

y_train = y[:-test_size]

y_test = y[-test_size:]

Here, notice that the index -test_size is a negative number. In this case,
Python interprets this as n - test_size, where n is the size of the array.
In other words, it is the index of the test_size-th element from the
back of the array.

The third part of the code is fitting the linear regression model.

linreg = LinearRegression().fit(X_train, y_train)

pred_train = linreg.predict(X_train)

pred_test = np.sign(linreg.predict(X_test))

The first line will generate the least squares fit model based on the
train data. Then we can have the model make predictions on the
train, test data. Notice that we changed the output of the model to be
the sign of the predicted values, so that we can compare them with
the gold values.

Next, we print out the mean squared loss and the accuracy for the
train, test data.

print(’Train MSE: ’, ’{0:.4f}’.format(mse(y_train, pred_train)))

print(’Test MSE: ’, ’{0:.4f}’.format(mse(y_test, pred_test)))

print(’Train Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_train)==y_train).

mean()))

linear regression: an introduction 27

print(’Test Acc: ’, ’{0:.2f}’.format(100*(pred_test==y_test).mean()))

Notice that we use the mse() method that we imported from the
sklearn package. In many cases, there are packages that perform these
elementary operations for machine learning.

Finally, we plot the actual and predicted values using the matplotlib
package.

plt.scatter(y_test, pred_test, c="red")

plt.xlabel("actual y value (y)")

plt.ylabel("predicted y value (y hat)")

plt.title("y vs y hat")

The first line draws a scatter plot with the y_test in the x-axis and
pred_test in the y-axis. Notice that you can specify the color of the
data points by specifying the value of the parameter c. In general,
parameters are optional values you can provide to Python functions.
If the values to parameters are omitted, the function will use their
default values. The second and third lines specify the labels that will
be written next to the axes. The final line specifies the title of the
plot.

2
Statistical Learning: What It Means to Learn

Students often get confused about the meaning and significance of
a relationship learnt via fitting a model to data. Some of them think
such relationships are analogous to, say, a law of nature like F = ma,
which applies every time force is applied to a mass anywhere in the
universe. The main goal of this chapter is to explain the statistical
nature of machine learning — models are fitted on a particular dis-
tribution of data points, and its predictions are valid only for data
points from the same distribution. (See Chapter 18.)

2.1 A Warm-up Example

We work through a concrete example 1 before enunciating the gen- 1 This example is purely hypothetical,
and all numbers in this section are
made up.

eral properties of statistical learning. Suppose we are studying the
relationship between the following quantities for the population of
Princeton: height (H), number of exercise hours per week (E), amount of
calories consumed per week (C), and weight (W). After collecting infor-
mation from 200 randomly sampled residents, and using a 80 : 20
train/test split, we perform a linear regression on the training dataset
to come up with the following relationship:

W = 50 + H + 0.1C− 4E (2.1)

Let’s also say that the average squared residual on train and test
data were both 100. This means that the relationship (2.1) holds with
an error of 10 lbs on a typical test data point. 2 2 Also, the trained model exhibits perfect

generalization: test loss is the same as
training loss!Question 2.1.1. Alice was one of the Princeton residents in the study, but

the prediction of the model is very off of her actual value (squared residual is
300). Does this prove the model wrong?

The answer is no. The least squares linear regression finds the
model that minimizes the average squared residual across all training
data points. The residual could be large for a particular individual.

30 introduction to machine learning lecture notes for cos 324 at princeton university

Question 2.1.2. There was a follow-up research for every Princeton resident
who is taller than 7 feet. All of them reported squared residual of 500. Does
this prove the model wrong?

The answer is still no. People who are taller than 7 feet make up a
tiny fraction of the entire population. Their residuals have very small
effect on the average squared residual. The residual could be large for
a small subset of the population.

Question 2.1.3. There was a follow-up survey that tested the model on every
single Princeton resident. Is it possible that the average squared residue is
200 for the entire population?

The answer is yes, although it is unlikely. Consider the distribu-
tion of 4-tuples (H, E, C, W) over the entire Princeton population.
This is some distribution over a finite set of 4-dimensional vectors.
3 The 200 residents we surveyed were randomly drawn from this 3 31, 000 vectors to be more exact. The

population of Princeton is 31, 000.distribution. Out of these 200 data points, 40 were randomly chosen
to be held-out as test data, while the remaining 160 were used as
training data. We can also say that these 40 data points were cho-
sen at random from the distribution over the entire population of
Princeton. Thus when we test the model in (2.1) on held-out data,
we’re testing this relationship over a random sample of 40 data points
drawn from the population. 40 is a large enough number to give us
some confidence that the average squared residual of the test data is
a good estimate of the squared residual in the population, but just
as polling errors happen during elections, there is some chance that
this estimate is off. In this case, we would say that the 40 test samples
were unrepresentative of the full population.

It is important to remember that the training and test data are
sampled from the same distribution as the population. Therefore,
the average squared residual of the training and test data are only a
good estimate of the squared residual of the distribution they were
sampled from. This also means that the relationship found from
the training data only holds (with small residue) for that particular
distribution. If the population is different, or if the distribution shifts
within the same population, the relationship is not guaranteed to
hold. For example, the relationship in (2.1) is not expected to hold for
people from Timbuktu, Mali (a different population), or for residents
of Princeton who are taller than 7 feet (a tiny subpopulation that
is likely unrepresentative of the population). Now consider the
following situation:

Question 2.1.4. It becomes fashionable in Princeton to try to gain weight.
Based on the relationship in (2.1), everyone decides to increase their value
of C and reduce their value of E. Does the model predict that many of them
will gain weight?

statistical learning: what it means to learn 31

The answer is no. The model was fitted to and tested on the distri-
bution obtained before everyone tried to gain weight. It has not been
fitted on the distribution of data points from people who changed
their values of C and E. In particular, note that if everyone reduces
their E and increases their C, then the distribution has definitely
changed — the average value of the E coordinate in this distribution
has decreased, whereas the average value of the C coordinate has
increased.

In general, a relationship learned from a fitted model illustrates
correlation and need not imply causation. The values of H, C, E in (2.1)
do not cause W to take a specific value. The equation only shows that
the values are connected via this linear relationship on average (with
some bounded square residuals).

2.2 Summary of Statistical Learning

The above discussion leads us to summarize properties of Statisti-
cal Learning. Note that these apply to most methods of machine
learning, not just linear regression.

Training/test data points are sampled from some distribution D: In the
above example, 200 residents were randomly sampled from the
entire population of Princeton residents.

The learnt relationship holds only for the distribution D that the data was sampled from.
The performance of the model on test data is an estimate of the
performance of the model on the full distribution D.

There is a small probability that the estimate using test data is off. This is
analogous to polling errors in opinion polls. The computation of
“confidence bounds” is discussed in Chapter 18.

2.3 Implications for Applications of Machine Learning

The above framework and its limitations have real-life implications.

1. Results of medical studies may not apply to minority populations. This
can happen if the minority population is genetically distinct and
constitutes only a small fraction of the population. Then test
error could be large on the minority population even if it is small
on average. In fact, there have been classic studies about heart
disease in the 1960s whose conclusions and recommendations
fail to apply well to even a group that is half of the population:
females! In those days heart disease was thought to largely strike
males (which subsequently turned out to be quite false) and so

32 introduction to machine learning lecture notes for cos 324 at princeton university

the studies were done primarily on males. It turns out that heart
diseases in female patients behave differently. Many practices
that came out of those studies turned out to be harmful to female
patients. 4 4 See https://www.theatlantic.

com/health/archive/2015/10/

heart-disease-women/412495/.2. Classifiers released by tech companies in the recent past were found to
have high error rates on certain minority populations. It was quickly
recognized that relying on test error alone can lead to adverse
outcomes on subpopulations. 5 5 See https://time.com/5520558/

artificial-intelligence-racial-gender-bias/.
3. Creating interactive agents is difficult. In an interactive setting (e.

g., an online game), a decision-making program is often called
an agent. When an agent has to enter an extended number of
interactions 6 with a human (or another agent designed by a 6 Later in the book we encounter

Reinforcement Learning, which deals
with such settings.

different group of researchers, as happens in Robocup soccer
7), then statistical learning requires that the agent to have been

7 See https://www.robocup.org/.
exposed to similar situations/interactions during training (i. e.,
from a fixed distribution). It is quite unclear if this is true.

https://www.theatlantic.com/health/archive/2015/10/heart-disease-women/412495/
https://www.theatlantic.com/health/archive/2015/10/heart-disease-women/412495/
https://www.theatlantic.com/health/archive/2015/10/heart-disease-women/412495/
https://time.com/5520558/artificial-intelligence-racial-gender-bias/
https://time.com/5520558/artificial-intelligence-racial-gender-bias/
https://www.robocup.org/

3
Optimization via Gradient Descent

This chapter discusses how to train model parameters through op-
timization techniques that help find the best (or fairly good) model
that has low training loss. We assume that you have seen simple
root-finding techniques in high school or in calculus. Optimization
in machine learning often uses a procedure called gradient descent.
This chapter assumes your knowledge of basis multivariable calcu-
lus. If you have not taken a course in multivariable calculus, read
Chapter 19 to familiarize yourself with the basic definitions.

