
9
Matrix Factorization and Recommender Systems

9.1 Recommender Systems

Cataloging and recommender systems have always been an essential
asset for consumers who find it difficult to choose from the vast scale
of available goods. As early as 1876, the Dewey decimal system was
invented to organize libraries. In 1892, Sears released their famed
catalog to keep subscribers up to date with the latest products and
trends, which amounted to 322 pages. Shopping assistants at depart-
ment stores or radio disc jockeys in the 1940s are also examples of
recommndations via human curation. In more contemporary times,
bestseller lists at bookstores, or Billboard Hits list aim to capture
what is popular among people. The modern recommender system
paradigm now focuses on recommending products based on what is
liked by people “similar” to you. In this long history of recommender
systems, the common theme is that people like to follow trends, and
recommender systems can help catalyze this process.

9.1.1 Movie Recommendation via Human Curation

Suppose we want to design a recommender system for movies. A
human curator identifies r binary attributes that they think are im-
portant for a movie (e.g., is a romance movie, is directed by Steven
Spielberg, etc.) Then they assign each movie an r-dimensional at-
tribute vector, where each element represents whether the movie has
the corresponding attribute (e.g., coordinate 2 will have value 1 if a
movie is a “thriller” and 0 otherwise).

Now, using a list of movies that a particular user likes, the curator
assigns an r-dimensional taste vector to a given user in a similar
manner (e.g., coordinate w will have value 1 if a user likes “thrillers”
and 0 otherwise). With these concepts in mind, we can start with
defining the affinity of a user for a particular movie:

106 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 9.1.1 (User Affinity). Given a taste vector Ai = (ai,1, ai,2, . . . , ai,r)

for user i and the genre vector Bj = (b1,j, b2,j, . . . , br,j) for movie j, we de-
fine the affinity of user i for movie j as

Ai · Bj =
r

∑
k=1

ai,kbk,j (9.1)

Intuitively, this metric counts the number of attributes which are
1 in both vectors, or equivalently how many of the user’s boxes are
“checked off” by the movie. Mathematically, the affinity is defined as
a dot product, which can be extended to matrix multiplication. Thus
if we have a matrix A ∈ Rm×r where each of m rows is a taste vector
for a user and a matrix B ∈ Rr×n where each of n columns is a genre
vector for a movie, the (i, j) entry of the matrix product M = AB
represents the affinity score of user i for movie j.

We can also define an additional similarity metric:

Definition 9.1.2 (Similarity Metric). Given taste vector Ai for user i and
taste vector Aj for user j, we define the similarity of user i and user j as

r

∑
k=1

ai,kaj,k (9.2)

Similarly, the similarity of movie i and movie j is defined as

r

∑
k=1

bk,ibk,j (9.3)

Finally, in practice, each individual is unique and has a different
average level of affinity for movies (for example, some users like
everything while others are very critical). This means that directly
comparing the affinity of one user to another might not be helpful.
One way to circumvent this problem is to augment (9.1) in Defini-
tion 9.1.1 as

r

∑
k=1

ai,kbk,j + ai,0 (9.4)

with a bias term ai,0.
Based on the affinity scores or similarity scores, the human curator

will be able to recommend movies to users. This model design seems
like it does the job as a recommender system. In practice, developing
such models through human curation comes with a set of pros and
cons:

• Pros: Using human curation allows domain expertise to be lever-
aged and this intuition can be critical in the development of a
good model (i. e., which attribute is important). In addition, a
human curated model will naturally be interpretable.

matrix factorization and recommender systems 107

• Cons: The process is tedious and expensive; thus it is difficult to
scale. In addition, it can be difficult to account for niche demo-
graphics and genres and this becomes a problem for companies
with global reach.

We conclude that while human curated models can certainly be
useful, the associated effort is often too great.

9.2 Recommender Systems via Matrix Factorization

In this section, we provide another technique that can be used for
recommender systems — matrix factorization. This method started to
become popular since 2005.

9.2.1 Matrix Factorization

Matrix factorizations are a common theme throughout linear alge-
bra. Some common techniques include LU and QR decomposition,
Rank Factorization, Cholesky Decomposition, and Singular Value
Decomposition.

Definition 9.2.1 (Matrix Factorization). Suppose we have some matrix
M ∈ Rm×n. A matrix factorization is the process of finding matrices
A ∈ Rm×r, B ∈ Rr×n such that M = AB for some r < m, n.

Unfortunately, these techniques become less directly applicable
once we consider the case where most of the entries of M are missing
(i. e., a missing-data setting). As we saw in Section 9.1.1, this is very
common in real-world applications — for example, if the (m, n) entry
of M represents the rating of user m for movie n, most entries in M
are missing because not everyone has seen every movie. What can we
do in such a case?

