
8
n-Gram Language Models

In this chapter, we continue our investigation into unsupervised
learning techniques and now turn our attention to language mod-
els. You may have heard of natural language processing (NLP) and
models such as GPT-3 in the news lately. The latter is quite impres-
sive, being able to write and publish its own opinion article on a
reputable news website! 1 While most of these models are trained 1 The full piece can be found at

https://www.theguardian.com/

commentisfree/2020/sep/08/

robot-wrote-this-article-gpt-3

using state-of-the-art deep learning techniques which we will discuss
later on in this text, this chapter explores a key idea, which is to view
language as the output of a probabilistic process, which leads to an
interesting measure of the “goodness” of the model. Specifically, we
will investigate the so-called n-gram language model.

8.1 Probabilistic Model of Language

Classical linguistics focused on the syntax or the formal grammar of
languages. The linguists believed that a language can be modeled
by a set of sentences, constructed from a finite set of vocabularies
and a finite set of grammatical rules. But this approach in language
modeling had limited success in machine learning.

Figure 8.1: An example of a syntax tree
of an English sentence.

Instead, the approach of machine learning in language models,

https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3

90 introduction to machine learning lecture notes for cos 324 at princeton university

pioneered by Claude Shannon, has been to learn the distribution of
pieces of text.

Figure 8.2: Claude Shannon, inventor
of the n-gram language model in
https://languagelog.ldc.upenn.edu/

myl/Shannon1950.pdf. Picture from
https://en.wikipedia.org/wiki/

Claude_Shannon.

In other words, the model assigns a probability to all conceivable
finite pieces of English text (even those that have not yet been spoken
or written). For example, the sentence “how can I help you” will be
assigned some probability, most likely larger than the probability
assigned to the sentence “can I how you help.” Note that we don’t
expect to find a “correct” model; all models found to date are ap-
proximations. But even an approximate probabilistic model can have
interesting uses, such as the following:

1. Speech recognition: A machine processes a recording of a human
speech that sounds somewhere between “I ate a cherry” and “eye
eight a Jerry.” If the model assigns a higher probability score to the
former, speech recognition can still work in this instance.

2. Machine translation: “High winds tonight” should be considered a
better translation than “large winds tonight.”

3. Context sensitive spelling correction: We can compare the proba-
bilities of sentences that are similar to the following sentence —
“Their are problems wit this sentence.” — and output the cor-
rected version of the sentence.

4. Sentence completion: We can compare the probabilities of sentences
that will complete the following phrase — “Please turn off your ...”
— and output the one with the highest probability.

8.2 n-Gram Models

Say we are in the middle of the process of assigning a probability
distribution over all English sentences of length 5. We want to find
the probability of the sentence “I love you so much.” If we let Xi be
the random variable that represents the value of the i-th word, the
probability we are looking for is the joint probability

Pr[X1 = ”I”, X2 = ”love”, X3 = ”you”, X4 = ”so”, X5 = ”much”] (8.1)

By the Chain Rule, we can split this joint probability into the product
of a marginal probability and four conditional probabilities:

(8.1) = Pr[X1 = ”I”] (8.2)

× Pr[X2 = ”love” | X1 = ”I”]

× Pr[X3 = ”you” | X1 = ”I”, X2 = ”love”]

× Pr[X4 = ”so” | X1 = ”I”, X2 = ”love”, X3 = ”you”]

× Pr[X5 = ”much” | X1 = ”I”, X2 = ”love”, X3 = ”you”, X4 = ”so”]

https://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf
https://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Claude_Shannon

n-gram language models 91

If we estimate all components of the product in (8.2), we will be able
to estimate the joint probability (8.1).

Now consider the bigram model, which has the following two
assumptions:

1. The probability of a word is only dependent on the immediately
previous word.

2. That probability does not depend on the position of the word in
the sentence.

The first assumption says that, for example, the conditional proba-
bility

Pr[X3 = ”you” | X1 = ”I”, X2 = ”love”]

can be simplified as

Pr[X3 = ”you” | X2 = ”love”]

The second assumption says that

Pr[X3 = ”you” | X2 = ”love”] = Pr[Xi+1 = ”you” | Xi = ”love”]

for any 1 ≤ i ≤ 4. We abuse notation and denote any of these
probabilities as Pr[”you” | ”love”].