3.1 Gradient Descent

In general, a ML model has an associated loss function. The “best”
model is the one that minimizes the training loss. In most cases, it is
impossible or difficult to find the minimum analytically; instead, we
use a numerical method called the gradient descent algorithm to find
the (approximate) optimum.

3.1.1 Univariate Example

Let’s start with an univariate example to motivate the topic. Let
f (w) = 4w2 − 6w− 9 be a quadratic function. Figure 3.1 shows the
graph of this function.

Figure 3.1: The graph of f (w) =
4w2 − 6w− 9

Let’s say that f attains its minimum at some point w = w∗. How

34 introduction to machine learning lecture notes for cos 324 at princeton university

should we find the value of w∗? Here is an idea. Let’s start from
some random point on the curve and “walk down” the curve.

Notice from the graph that f ′(w∗) = 0. Also, f is decreasing (i.
e., f ′(w) < 0) when w < w∗ and increasing (i. e., f ′(w) > 0) when
w > w∗. So if we examine a point w and find that f ′(w) = 0, then we
have arrived at our minimum. If f ′(w) > 0, then we are currently on
the right side of the minimum, so we need to decrease w. On the other
hand, if f ′(w) < 0, then we need to increase w.

For example, we start with the point w = 0. Since f ′(w) = −6 < 0,
we know that we are on the left side of the minimum, so we update
w ← 1. Since f ′(w) = 2 > 0, we are now on the right side of
the minimum, so we update w ← 1

2 . When we iterate this process,
we hope that we eventually slide down to the bottom of the curve.
Observe that the change of value of w has the opposite sign from
f ′(w) at that point. That is, for each step of this iteration, we can
always find a η > 0 such that

w← w− η f ′(w)

This is not a mere coincidence — a similar result holds for a multi-
variate function.

3.1.2 Gradient Descent (GD)

Let f : Rd → R be a multivariate function. If we want to “walk
down” the curve of f as in the univariate case, we need to find a
direction from the current point w⃗ that decreases f .

A generalization of the Taylor expansion in the multivariable
setting shows that the value of f in a small neighborhood around
x⃗ = (x1, x2, . . . , xd) can be approximated as a linear function in terms
of the gradient.

f (w⃗ + h⃗) ≈ f (w⃗) +∇ f (w⃗) · h⃗

where h⃗ ∈ Rd is small enough (i. e.,
∥∥∥⃗h
∥∥∥ ≈ 0).

If ∇ f is nonzero and we choose h⃗ = −η∇ f where η is a suffi-
ciently small positive number, then

f (w⃗− η∇ f) ≈ f (w⃗)− η∥∇ f ∥2
2

Since ∥∇ f ∥2
2 is positive, being the squared length of the vector ∇ f ,

we conclude that the update w⃗← w⃗− η∇ f causes a decrease in value
of f . 1 This discussion motivates the gradient descent algorithm, which 1 In fact, the gradient ∇ f is known as

the direction of steepest increase of f .
Hence, the opposite direction −∇ f is
the direction of steepest decrease of f .

iteratively decreases the value of f until ∇ f = 0.

Definition 3.1.1 (Gradient Descent). Gradient descent is an iterative
algorithm that updates the weight vector w⃗ with the following rule:

w⃗← w⃗− η∇ f (w⃗) (3.1)

optimization via gradient descent 35

where η > 0 is a sufficiently small positive constant, called the learning
rate or step size.

We illustrate with an example.

Example 3.1.2. Let f (w1, w2) = (w2
1 + w2

2)
4 − 7(w2

1 + w2
2)

3 + 13(w2
1 +

w2
2)

2. From Figure 3.2, we see that it attains a global minimum at (0, 0).
The partial derivatives of f can be calculated as:

∂ f
∂w1

= 2w1(w2
1 + w2

2)(4(w
2
1 + w2

2)
2 − 21(w2

1 + w2
2) + 26)

∂ f
∂w2

= 2w2(w2
1 + w2

2)(4(w
2
1 + w2

2)
2 − 21(w2

1 + w2
2) + 26)

Now imagine initiating the gradient descent algorithm from the point
(0.5, 1) where the gradient vector is (7.5, 15). One iteration of gradient
descent with η = 0.01 would move from (0.5, 1) to (0.425, 0.85). The
gradient vector at (0.425, 0.85) is (7.90, 15.81) and the next iteration of GD
will move the point from (0.425, 0.85) to (0.35, 0.69). After 200 iterations,
the algorithm moves the point to (0.03, 0.06), which is very close to the
global minimum of f .

Figure 3.2: The graph of f (w1, w2) =
(w2

1 + w2
2)

4 − 7(w2
1 + w2

2)
3 + 13(w2

1 +
w2

2)
2. The function attains a global

minimum at (0, 0).

3.1.3 Learning Rate (LR)

Choosing an appropriate learning rate is crucial for GD. Figure 3.3
shows the result of two iterations of gradient descent with a different
learning rate. On the left, we see the result when λ is too small.
The change of w is too small, and the loss function converges to the
minimum very slowly. On the right, we see the result when λ is too
big. The change of w is too large that the algorithm “shoots past” the
minimum. If λ is even larger, the algorithm may even fail to converge
to the minimum.

36 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 3.3: Two iterations of gradient
descent with a different learning rate.

The natural question to ask is: what is the appropriate learning
rate? There is some theory, and the best setting is known in some
cases. But in general, it has to be set by trial and error, especially
for non-convex loss functions. For instance, we start with some
learning rate, say 0.5 and decrease η by 1

2 if we do not observe a
steady decrease in the training loss. Such heuristics are called training
schedules and they are derived via trial and error on that particular
dataset and model. 2 2 Constants whose values are decided

by trial and error based on dataset
and model are called hyperparameters.
Modern ML models have several
hyperparameters. Often optimization
packages will suggest a default value
and a fine-tuning method.

3.1.4 Non-convex Functions

For convex functions that are “bowl shaped,” gradient descent with
a small enough learning rate provably converges to the minimum
solution. But for non-convex functions, the best we can hope for is
converging to a point where ∇ f = 0. 3 Finding the global minimum

3 Points where the gradient is zero are
called stationary points, which include
local minima, local maxima, and
saddle points. It is possible for a GD
algorithm to terminate at a saddle point,
instead of the intended local minimum.
There is advanced theory on how to
escape saddle points, which will not be
covered in this course.

of a non-convex function is NP-hard in the worst case.
In practice, loss functions are non-convex and have multiple local

minima. Then, the gradient descent algorithm may converge to a
different local minimum based on the initialization of the parameter
vector w⃗.

Figure 3.4: An example of a convex
and a non-convex function in two
variables. For non-convex functions,
GD will reach a stationary point,
where gradient is zero. Figure from
https://www.kdnuggets.com/2016/

12/hard-thing-about-deep-learning.

html.

Example 3.1.3. Consider the function f (w) = 1
3 w4− 1

2 w3−w2 +w, which
has two local minima at (−1,−1) and (2,−1). As seen in Figure 3.5, the

https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html
https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html
https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html

optimization via gradient descent 37

local minimum that the gradient descent algorithm outputs depends on the
initial point.

Figure 3.5: The graph of f (w) =
1
3 w4 − 1

2 w3 − w2 + w with two local
minima.

3.2 Implications of Linearity of Gradient

The fact that gradient is a linear operator (i. e., ∇(f1 + f2) = ∇ f1 +

∇ f2) has great practical importance in machine learning.
Just like in (1.4), the training loss of a machine learning model is

usually defined as the average (or the sum) of the loss on individual
training data point. By the linearity of gradient, the gradient of the
entire loss can be found by taking the sum of the gradient of the loss
on individual data points.