In turns out, if we assume that M is a low-rank matrix (which is
true for many high-dimensional datasets, as noted in Chapter 7), then
we can consider an approximate factorization M ≈ AB on the known
entries. We express this as the following optimization problem:

Definition 9.2.2 (Approximate Matrix Factorization). Suppose we have
some matrix M ∈ Rm×n where Ω ⊂ [m]× [n] is the subset of (i, j) where
Mij is known. An approximate matrix factorization is the process of
finding matrices A ∈ Rm×r, B ∈ Rr×n for some r < m, n that minimize the
loss function:

L(A, B) =
1
|Ω| ∑

(i,j)∈Ω
(Mij − (AB)ij)

2 (9.5)

We denote the approximation as M ≈ AB.

108 introduction to machine learning lecture notes for cos 324 at princeton university

Notice this form is familiar: we are effectively trying to find op-
timal matrices A, B which will minimize the MSE between known
entries of M and corresponding entries in the matrix product AB!
One thing to note is that by calculating the matrix product AB, we
can “predict” entries of M that are unknown.

You can take the following result from linear algebra as granted.

Theorem 9.2.3. Given M ∈ Rm×n, we can find the matrix factorization
M = AB, with A ∈ Rm×r and B ∈ Rr×n if and only if M has rank at most
r. Also, we can find the approximate matrix factorization M ≈ AB, with
A ∈ Rm×r, B ∈ Rr×n if and only if M is “close to” rank r.

9.2.2 Matrix Factorization as Semantic Embeddings

Recall the setup in Section 9.1.1. But instead of calculating the affinity
matrix M as the product of the matrices A, B, we will approach
from the opposite direction. We will start with an affinity matrix
M ∈ Rm×n (which is only partially known) and find its approximate
matrix factorization M ≈ AB. We can understand that A ∈ Rm×r

represents a set of users and that B ∈ Rr×n represents a set of
movies.

Figure 9.1: Matrix factorization on
movie recommendations. Usually the
inner dimension r would be much
smaller than m, n.

Specifically, if we let Ai∗ denote the i-th row of A and B∗j denote
the j-th column of B, then Ai∗ can be understood as the taste vector
of user i and B∗j can be understood as the attribute vector of movie
j. One difference to note is that the output of a matrix factorization
is real-valued, unlike the the 0/1 valued matrices A, B from Sec-
tion 9.1.1. We can then use the vectors Ai∗ and B∗j to find similar
users or movies and make recommendations.

Example 9.2.4. Assume all columns of B have ℓ2 norm 1. That is,
∥∥B∗j

∥∥
2 =

1 for all j. When the inner product B∗j · B∗j′ of two movie vectors is actually
1, the two vectors are exactly the same! They have the same inner product
with every user vector Ai∗ — in other words these movies have the same
appeal to all users. Now suppose B∗j · B∗j′ is not quite 1 but close to 1, say
0.9. This means the movie vectors are quite close but not the same. Still,
their inner product with typical user vectors will not be too different. We

matrix factorization and recommender systems 109

conclude that two movies j, j′ with inner product B∗j · B∗j′ close to 1 tend
to get recommended together to users. One can similarly conclude that high
value of inner product between two user vectors is suggestive that the users
have similar tastes.

9.2.3 Netflix Prize Competition: A Case Study

During 2006-09, DVDs were all the rage. Companies like Netflix were
quite interested in recommending movies as accurately as possible
in order to retain clients. At the time, Netflix was using an algorithm
which had stagnated around RMSE = 0.95. 1 Seeking fresh ideas, 1 RMSE is shorthand for

√
MSE.

Netflix curated an anonymized database of 100M ratings (each rating
was on a 1− 5 scale) of 0.5M users for 18K movies. Adding a cash
incentive of $1, 000, 000, Netflix challenged the world to come up
with a model that could achieve a much lower RMSE! 2 It turned out 2 This was an influential competi-

tion, and is an inspiration for today’s
hackathons, Kaggle, etc.

that matrix factorization would be the key to achieving lower scores.
In this example, m = 0.5M, n = 18k, and Ω corresponds to the 100M
ratings out of m · n = 10B affinities. 3 3 Less than 1% of possible elements are

accounted for by Ω.After a lengthy competition, 4 the power of matrix factorization is
4 Amazingly, a group of Princeton
undergraduates managed to achieve the
second place!

on full display when we consider the final numbers:

• Netflix’s algorithm: RMSE = 0.95

• Plain matrix factorization: RMSE = 0.905

• Matrix factorization and bias: RMSE = 0.9

• Final winner (an ensemble of many methods) : RMSE = 0.856

Figure 9.2: 2D visualization of embed-
dings of film vectors. Note that you
see clusters of “artsy” films on top
right, and romantic films on the bottom.
Credit: Koren et al., Matrix Factorization
Techniques for Recommender Systems,
IEEE Computer 2009.

110 introduction to machine learning lecture notes for cos 324 at princeton university

9.2.4 Why Does Matrix Factorization Work?

In general, we need mn entries to completely describe a m× n matrix
M. However, if we find factor M into the product M = AB of m× r
matrix A and r× n matrix B, then we can describe M with essentially
only (m + n)r entries. When r is small enough such that (m + n)r ≪
mn, some entries of M (including the missing entries) are not truly
“required” to understand M.