Applying these assumptions to (8.2), we can simplify it as

(8.1) = Pr[”I”]× Pr[”love” | ”I”]× Pr[”you” | ”love”]

× Pr[”so” | ”you”]× Pr[”much” | ”so”] (8.3)

Now we are going to estimate each component of (8.3) from a
large corpus of text. The estimation for the marginal probability of
the word “I” is given as

Pr[”I”] ≈ Count("I")
total number of words

(8.4)

where Count refers to the number of occurrences of the word in
the text. In other words, this is the proportion of the occurrence of
the word “I” in the entire corpus. Similarly, we can estimate the
conditional probability of the word “love” given its previous word is
“I” as

Pr[”love” | ”I”] ≈ Count("I love")

∑
w

Count("I" + w)
(8.5)

where in the denominator, we sum over all possible words in the
dictionary. This is the proportion of the word “love” occurring im-
mediately after the word “I” out of every time some word w in the
dictionary occurring immediately after the word “I.” 2 In general, we 2 Notice that there is no word occurring

immediately after the word “I” when
“I” is at the end of the sentence in
the training corpus. Therefore, the
denominator in (8.5) is equal to the
Count of “I” minus the Count of “I”
at the end of a sentence. This is not
necessarily the case when we introduce
the sentence stop tokens in Section 8.3.

92 introduction to machine learning lecture notes for cos 324 at princeton university

can estimate the following conditional probability as

Pr[wi+1 | wi] ≈
Count(wiwi+1)

∑
w

Count(wiw)
(8.6)

where wi is the i-th word of the sentence. Once we calculate these
estimates from the corpus, we are able to define the probability of the
sentence "I love you so much."

8.2.1 Defining n-Gram Probabilities

We can extend the example above to a more general setting. Now we
want to define the probability distribution over all sentences of length
k (grammatical or not). Say we want to find the joint probability of
the sentence w1w2 . . . wk where wi is the i-th word of the sentence. We
will employ an n-gram model which has two assumptions:

1. The probability of a word is only dependent on the immediately
previous n− 1 words. 3 3 If n = 1, the model is called a unigram

model, and the probability is not de-
pendent on any previous word. When
n = 2 and n = 3, the model is respec-
tively called a bigram and a trigram
model.

2. That probability does not depend on the position of the word in
the sentence.

By a similar logic from the earlier example, we abuse notation
and denote the joint probability of the sentence w1w2 · · ·wk as
Pr[w1w2 . . . wk]; the marginal probability of the first word being
w1 as Pr[w1]; and so on. We can apply the Chain Rule again to define
the n-gram model.

Definition 8.2.1 (n-Gram Model). An n-gram model assigns the following
probability to the sentence w1w2 . . . wk if n > 1: 4 4 max(1, i− n + 1) in the third line is to

ensure that we access the correct indices
for the first n− 1 words, where there are
less than n− 1 previous words to look
at.

Pr[w1w2 . . . wk] = Pr[w1]Pr[w2 | w1] · · ·Pr[wk | w1w2 . . . wk−1]

= Pr[w1]×
k

∏
i=2

Pr[wi | w1 . . . wi−1]

= Pr[w1]×
k

∏
i=2

Pr[wi | wmax(1,i−n+1) . . . wi−1] (8.7)

and the following probability if n = 1:

Pr[w1w2 . . . wk] =
k

∏
i=1

Pr[wi] (8.8)

where the n-gram probabilities are estimated from a training corpus as the
following

Pr[wi] ≈
Count(wi)

total number of words

Pr[wj | wi . . . wj−1] ≈
Count(wi . . . wj−1wj)

∑
w

Count(wi . . . wj−1w)

n-gram language models 93

This defines the “best” possible probabilistic model in terms of the
Maximum Likelihood Principle from Subsection 4.2.1. 5 We now turn 5 We will prove this for n = 1 later.

to the following example.