3.2.1 Stochastic Gradient Descent

Since computing the gradient of the loss involves some computation
on each of the data points, the computation can be quite slow for
today’s large data sets, which can contain millions of data points.
A simple workaround is to estimate the gradient at each step by
randomly sampling k data points and averaging the corresponding
loss gradients. This is very analogous to opinion polls, which can
also be seen as sampling from a distribution on vectors and using the
average of the sample as a substitute for the population average. This
algorithm is called Stochastic Gradient Descent (SGD). 4 This technique 4 Some authors call this the Batch SGD

and use the name SGD only for the case
where k = 1.

works for two reasons: (1) all training data points are assumed to be
sampled from the same distribution; (2) the overall training loss is
just the sum/average of loss for individual data points.

3.2.2 Mini-batch Stochastic Gradient Descent

Today, large scale machine learning is done using special-purpose
processors called Graphical Processing Units (GPUs). 5 These highly 5 As the name suggests, these were orig-

inally developed for computer graphics
operations needed in computer games.
Around 2012, deep learning experts
realized their usefulness for deep learn-
ing. At the time writing code for GPUs
was extremely difficult, but today’s
environments have made this much
easier.

38 introduction to machine learning lecture notes for cos 324 at princeton university

specialized architectures have the ability to perform fast parallel
computations. To exploit these special capabilities, a special vari-
ant of SGD — Mini-batch SGD — can be used. Here the dataset is
randomly partitioned into mini batches whose size is dictated by
the degree of parallelism available in the GPU, usually a power of 2,
such as 256. The members of each batch are loaded onto a different
processor. Together the processors compute the gradient for one mini-
batch in one go, add up the gradients to perform a single iteration for
the gradient descent. Then they move on to the next batch, perform
another update step, and so on.

3.2.3 Federated Learning

This is a conceptual framework for training a ML model on data
belonging to different parties, who do not wish to hand the data over
to a central server. Consider the following two examples:

1. Hospitals who wish to train an ML model on their pooled data,
but who are forbidden by privacy laws to hand the data to other
organizations.

2. Owners of Internet of Things (IoT) devices, who wish to benefit
from training on their data but do not wish to submit the data.

In Federated Learning, the model is trained at a central server,
whereas data remains with the data owners, who actively participate
in the training. Users retrieve the current model parameters from
the server and calculate the gradients locally. They send only the
gradients, but not the data, to the server, and the overall gradient is
calculated at the server as the weighted sum (or average) of the user
gradients.

3.3 Regularizers

This section describes regularization, a useful idea that often improves
generalization of the model. The main idea is that instead of min-
imizing the training loss function ℓ(w⃗), we minimize the function

ℓ(w⃗) + λR(w⃗) (3.2)

where λ > 0 is a constant and R(w⃗) is some non-negative function.
R(w⃗) is called a regularizer or sometimes penalty. We refer to (3.2) as
the regularized loss function.

The most commonly used regularizer is the ℓ2 regularizer where
the squared ℓ2 norm R(w⃗) = ∥w⃗∥2

2 of the weight vector is used.

optimization via gradient descent 39

Example 3.3.1. Recall the sentiment prediction model using least squares
loss. Suppose the training data consists of two data points: (⃗x1, y1) =

((1, 0, 1),−1) and (⃗x2, y2) = ((1, 1, 0),+1). Then the least squares loss,
without any regularizer, can be written as

1
2
((−1− (w0 + w2))

2 + (1− (w0 + w1))
2) (3.3)

A little thought suggests that the minimum value of this loss is 0 provided
there exists (w0, w1, w2) such that

(−1− (w0 + w2))
2 = 0 = (1− (w0 + w1))

2.

You can verify that infinitely many solutions exist: all w⃗∗ = (w0, w1, w2)

that lie on the line (0, 1,−1) + t(1,−1,−1) where t ∈ R. In other words,
the loss has infinitely many minimizers.

Now if impose an ℓ2 regularizer, the loss becomes

1
2
((−1− (w0 + w2))

2 + (1− (w0 + w1))
2) + λ(w2

0 + w2
1 + w2

2) (3.4)

Any minimizer of this loss must make the gradient zero. In other words, the
minimizer will satisfy the following system of linear equations:

(2 + 2λ)w0 + w1 + w2 = 0

w0 + (1 + 2λ)w1 = 1

w0 + (1 + 2λ)w2 = −1

You can verify that w⃗∗∗ =
(

0, 1
1+2λ ,− 1

1+2λ

)
is the unique minimizer for

any λ > 0. For a sufficiently small value of λ, the corresponding w⃗∗∗ is
close enough to the line (0, 1,−1) + t(1,−1,−1). That is, it has a non-zero
training loss, but the value is very close to zero. Combined with the fact it
has a small norm, w⃗∗∗ becomes the minimizer for the regularized loss.

Figure 3.6: The graph of the line
(0, 1,−1) + t(1,−1,−1) and the point
w⃗∗∗ = (0, 1

1+2λ ,− 1
1+2λ) when λ = 0.01

Note that if w⃗∗ is the minimizer of ℓ(w⃗) and w⃗∗∗ the minimizer
of the regularized loss, then by definition of a minimizer, it always

40 introduction to machine learning lecture notes for cos 324 at princeton university

holds that ℓ(w⃗∗) ≤ ℓ(w⃗∗∗). In general, regularization ends up lead-
ing to training models with a higher value of ℓ(w⃗). This is considered
acceptable because the models often generalize better. In other words,
a slightly higher training loss is considered a price worth paying for a
significantly lower test loss. This is illustrated by the example of sen-
timent prediction from Chapter 1. As hinted there, the results shown
used a model trained with an ℓ2 regularizer. The dataset involves 15k
distinct words, so that is the number of model variables. There are
8k data points. Recall from Problem 1.2.5 that in such settings, there
usually will exist a linear model that perfectly fits the data points.
Indeed, we see in Table 3.1 that this is the case when we don’t use a
regularizer. However, using a regularizer prevents the model from
perfectly fitting the training data. But the test loss drops tenfold with
regularization.

No regularizer With ℓ2-regularizer
Train MSE 0.0000 0.0727
Test MSE 7.9469 0.7523

Training accuracy 100.00% 99.55%
Test accuracy 61.67% 78.07%

Table 3.1: Training sentiment model on
the SST with and without ℓ2 regularizer.

3.3.1 Effects of Regularization

Here we briefly list some benefits of regularization.

1. Regularizers often help improve generalization. Above we saw a
concrete example with the sentiment prediction model.

2. Adding a scalar multiple of ∥w⃗∥2
2 to a function can speed up

optimization by slightly reshaping the optimization landscape.
The mathematical treatment of this is beyond the scope of this
course.

3. Without a regularizer term, models such as logistic regression and
soft-margin SVMs begin to lose their power. This will be explained
when we discuss these models in Chapter 4.

3.3.2 Why Does Regularization Help?

The simplest answer is that we do not fully understand this concept
yet. In this section, we present some intuitions derived from simple
models, but keep in mind that these ideas might be misleading in
more complicated models.

The usual explanation given is that the norm of the parameter
vector controls the expressiveness or complexity of the model. Here
“complexity” is being used in the sense of “complicatedness”. By

optimization via gradient descent 41

trying to minimize loss as well as the norm of the parameter vector,
the learned model tends to stay simple. 6 Whereas this discussion 6 Recall the famous Occam’s Razor for

judging goodness of scientific theories:
The simpler the theory that explains the
known facts, the more likely it is to be
correct. An ML model can be seen as a
“theory” about relationships in the data,
and thus the simplest theory is to be
preferred.

can be made fairly rigorous for linear models, it does not seem to
apply to more complicated models: for instance regularization often
helps a lot in deep learning, but the rigorous explanation appear to
be at best incomplete and at worst incorrect there. 7

7 See the blog https://www.offconvex.

org for posts about generalization and
deep learning. They also discuss how
other ideas such as VC dimension,
which we did not cover in this course,
also do not apply in deep learning.

Another explanation 8 is that a regularizer serves as a penalty for

8 See the online lecture video by An-
drew Ng. https://www.youtube.com/
watch?v=KvtGD37Rm5I&ab_channel=

ArtificialIntelligence-AllinOne

large weights and forces the model to choose smaller absolute values
of parameters. According to this explanation, adding regularizers to
a model penalizes higher-order terms or unnecessary variables and
is able to avoid overfitting. Indeed, Figure 3.7 shows that the weights
of the parameters in our sentiment model is significantly smaller
when trained with a regularizer. But one lingering question with
this explanation is: How come attaching the same penalty to all variables
forces the model to identify variables that are needed, and those that are not?
What causes this disparate treatment of the variables?