Example 9.2.5. Consider the matrix

M =

1 1 ∗ 2
1 1 ∗ ∗
4 ∗ 8 ∗
4 ∗ ∗ ∗

Is it possible to fill in the missing elements such that the rank of M is 1?
Since r = 1, it means that all the rows/columns of M are the same up to
scaling. By observing the known entries, the second row should be equal to
the first row, and the third and the fourth row should be equal to the the first
row multiplied by 4. Therefore, we can fill in the missing entries as

M =

1 1 2 2
1 1 2 2
4 4 8 8
4 4 8 8

It is not hard to infer that M = AB where A = (1, 1, 4, 4)T and B =

(1, 1, 2, 2)

Example 9.2.6. Consider another matrix

M =

1 1 ∗ ∗
1 7 ∗ ∗
4 ∗ ∗ 2
∗ 4 ∗ ∗

Is it possible to fill in the missing elements such that the rank of M is 1?
This time, the answer is no. Following a similar logic from Example 9.2.5,
the second row should be equal to the first row multiplied by a constant.
This is not feasible since M2,1/M1,1 = 1 and M2,2/M1,2 = 7.

9.3 Implementation of Matrix Factorization

In this section, we look more deeply into implementing matrix fac-
torization in an ML setting. As suggested in Definition 9.2.2, we can
consider the process of approximating a matrix factorization to be an
optimization problem. Therefore, we can use gradient descent.

matrix factorization and recommender systems 111

9.3.1 Calculating the Gradient of Full Loss

Recall that for an approximate matrix factorization of a matrix M, we
want to find matrices A, B that minimize the following loss:

L(A, B) =
1
|Ω| ∑

(i,j)∈Ω
(Mij − (AB)ij)

2 (9.5 revisited)

Here (AB)ij = Ai∗ · B∗j. Now we find the gradient of the loss
L(A, B) by first finding the derivatives of L with respect to elements
of A (a total of mr derivatives), then finding the derivatives of L with
respect to elements of B (a total of nr derivatives).

First, consider an arbitrary element Ai′k′ :

∂

∂Ai′k′
L(A, B) =

1
|Ω| ∑

(i,j)∈Ω
2(Mij − (AB)ij)

∂

∂Ai′k′
(−(AB)ij)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
2(Mi′ j − (AB)i′ j)

∂

∂Ai′k′
(−(AB)i′ j)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
2(Mi′ j − (AB)i′ j) · (−Bk′ j)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
−2Bk′ j(Mi′ j − (AB)i′ j) (9.6)

Note that the second step is derived because (AB)ij = ∑k AikBkj and

if i ̸= i′, then
∂(AB)ij
∂Ai′k′

= 0. Enumerating (i, j) ∈ Ω can be changed to
only enumerating (i′, j) ∈ Ω. Similarly, we can consider an arbitrary
element Bk′ j′ :

∂

∂Bk′ j′
L(A, B) =

1
|Ω| ∑

(i,j)∈Ω
2(Mij − (AB)ij)

∂

∂Bk′ j′
(−(AB)ij)

=
1
|Ω| ∑

i: (i,j′)∈Ω
2(Mij′ − (AB)ij′)

∂

∂Bk′ j′
(−(AB)ij′)

=
1
|Ω| ∑

i: (i,j′)∈Ω
2(Mij′ − (AB)ij′) · (−Aik′)

=
1
|Ω| ∑

i: (i,j′)∈Ω
−2Aik′(Mij′ − (AB)ij′) (9.7)

Whew! That’s a lot of derivatives, but we now have ∇L(A, B) at our
disposal.

9.3.2 Stochastic Gradient Descent for Matrix Factorization

Of course, we could use ∇L(A, B) for a plain gradient descent as
shown in Chapter 3. However, given that each derivative in the
gradient involves a sum over a large number of indices, it would be

112 introduction to machine learning lecture notes for cos 324 at princeton university

worthwhile to use stochastic gradient descent in order to estimate the
overall gradient via a small random sample (as shown in Section 3.2).

If we take a sample S ⊂ Ω of the known entries at each iteration,
the loss becomes

L̂(A, B) =
1
|S| ∑

i,j∈S
(Mij − (AB)ij)

2 (9.8)

and the gradient becomes

∂

∂Ai′k′
L̂(A, B) =

1
|S| ∑

j: (i′ ,j)∈S
−2Bk′ j(Mi′ j − (AB)i′ j) (9.9)

∂

∂Bk′ j′
L̂(A, B) =

1
|S| ∑

i: (i,j′)∈S
−2Aik′(Mij′ − (AB)ij′) (9.10)

However, if we take a uniform sample S of Ω, the computation will
not become much cheaper, since (i, j) ∈ S can spread into many
different rows and columns. One clever (and common) way to do
so is to select a set of columns C by sampling k out of the overall n
columns. This method is called column sampling. We then only need
to consider entries (i, j) ∈ Ω where j ∈ C and compute gradients only
for the entries Bk,j where j ∈ C. We can also perform row sampling
in a very similar manner. In practice, whether we should use column
sampling or row sampling, or gradient descent of full loss, depends
on the actual sizes of m and n.