Figure 3.7: The histogram of weights of
the parameters in the sentiment predic-
tion model with (right) or without (left)
an ℓ2 regularizer.

Now consider this explanation — ℓ2 regularization introduces a
new dynamic to gradient descent, whereby gradient updates have to
constantly battle against a rescaling that is always trying to whittle
all variables down to zero. The effort succeeds only for variables
where gradient updates are pushing hardest to make them nonzero.
Therefore, the weights for “necessary” variables survive, while
“unnecessary” variables are thrown away. To say this more precisely,
consider the regularized loss ℓ(w⃗) + λ ∥w⃗∥2

2 whose gradient is

∇ℓ+ 2λw⃗

Thus the update rule in gradient descent can be written as

w⃗t+1 ← w⃗t − η(∇ℓ+ 2λw⃗t)

where w⃗t denotes the weight vector at the t-th time step. This update
rule can be rewritten as

w⃗t+1 ← w⃗t(1− 2ηλ)− η∇ℓ (3.5)

The first term is down-scaling: if for example η = λ = 0.1, this
amounts to multiplying the current vector by 0.98, and this of course
will make w⃗ very small in a few hundred iterations.

https://www.offconvex.org
https://www.offconvex.org
https://www.youtube.com/watch?v=KvtGD37Rm5I&ab_channel=ArtificialIntelligence-AllinOne
https://www.youtube.com/watch?v=KvtGD37Rm5I&ab_channel=ArtificialIntelligence-AllinOne
https://www.youtube.com/watch?v=KvtGD37Rm5I&ab_channel=ArtificialIntelligence-AllinOne

42 introduction to machine learning lecture notes for cos 324 at princeton university

The second term is the gradient update. It can counteract the
down-scaling by making the variables larger. But notice that the
amount of change is based on how much each of the coordinates con-
tribute to reducing the loss. Variables that are not useful will tend not
to get increased by the gradient update and thus will keep getting
down-scaled to low values. 9 The choice of λ mediates between these 9 It is one of those “use it or lose it”

situations!two processes.

3.4 Gradient Descent in Programming

In this section, we briefly discuss how to implement the Gradient De-
scent algorithm in Python. It is customary to use the numpy package
to speed up computation and the matplotlib package for visualization.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

initialize variables

num_iter = ...

x = np.zeros(num_iter + 1)

y = np.zeros(num_iter + 1)

x[0], y[0], eta = ...

define functions to calculate f and grad_f

def f(x, y):

...

return f

def grad_f(x, y):

...

return grad_f

run Gradient Descent

for i in range(num_iter):

grad_x, grad_y = grad_f(x[i], y[i])

x[i + 1] = x[i] - eta * grad_x

y[i + 1] = y[i] - eta * grad_y

plot the surface

xmin, xmax, ymin, ymax, n = ...

X, Y = np.meshgrid(np.linspace(xmin, xmax, n),

np.linspace(ymin, ymax, n))

Z = f(X, Y)

fig = plt.figure(figsize=(12, 10))

ax = fig.add_subplot(projection=’3d’)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

ax.view_init(elev=ax.elev, azim=ax.azim)

ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, alpha=0.5)

plot the trajectory of Gradient Descent

ax.plot(x, y, f(x, y), color=’orange’, markerfacecolor=’black’,

markeredgecolor=’k’, marker=’o’, markersize=5)

optimization via gradient descent 43

We first start off by importing necessary packages and initializing
variables. The following code initializes numpy arrays of length
num_iter + 1, with all entries initialized to 0

x = np.zeros(num_iter + 1)

y = np.zeros(num_iter + 1)

Sometimes, it is useful to make use of np.ones(), which will generate
arrays filled with entries equal to 1.

We then define functions that will calculate the values of f and ∇ f
given an array of data points (x, y).

def f(x, y):

...

return f

def grad_f(x, y):

...

return grad_f

This allows us to run the Gradient Descent algorithm as in

for i in range(num_iter):

grad_x, grad_y = grad_f(x[i], y[i])

x[i + 1] = x[i] - eta * grad_x

y[i + 1] = y[i] - eta * grad_y

Here we iteratively update the value of (x, y) using ∇ f (x, y) and
store each of the points in the array x and y.

We next plot the surface of the function f (x, y). To start, we first
create a grid of (x, y) points to evaluate f (x, y) at.

X, Y = np.meshgrid(np.linspace(xmin, xmax, n),

np.linspace(ymin, ymax, n))

Z = f(X, Y)

The function call np.linspace(min, max, n) generates an array of n
equally spaced values from min to max. For example, the code

np.linspace(-2, 2, 5)

will create an array [−2,−1, 0, 1, 2]. Then np.meshgrid(x, y) will create
a grid from the array of x values and the array of y values. We can
now perform the 3D plotting with the following code.

fig = plt.figure(figsize=(12, 10))

ax = fig.add_subplot(projection=’3d’)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

ax.view_init(elev=ax.elev, azim=ax.azim)

ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, alpha=0.5)

Feel free to change the values of the optional parameters to under-
stand their purpose. Unlike the code for plotting a scatter plot of

44 introduction to machine learning lecture notes for cos 324 at princeton university

linear regression in Chapter 1, here we create an object of the Axes
class with the function plt.figure().gca()10. Then we call its instance 10 You can read more about the

differences between these two
matplotlib interfaces at https:
//matplotlib.org/matplotblog/posts/

pyplot-vs-object-oriented-interface/

methods to add features to it (e.g., x-, y-, z-labels).
Finally, we can plot the trajectory of the Gradient Descent algo-

rithm with the code

ax.plot(x, y, f(x, y), color=’orange’, markerfacecolor=’black’,

markeredgecolor=’k’, marker=’o’, markersize=5)

You can alternatively call

ax.scatter(x, y, f(x, y))

but the names of optional parameters might be slightly different.

3.4.1 Using Machine Learning Packages

When the function f is simple and it is possible to calculate ∇ f by
hand, we can implement the Gradient Descent algorithm by hand
as in the previous subsection. However, in most ML programs, the
loss function f is very high-dimensional, and it is difficult to write
a single function to directly compute the gradient ∇ f . Instead, we
can make use of functions defined in popular ML packages. Here, we
introduce one such package called PyTorch:

• torch: This is a popular package used for designing and training
deep learning models. PyTorch uses an object-oriented interface
for user convenience and provides access to optimized array data
structures called tensors to make computations faster and more
efficient. The package also provides support for GPU training. 11 11 Documentation is available at https:

//pytorch.org/docs/stable/index.

htmlUsing PyTorch, Gradient Descent can be implemented in just a few
lines:

import torch

model = ...

opt = torch.optim.SGD(model.parameters(), lr=0.1)

The code above will create an instance of the Optimzer class, which
has pre-defined methods that will compute the gradients and auto-
mate the Gradient Descent process.

3.4.2 Beyond Vanilla Gradient Descent

If you visit the documentation for the torch.optim, 12 you may notice 12 https://pytorch.org/docs/stable/

optim.htmlthat there are other algorithms listed as an alternative to the Stochas-
tic Gradient Descent. A lot of these algorithms are extensions of the
GD algorithm we explained throughout this chapter, which have
proven to be more effective than the vanilla GD algorithm in certain
cases (e.g., Adam, Adagrad, Nesterov momentum). For example,

https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

optimization via gradient descent 45

these algorithms may choose to add a momentum to the gradient, so
that the rate of change of f will be accelerated if it has been updating
in the same direction in the recent few steps. These algorithms may
also choose to use a different learning rate for each of the model
parameters. In particular, the appropriate learning rate can be com-
puted based on the mean and the variance of the gradient values
from the recent few steps.

4
Linear Classification

Multi-way Classification is a task of learning to predict a label on
newly seen data out of k possible labels. In binary classification, there
are only two possible labels, say ±1. Sentiment prediction in Chap-
ter 1 was an example of a binary classification task. In this chapter,
we introduce two other linear models that perform binary classi-
fication: logistic regression and Support Vector Machines (SVMs).
From these two models, we learn more about the thought process of
designing loss functions that are appropriate to the task. 1 1 All the linear models we will study fall

under an all-encompassing framework
called Generalized Linear Models. If you
ever are faced with a new situation
where none of the models below are an
exact match, try looking up this general
framework.

In this chapter, we are interested in using linear models to perform
classification. In a binary classification problem, the training dataset
consists of (point, label) pairs (⃗x, y) where y can take two values (e.g.,
{±1} or {0, 1}). In a more general multi-class classification problem,
the data has one of k labels, drawn from {0, 1, . . . , k− 1}.

4.1 General Form of a Linear Model

You already encountered a linear model in Chapter 1 — the least
squares regression model for sentiment prediction. Given an input x⃗,
we learned a parameter vector w⃗ that minimizes the loss ∑i(yi − w⃗ ·
x⃗i)2. The model can be seen as mapping an input vector x⃗ to a real
value w⃗ · x⃗. For sentiment classification, we changed this real-valued
output at test time to ±1 by outputting sign(w⃗ · x⃗).

You probably wondered there: Why don’t we simply use sign(w⃗ · x⃗)
directly as the output of the model while training? In other words, why
not do training on the following loss:

∑
i
(yi − sign(w⃗ · x⃗i))2 (4.1)

The answer is that using the sign(z) function in the loss makes
gradient-based optimization ill-behaved. The derivative of sign(z) is
0 except at z = 0 (where the derivative is discontinuous) and thus the
gradient is uninformative about how to update the weight vector.

48 introduction to machine learning lecture notes for cos 324 at princeton university

So the work-around in Chapter 1 (primarily for ease of exposition)
was to train the sentiment classification model using the least squares
loss ∑i(yi − w⃗ · x⃗i)2, which in practice is used more often in settings
where the desired output yi is real-valued output as opposed to bi-
nary. This gave OK results, but in practice one would use either of
the two linear models 2 introduced in this chapter: Logistic Regression 2 They are called linear because they use

the mapping x⃗ 7→ w⃗ · x⃗.and Support Vector Machines. These are similar in spirit to the linear
regression model — (1) given an input x⃗, the models learn a parame-
ter vector w⃗ that minimizes a loss, defined as a differentiable function
on w⃗ · x⃗; (2) at test-time, the model outputs sign(w⃗ · x⃗). 3 The main 3 There are other ways to output a

discrete ±1 label, but using the sign
function is the most canonical way. We
will discuss the behavior of the models
at test-time later in the chapter.

difference, however, is that the loss for the linear models introduced
in this chapter is designed specifically for the binary classification
task. Pay close attention to our “story” for why the loss makes sense.
This will prepare you to understand any new loss functions you
come across in your future explorations.

4.2 Logistic Regression

The logistic regression model arises from thinking of the answer
as being probabilistic: the model assigns a “probability” to each of
the two labels, with the sum of the two probabilities being 1. 4 This 4 This “probability” is what is called

subjective probability, analogous to what
we mean when say things like “I am
99 percent sure my friend X will like
movie Y.” There is only one person
X and one movie Y and they are not
drawn from some probability space.
Instead we’re expressing a subjective
feeling of near-certainty based upon
past observations of person X.

paradigm of a probabilistic answer is a popular way to design loss
functions in a host of ML settings, including deep learning.

Definition 4.2.1 (Logistic model). Given the input x⃗, 5 the model assigns

5 As in Chapter 1 we assume x⃗ contains
a dummy coordinate x0 that is 1 at
all points: this allows us to include a
constant bias term when we take the
dot product w⃗ · x⃗ with the weight vector.

the “Probability that the output is +1” to be

σ(w⃗ · x⃗) = 1
1 + exp(−w⃗ · x⃗) (4.2)

where σ is the sigmoid function (see Chapter 19). This implies that “Proba-
bility that the output is −1” is given by

1− 1
1 + exp(−w⃗ · x⃗) =

exp(−w⃗ · x⃗)
1 + exp(−w⃗ · x⃗) =

1
1 + exp(w⃗ · x⃗) (4.3)

See Figure 4.1. Note that “the probability that the output is +1”
is greater than 1

2 precisely if w⃗ · x⃗ > 0. Furthermore, increasing the
value of w⃗ · x⃗ causes the probability to rise towards 1. Conversely, if
w⃗ · x⃗ < 0, then “the probability of label −1” is greater than 1

2 . When
w⃗ · x⃗ = 0, the probability of label +1 and −1 are both equal to 1

2 . In
this way, the logistic model can be seen as a continuous version of the
sign(w⃗ · x⃗).

Example 4.2.2. If x⃗ = (1,−3) and w⃗ = (0.2,−0.1), then the probability of
label +1 is

1
1 + exp(−0.2− 0.3)

=
1

1 + e−0.5 ≃ 0.62

linear classification 49

Figure 4.1: The graph of the probability
that the output of a logistic model is +1

(red) or -1 (blue) given w⃗ · x⃗.

4.2.1 Defining Goodness of Probabilistic Predictions

Thus far, we explained how the logistic model generates its output
given an input vector x⃗ and the current weight vector w⃗. But we have
not yet talked about how to train the model. To define a loss function,
we need to decide what are the “good” values for w⃗. Specifically, we
formulate a definition of “quality” of probabilistic predictions.

Definition 4.2.3 (Maximum Likelihood Principle). Given a set of
observed events, the goodness of a probabilistic prediction model 6 is the 6 This is a definition of goodness, not the

consequence of some theory.probability it assigned to the observed events.

We illustrate with an example.

Example 4.2.4. You often see weather predictions that include an estimate
of the probability of rain. Table 4.1 shows the predictions by two models at
the start of each day of the week. After the week is over, we have observed if
it actually rained on each of the days. Based on these observations, which
model made better predictions this week?

M T W Th F
Model 1 60% 20% 90% 50% 40%
Model 2 70% 50% 80% 20% 60%
Rained? Y N Y N N

Table 4.1: Weather predictions by Model
1 and Model 2.

We can answer this question by seeing which model assigns higher
likelihood to the events that were actually observed (i.e., whether or not it
rained). For instance, the likelihood of the observed sequence according to
Model 1 is

0.6× (1− 0.2)× 0.9× (1− 0.5)× (1− 0.4) = 0.1296

50 introduction to machine learning lecture notes for cos 324 at princeton university

The corresponding number for Model 2 is 0.0896 (check this!). So Model 1
was a “better” model for this week.

4.2.2 Loss Function for Logistic Regression

We employ the Maximum Likelihood Principle from the previous
part to define the loss function for the logistic model. Suppose we
are provided the labeled dataset {(⃗x1, y1), (⃗x2, y2), . . . , (⃗xN , yN)} for
training where yi is a ±1 label for the input x⃗i. By the description
given in Definition 4.2.1, the probability assigned by the model with
the weights w⃗ to the i-th labeled data point is

1
1 + exp(−yiw⃗ · x⃗i)

which means that the total probability (“likelihood”) assigned to the
dataset is

P =
N

∏
i=1

1
1 + exp(−yiw⃗ · x⃗i)

(4.4)

We desire the model w⃗ that maximizes P. Since log(x) is an increas-
ing function, the best model is also the one that maximizes log P,
hence the one that minimizes − log P = log 1

P . This leads to the
logistic loss function:

log

(
N

∏
i=1

(1 + exp(−yiw⃗ · x⃗i))

)
=

N

∑
i=1

log(1 + exp(−yiw⃗ · x⃗i)) (4.5)

Note that this expression involves a sum over training data points,
which as discussed in Section 3.2, is a very desirable and practical
property of loss in machine learning.

Problem 4.2.5. Verify that the gradient for the logistic loss function is

∇ℓ =
N

∑
i=1

−yi⃗xi

1 + exp(yiw⃗ · x⃗i)
(4.6)

4.2.3 Using Logistic Regression for Roommate Matching

In this part, we use the following example to illustrate some of the
material covered in the previous parts.

Example 4.2.6. Suppose Princeton University decides to pair up newly
admitted undergraduate students as roommates. All students are asked to
fill a questionnaire about their sleep schedule and their music taste. The
questionnaire is used to generate a compatibility score in [0, 1] for each of
the two attributes, for each pair of students. Table 4.2 shows the calculated

linear classification 51

Sleep (S) Music (M) Compatible?
1 0.5 +1

0.75 1 +1
0.25 0 −1

0 1 −1

Table 4.2: Sample data of compatibility
scores for four pairs of students.

compatibility scores for four pairs of roommates from previous years and
whether or not they turned out to be compatible (+1 for compatible, −1 for
incompatible).

We wish to train a logistic model to predict if a pair of students
will be compatible based on their sleep and music compatibility
scores. To do this, we first convert the data in Table 4.2 into a vector
form.

x⃗1 = (1, 1, 0.5)

x⃗2 = (1, 0.75, 1)

x⃗3 = (1, 0.25, 0)

x⃗4 = (1, 0, 1)

y1 = +1

y2 = +1

y3 = −1

y4 = −1

(4.7)

where the first coordinate xi
0 of x⃗i is a dummy variable to introduce a

constant bias term, and the second and third coordinates are respec-
tively for sleep and music compatibility scores.

Figure 4.2: Graph representing the
points in Table 4.2. The x-, y-axis in
the graph correspond to the Sleep
and Music compatibility scores, or the
second and third coordinates in (4.7).

Consider two models — Model 1 with the weight vector w⃗1 =

(0, 1, 0) and Model 2 with the weight vector w⃗2 = (0, 0, 1). Model 1
only looks at the sleep compatibility score to calculate the probability
that a pair of students will be compatible as roommates, whereas

52 introduction to machine learning lecture notes for cos 324 at princeton university

Model 2 only uses the music compatibility score. For example, Model
1 assigns the probability that the first pair of students are compatible
as

σ(w⃗1 · x⃗1) =
1

1 + exp(−1)
≃ 0.73

We can calculate the probability for the other pairs and for Model 2

and fill out the following Table 4.3:

Pair 1 Pair 2 Pair 3 Pair 4
Model 1 0.73 0.68 0.56 0.50
Model 2 0.62 0.73 0.50 0.73

Compatible? Y Y N N

Table 4.3: Roommate compatibility
predictions by Model 1 and Model 2.

Then the likelihood of the observations (YYNN) according to
Model 1 can be calculated as

0.73× 0.68× (1− 0.56)× (1− 0.50) ≃ 0.11

where as the likelihood of the observations according to Model 2 is

0.62× 0.73× (1− 0.50)× (1− 0.73) ≃ 0.06

Therefore, the Maximum Likelihood Principle tells us that Model 1 is
a “better” model than Model 2.

The full logistic loss for this training data can be written as

4

∑
i=1

log(1 + exp(−yiw⃗ · x⃗i)) = log(1 + exp(−(w0 · 1 + w1 · 1 + w2 · 0.5))+

log(1 + exp(−(w0 · 1 + w1 · 0.75 + w2 · 1))+
log(1 + exp(w0 · 1 + w1 · 0.25 + w2 · 0)+
log(1 + exp(w0 · 1 + w1 · 0 + w2 · 1)

and the values that minimize this loss can be found as w0 = −21, w1 =

32, w2 = 8.9.

4.2.4 Testing the Model

After training the model on the training data, we can use it to define
label probabilities on any new data point. However, the probabilities
do not explicitly tell us what label to output on a new data point.
There are two options:

1. (Probabilistic) If p is the probability of the label +1 according
to (4.2), then use a random number generator to output +1 with
probability p and −1 with probability 1− p.

2. (Deterministic) Output the label with a higher probability.

linear classification 53

Recall from an earlier discussion that Pr[+1] ≥ Pr[−1] if and
only if w⃗ · x⃗ ≥ 0. In other words, the second deterministic option is
equivalent to the sign(z) function: sign(w⃗ · x⃗)!

We conclude that logistic regression is quite analogous to what we
did in Chapter 1, except instead of least squares loss, we are using
logistic loss to train the model. The logistic loss is explicitly designed
with binary classification in mind. 7 7 Using logistic loss (and ℓ2 regularizer)

instead of least squares in our senti-
ment dataset boosts test accuracy from
78.1% to 80.7%.4.3 Support Vector Machines

A Support Vector Machine (SVM) 8 is also a linear model. It comes in 8 From An optimal algorithm for training
maximum margin classifiers. by Boser,
Guyon, and Vapnik in COLT 1992. The
name Support Vector Machine comes
from a theorem that characterizes
the optimum model in terms of “sup-
port vectors.” We will not cover that
theorem here.

several variants, including a more powerful kernel SVM that we will
not study here. But this rich set of variants made it an interesting
family of models, and it is fair to say that in the 1990s its popularity
was somewhat analogous to the popularity of deep nets today. It
remains a very useful model for your toolkit. The version we are
describing is a so-called soft margin SVM.

As in the least squares regression, the main idea in designing the
loss is that the label should be +1 or −1 according to sign(w⃗ · x⃗). But
we want to design a loss with a well-behaved gradient that provides
a clearer direction of improvement. To be more specific, we want the
model to have more “confident” answers, and we will penalize the
model if it comes up with a correct answer but with a low degree of
“confidence.”

For z ∈ R, let us define

Hinge(z) = max{0, 1− z} (4.8)

Figure 4.3: The graph of the hinge
function.

Note that this function is always at least zero, and strictly positive
for z < 1. When z decreases to negative infinity, there is no finite
upper bound to the value. The derivative is zero for z > 1 and 1 for
z < 1. The derivative is currently undefined at z = 1, but we can
arbitrarily choose between 0 or 1 as the newly defined value.

For a single labeled data point (⃗x, y) where y ∈ {−1, 1}, the SVM
loss is defined as

ℓ = Hinge(yw⃗ · x⃗) (4.9)

and its gradient is

∇ℓ =

−y⃗x yw⃗ · x⃗ < 1

0 yw⃗ · x⃗ > 1

The SVM loss for the entire training dataset can be defined as

∑
i

Hinge(yiw⃗ · x⃗i) (4.10)

54 introduction to machine learning lecture notes for cos 324 at princeton university

that is, the sum of the SVM loss on each of the training data points.
Suppose y = +1. Then this loss is 0 only when w⃗ · x⃗ > 1. In other

words, making loss zero not only requires w⃗ · x⃗ to be positive, but also
be comfortably above 0. If w⃗ · x⃗ dips below 1, the loss is positive and
increases towards +∞ as w⃗ · x⃗ → −∞. (Likewise if the label y = −1,
then the loss is 0 only when w⃗ · x⃗ < −1.)

Recall that the goal of a gradient-based optimization algorithm is
to minimize the loss. Therefore, the loss gives a clear indication of
the direction of improvement until the data point has been classified
correctly with a comfortable margin away from 0, out of the zone of
confusion.

Example 4.3.1. Recall the roommate compatibility data from Table 4.2.
Consider the soft-margin SVM with the weight vector w⃗ = (−1.5, 3, 0).
This means the decision boundary — the set of points where w⃗ · x⃗ = 0 — is
drawn at Sleep = 1

2 , and the margins — the set of points where w⃗ · x⃗ = ±1
— are drawn at Sleep = 5

6 and Sleep = 1
6 . Figure 4.4 shows the decision

boundary and the two margin lines of the model. The SVM loss is zero
for the point (1, 0.5) because it is labeled +1 and away from the decision
boundary with enough margin. Similarly, the loss is zero for the point (0, 1).
The loss for the point (0.75, 1), however, can be calculated as

Hinge(1 · (−1.5 · 1 + 3 · 0.75)) = 0.25

and similarly, the loss for the point (0.25, 0) is 0.25.

Figure 4.4: The decision boundary of
a soft-margin SVM on the roommate
matching example. The region to the
left of the two dotted lines is where
the model confidently classifies as
−1; the region to the right is where it
confidently classifies as +1; and the
region between the two dotted lines is
the zone of confusion.

The gradient of the loss at the point (0.75, 1) is

−y⃗x = (−1,−0.75,−1)

linear classification 55

and the update rule for a gradient descent algorithm will be written as

w⃗← (−1.5, 3, 0)− 0.1(−1,−0.75,−1) = (−1.4, 3.075, 0.1)

where η = 0.1, and the new SVM loss will be

Hinge(1 · (−1.4, 3.075, 0.1) · (1, 0.75, 1)) = 0

which is now lower than the SVM loss before the update.

4.4 Multi-class Classification (Multinomial Regression)

So far, we have only seen problems where the model has to classify
using two labels ±1. In many settings there are k possible labels
for each data point 9 and the model has to assign one of them. The 9 This is the case in most settings in

modern machine learning. For instance
in the famous ImageNet challenge, each
image belongs to one of 1000 classes.

conceptual framework is similar to logistic regression, except the
model defines a nonzero probability for each label as follows. The
notation assumes data is d-dimensional and the model parameters
consist of k vectors θ⃗1, θ⃗2, . . ., θ⃗k ∈ Rd. We define a new vector z⃗ ∈ Rk

where each coordinate zi satisfies zi = θ⃗i · x⃗. Then the probability
of a particular label is defined through the softmax function (see
Chapter 19):

Pr[label i on input x⃗] = so f tmax(⃗z)

=
exp(⃗θi · x⃗)

∑k
j=1 exp(⃗θ j · x⃗)

(4.11)

This distribution can be understood as assigning a probability to
label i such that it is exponentially proportional to the value of θ⃗i · x⃗.

Problem 4.4.1. Using the result of Problem 19.2.4, verify that the definition
of logistic regression as in (4.2), (4.3) are equivalent to the definition of
multi-class regression as in (4.11).

Problem 4.4.2. Reasoning analogously as in logistic regression, derive a
training loss for this model using Maximum Likelihood Principle.

Since exp(z) > 0 for every real number z the model above assigns
a nonzero probability to every label. In some settings that may be
appropriate. But as in case of logistic regression, at test time we also
have the option of extracting a deterministic answer out of the model:
the i ∈ {1, 2, . . . , k} that has the largest value of θ⃗ j · x⃗.

4.5 Regularization with SVM

It is customary to use a regularizer, typically ℓ2, with logistic regres-
sion models and SVMs. When a ℓ2 regularizer is applied, the full

56 introduction to machine learning lecture notes for cos 324 at princeton university

SVM loss is rewritten as

∑
i

Hinge(yiw⃗ · x⃗i) + λ ∥w⃗∥2
2 (4.12)

Let’s see why regularization is sensible for SVMs, and even needed.
The Hinge function (4.8) treats the point z = 1 as special. In terms
of the SVM loss, this translates to the thought that having w⃗ · x⃗ > 1
is a more “confident” classification of x⃗ than just having sign(w⃗ · x⃗)
to be correct (i. e., w⃗ · x⃗ > 0). But this choice is arbitrary because we
have not specified the scale of w⃗. If w⃗ · x⃗ = 1/10 then scaling w⃗ by
a factor 10 ensures w⃗ · x⃗ > 1. Thus the training algorithm has cheap
and meaningless ways of reducing the training loss. By applying an
ℓ2 regularizer, we are able to prevent this easy route for the model,
and instead, force the training to find optimal weights w⃗ with a small
norm.

Problem 4.5.1. Write a justification for why it makes sense to limit the ℓ2

norm of the classifier during logistic regression. How can large norm lead to
false confidence (i.e., unrealistically low training loss)?

4.6 Linear Classification in Programming

In this section, we briefly discuss how to implement the logistic re-
gression model in Python. It is customary to use the numpy package
to speed up computation and the matplotlib package for visualization.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

prepare dataset

X = ... # array of shape (n, d), each row is a d-dimensional data point

y = ... # array of shape (n), each value = -1 or +1

w = ... # array of shape (d), each value is a weight for each dimension

X_train, X_test, y_train, y_test, eta = ...

define functions

def loss(X, y, w):

returns the logistic loss

return sum log(1 + exp(-y*w*x))

...

def grad_loss(X, y, w):

returns the gradient of the logistic loss

return sum (-y*x)/(1 + exp(y*w*x))

...

def gradient_descent(X, y, w0, eta)

...

return w

run Gradient Descent

w = gradient_descent(X_train, y_train, w, eta)

linear classification 57

plot the learned classifier

assuming data is 2-dimensional

colors = {1: ’blue’, -1: ’red’}

xmin, xmax, ymin, ymax = ...

plt.scatter(X[:,0], X[:,1], c=np.array([colors[y_i] for y_i in y]))

plt.plot([xmin, xmax], [ymin, ymax], c=’black’)

We have already discussed how to implement the majority of the
code sample above in previous chapters. The only parts that are new
are the functions to calculate the logistic loss and its gradient. This is
consistent with the theme of this chapter — to discuss how to design
loss functions that are appropriate for the task. Nevertheless, while
the content of this code sample is familiar, some sections of the code
introduce new Python functionality and syntax. We first consider the
logistic loss and gradient functions:

def loss(X, y, w):

returns the logistic loss

return sum log(1 + exp(-y*w*x))

...

def grad_loss(X, y, w):

returns the gradient of the logistic loss

return sum (-y*x)/(1 + exp(y*w*x))

...

In Java, the programming language you learned in earlier program-
ming classes, you would have to rely on a for loop to account for the
array inputs in the loss() and grad_loss() functions. However, Python
and numpy support many vectorized operations, including matrix mul-
tiplication and element-wise multiplication. These operations are
far more concise to read and will also improve the runtime of the
program by a great margin. Note that the code snippet above does
not contain these operations; it is simply pseudo-code for your intu-
ition. You will be introduced to these vectorized operations during
the precept, and you will be expected to implement the loss function
with these new tools in your programming assignments.

Next, we use a Python dictionary to store information correspond-
ing to the plot’s coloring scheme:

colors = {1: ’blue’, -1: ’red’}

This is equivalent to a hash table from Java. Here, 1 and −1 are the
keys and “blue” and “red” are respectively their values.

We will now discuss multi-dimensional arrays in Python. There
are multiple ways to perform array indexing. For example, if X is a
2-dimensional array, both X[i][j] and X[i, j] can be used to extract the
entry at the i-th row, j-th column. It is also possible to provide a set
of rows or a set of columns to extract. The following code snippet
generates an array of shape (2, 2), where each entry is from the row 0

58 introduction to machine learning lecture notes for cos 324 at princeton university

or 1 and column 0 or 2:

X[[0, 1], [0, 2]]

Note that similar to the 1D case, the : operator is used to perform
array slicing. Bounding indices can be omitted as shown in the
following code snippet:

X[:,0]

This extracts the full set of rows and the column 0, or in other words,
the first column of X.

Finally, we use a list comprehension to specify the plotting color for
each data point:

[colors[y_i] for y_i in y]

This is Python syntactic sugar that allows the user to create an array
while iterating over the elements of an iterator. The code snippet here
is equivalent to the following code.

list = []

for y_i in y:

list.append(colors[y_i])

5
Exploring “Data Science” via Linear Regression

So far, our treatment of machine learning has been from the perspec-
tive of a computer scientist. It is important to note, however, that
models such as linear regression are useful in a variety of other fields
including the physical sciences, social sciences, etc. In this chapter,
we present case studies from different fields. Here, the inputs xi are
considered to be explanatory variables, the output y is considered to be
the effect variable, and the weights wi quantify the causal significance
of the associated inputs xi on the output y. The interpretation of
weights as a type of causality is crucial; often, the ideal method of
determining causality through a set of rigorous randomized control
trials is too expensive.

5.1 Boston Housing: Machine Learning in Economics

Our first case study comes from the field of economics. In 1978,
Harrison and Rubinfeld released a classic study on the willingness to
pay for clean air in the Boston metropolitan area. Their methodology
involved an economic model called hedonic pricing, 1 which essentially 1 This definition is paraphrased from

the following Wikipedia article: https:
//en.wikipedia.org/wiki/Hedonic_

regression

estimates the value of a good by breaking it down into “constituent
characteristics.” It turns out we can use linear regression can help
determine which of these attributes are most important. Specifically,
suppose we have a dataset of house sales where y represents the
price of the house and x⃗ ∈ R15 represents a set of house attributes.
2 Then, we aim to find an optimum set of weights w⃗ for the linear 2 x0 is a dummy variable, and the

remaining 14 coordinates x1, . . . , x14
each correspond to an attribute.

model:

y ≈
14

∑
i=0

wixi (5.1)

Table 5.1 lists all 14 attributes that were used in the linear regres-
sion model. Before fitting the model with these attributes, it is useful
to intuitively reason about some of the attributes. For instance, we
expect the weight w5 corresponding to RM, the number of bedrooms,

https://en.wikipedia.org/wiki/Hedonic_regression
https://en.wikipedia.org/wiki/Hedonic_regression
https://en.wikipedia.org/wiki/Hedonic_regression

60 introduction to machine learning lecture notes for cos 324 at princeton university

Index Code Description

1 ZN
proportion of residential land zoned for

lots over 25, 000 ft2

2 INDUS proportion of non-retail business acres per town

3 CHAS
Charles River dummy variable

(1 if tract bounds river; 0 otherwise)
4 NOX nitric oxides concenteration (parts per 10 million)
5 RM average number of rooms per dwelling

6 AGE
proportion of owner-occupied units

built prior to 1940

7 DIS
weighted distances to

five Boston employment centres
8 RAD index of accessibility to radial highways
9 TAX full-value property-tax rate per $10, 000

10 MEDV
Median value of owner-occupied homes

(in $1, 000s)
11 CRIM per capita crime rate in town
12 PTRATIO pupil-teacher ratio by town
13 LSTAT % lower status of the population

14 B
1000(Bk− 0.63)2 where Bk is the proportion

of black population in town

Table 5.1: 14 attributes used in the
Boston housing regression model. The
attributes are presented in a different
order from the paper.

to be positive because larger houses typically sell for more. Con-
versely, we expect the weight w4 corresponding to NOX, the amount
of air pollution, to be negative as people would prefer not to live in a
polluted environment. After running the regression, it indeed turns
out that these intuitions are correct. 3 In general, it can be useful to 3 The regression weights can be found

on page 100 of the original paper.
https://deepblue.lib.umich.edu/

bitstream/handle/2027.42/22636/

0000186.pdf?sequence=1&isAllowed=y.

double-check that the calculated weights align with intuition: if they
do not, it could be a sign that a modeling assumption is incorrect.

5.1.1 The Strange Math of Feature B

The headline result of the paper is that the willingness to pay for
cleaner air increases both when income level is higher and when
the current pollution level is higher. However, if you read the paper
closely, you may notice the presence of a curious parameter B, which
is defined in terms of Bk, the proportion of black population in the
neighborhood. This parameter is meant to represent a social segrega-
tion effect present within the Boston housing market. The authors of
the paper speculated that (1) at a lower level of Bk, the housing price
will decrease as Bk increases since the white population tend to avoid
black population, but (2) at a very high level of Bk, the housing price
will increase as Bk increases because black population prefer predom-

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf?sequence=1&isAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf?sequence=1&isAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf?sequence=1&isAllowed=y

exploring “data science” via linear regression 61

inantly black neighborhoods. To capture this intuition, they defined
the attribute B in the parabolic expression B = 1000(Bk − 0.63)2. It
indeed turns out that the weight w14 corresponding to B is positive as
shown in Figure 5.1.

Figure 5.1: The graph of B =
1000(Bk − 0.63)2. This is an exam-
ple of featurization as discussed in
Chapter 1. It encodes prevailing dis-
crimination of that period. The term
“black” is not favored today either.

5.1.2 Ethnic Concerns Behind a Model

It seems strange to have such a sensitive attribute B have an influence
on the model. We might wonder about the social harm that could
arise if the model was used by real-life sellers or buyers (e.g., the buy-
ers could demand a house for a lower price based on the proportion
of black population in the neighborhood). On the other hand, the
fitted model confirms that there is an underlying segregation effect
already present in the society. Also, we cannot guarantee that the
model would be race-neutral even if we eliminated the parameter
B. For instance, maybe one or more of the other variables (e.g., air
quality variables) is highly correlated with B. 4 4 We will revisit such issues of bias in

Chapter 16.Ultimately, the primary takeaway from this case study is that
implementing machine learning models in real life is a challenge
itself. At a technical level, the model may make sense and make good
predictions of house prices. But one has to consider the social effects
of an ML model on the phenomenon being studied: in particular,
whether it supports or extends prevailing inequities. The following
are some important pointers to keep in mind:

1. If the world has a problem, the data will reflect it and so will our
models

2. If a problematic model later gets used in real life, it can exacerbate
the existing problem

3. The choices of attributes when making a model might bias the
outcome

62 introduction to machine learning lecture notes for cos 324 at princeton university

4. Carelessly using data can later lead to modeling issues

5.2 fMRI Analysis: Machine Learning in Neuroscience

We next consider an application of ML in a vastly different field.
One of the most important tools in contemporary neuroscience is
Functional Magnetic Resonance Imaging (fMRI). fMRI has been used
successfully to map human functionality (e.g., speech, memory) to
brain regions. In a more active role, it can assist with tumor surgery
or “decoding” thoughts and emotions.

Figure 5.2: A sample image of
a fMRI reading. Source: https:
//en.wikipedia.org/wiki/Functional_

magnetic_resonance_imaging

fMRI experiments often involve presenting a set of stimuli (e.g.,
images of human face) to the subject in order to elicit a neurological
response, which is then captured through a fMRI reading. Each
reading reveals the concentration of oxygen in the blood stream
throughout the brain, which is used as a proxy for brain activity.
5 Through the result of the reading, we are able to conclude if a 5 Formally, this is referred to as the

blood-oxygen-level-dependent (BOLD)
signal

particular voxel responds to a particular stimulus. The naive way of
conducting these experiments is to present one stimulus at a time
and wait until we get a reading of the brain response before we move
on to the next stimulus.

But if you have previously taken a course in neuroscience, you
may recall that fMRI is unfortunately a double-edged sword. It
features excellent spatial resolution, with each voxel as small as 1 mm3.
However, it has poor temporal resolution: often, readings require
several seconds for blood flow to stabilize! Coupled with the fact that
regulations limit the amount of time human subjects can spend in
the scanner, it becomes clear that methodologies based on sequential
presentation of stimuli are too inefficient. In this section, we explore

https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging

exploring “data science” via linear regression 63

how to leverage techniques from linear regression in order to solve
this problem.

5.2.1 Linear Superposition

The key intuition involves a concept called linear superposition: if a
subject is shown multiple stimuli in quick succession, the strength
of the voxel’s response is the sum of the strength of its response to
each of the individual stimuli. 6 Instead of waiting until we have 6 This is exactly like the linear superpo-

sition of wave functions in physics.the image of one stimulus to move on, considering showing a new
stimulus every 1 or 2 seconds. Each fMRI reading will now capture
the composite brain response to the stimuli from the past few seconds.
We will use linear regression to disentangle the information, and
extract which voxel responded to which stimulus. 7 7 Note that this is a very simplified

version. The actual process is much
more complicated.

Consider the following example.

Example 5.2.1. See Figure 5.3. The graph on the top left represents a voxel’s
response when the subject is shown the image of a face. The graph on the
top right represents the response when the subject is shown the image of a
flower. The bottom graph represents the response when the subject is shown
the image of a flower 1 second after the image of a face. Notice that the first
two graphs have been superposed to create the third graph. In practice, we
are interested in the problem of extracting the individual graphs when given
the superposed graph.

Figure 5.3: Three graphs explaining the
effect of linear superposition.

5.2.2 Linear Regression

Now let us describe how to formulate this problem in terms of linear
regression. First assume that the subject is shown one of k types
of stimuli at each time step t where t ∈ {1, 2, . . . , T}. Let yt be the

64 introduction to machine learning lecture notes for cos 324 at princeton university

response of a particular voxel at step t. The main assumption is that
yt is the linear superposition of the responses to stimuli from the
steps in [t− 10, t]. We also define a T × k matrix X with 0/1 entries,
where Xts = 1 if stimulus type s is shown during [t − 10, t] and 0
otherwise. Then we can set up the following linear regression model:

yt ≈
k

∑
s=1

wsXts

When we find the optimal values of ws via least squares, ws = 1
means that the particular voxel responds to the stimulus type s.

5.2.3 Neural Correlates of Thought

Now we know how to find the values of ws for a specific voxel. That
is, we can test if a particular voxel responds to a particular stimu-
lus. Combining this method with a spatial smoothing (i. e., applying
the principle that nearby voxels behave similarly), 8 we are able to 8 The simplest smoothing method is to

take the ws values for one voxel and
replace them with the average of the
neighboring voxels.

identify which region of a brain is associated to which stimulus. So
far, more than 1, 000 regions of the brain have been identified and
mapped.

Figure 5.4: A detailed map labeling
areas of the brain with corresponding
stimuli. https://www.nature.com/
articles/nature17637

5.2.4 Brain-Computer Interface (BCI)

We finish off with a tangible example of how our studies can help
people. Patients who are suffering from Locked-in Syndrome (LIS)
are aware of their surroundings and have normal reasoning capacities

https://www.nature.com/articles/nature17637
https://www.nature.com/articles/nature17637

exploring “data science” via linear regression 65

but have no way of communicating with others through speech or
facial movements. Using a combination of a technology called Brain-
Computer Interface and a linear regression model, we are able to
communicate with these patients.

Brain-Computer Interface is an electode sensor implanted near the
motor cortex that can detect the electric signal that LIS patients are
trying to send to the motor cortex. We can teach the patients to visu-
alize writing with their dominant hand if they want to answer “no”
and visualize writing with their non-dominant hand if they want to
answer “yes.” Since the neural correlates of the two movements are
very different, BCI will pick up essentially disjoint signals, and we
can use linear regression model to distinguish between them. 9 9 Note: training also requires labeled

data, which can be produced by asking
the patient questions about known
facts (e. g., birth date, marital status,
etc.). This technique has been used
to communicate with patients in
deep coma and presumed to be in a
vegetative state. See Science of Mind
Reading, New Yorker, December 6 2021,
which also profiles several Princeton
researchers.