Example 8.2.2. We investigate a cowperson language which has two words
in the dictionary: {Yee, Haw}. Suppose the training corpus is given as “Yee
Haw Haw Yee Yee Yee Haw Yee.” Then the unigram probabilities can be
estimated as

Pr[”Yee”] =
5
8

Pr[”Haw”] =
3
8

We can also create the bigram frequency table as in Table 8.1 and we normal-
ize the rows of the bigram frequency table to get the bigram probability table
in Table 8.2.

previous
next

“Yee” “Haw” Total

“Yee” 2 2 4
“Haw” 2 1 3

Table 8.1: Bigram frequency table of the
cowperson language.

previous
next

“Yee” “Haw” Total

“Yee” 2/4 2/4 1
“Haw” 2/3 1/3 1

Table 8.2: Bigram probabilty table of the
cowperson language.

From Table 8.2, we get the following bigram probabilities:

Pr[”Yee” | ”Yee”] =
2
4

Pr[”Haw” | ”Yee”] =
2
4

Pr[”Yee” | ”Haw”] =
2
3

Pr[”Haw” | ”Haw”] =
1
3

Then by the bigram model, the probability that we see the sentence “Yee Haw
Yee” out of all sentences of length 3 can be calculated as

Pr[”Yee”]×Pr[”Haw” | ”Yee”]×Pr[”Yee” | ”Haw”] =
5
8
× 2

4
× 2

3
≃ 0.21

8.2.2 Maximum Likelihood Principle

Recall the Maximum Likelihood Principle introduced in Subsec-
tion 4.2.1. It gave a way to measure the “goodness” of a model with
probabilistic outputs.

Now we formally prove that the estimation methods given in
Definition 8.2.1 satisfy the Maximum Likelihood Principle for the
n = 1 case. A probabilistic model is “better” than another if it assigns
more probability to the actual outcome. Here, the actual outcome is
the training corpus, which also consists of words. So let us denote

94 introduction to machine learning lecture notes for cos 324 at princeton university

the training corpus as a string of words w1w2 . . . wT . By definition, a
unigram model will assign the probability

Pr[w1w2 . . . wT] =
T

∏
i=1

Pr[wi] (8.9)

to this string. Remember that each of the wi’s are a member of a
finite set of dictionary words. If we let V be the size of the dictionary,
then the model is defined by the choice of V values, the probabilities
we assign to each of the dictionary words. Let pi be the probability
that we assign to the i-th dictionary word, and let ni be the number
of times that the i-th dictionary word appears in the training corpus.
Then (8.9) can be rewritten as

Pr[w1w2 . . . wT] =
V

∏
i=1

pni
i (8.10)

We want to maximize this value under the constraint
V
∑

i=1
pi = 1. A

solution to this type of a problem can be found via the Lagrange
multiplier method. We will illustrate with an example.

Example 8.2.3. We revisit the cowperson language from Example 8.2.2. Here
V = 2 and T = 8. Let p1 = Pr[”Yee”] and p2 = Pr[”Haw”]. Then the
probability assigned to the training corpus by the unigram model is

Pr[”Yee Haw Haw Yee Yee Yee Haw Yee”] = p5
1 p3

2

We want to maximize this value under the constraint p1 + p2 = 1. Therefore,
we want to find the point where the gradient of the following is zero.

f (p1, p2) = p5
1 p3

2 + λ(p1 + p2 − 1)

for some λ. The gradients are given as

∂ f
∂p1

= 5p4
1 p3

2 + λ
∂ f
∂p2

= 3p5
1 p2

2 + λ

From 5p4
1 p3

2 + λ = 3p5
1 p2

2 + λ = 0, we get p1
p2

= 5
3 . Combined with the fact

that p1 + p2 = 1, we get the optimal solution p1 = 5
8 and p2 = 3

8 .

Problem 8.2.4. Following the same Lagrange multiplier method as in
Example 8.2.3, verify that the heuristic solution pi =

ni
T (the empirical fre-

quency) is the optimal solution that maximizes (8.10) under the constraint
V
∑

i=1
pi = 1.

8.3 Start and Stop Tokens

In this section, we present a convention that is often useful: start
token ⟨s⟩ and stop token ⟨/s⟩. They signify the start and the end

n-gram language models 95

of each sentence in the training corpus. They are a special type of
vocabulary item that will be augmented to the dictionary, so you
will want to pay close attention to the way they contribute to the
vocabulary size, number of words, and the n-gram probabilities.
Also, by introducing these tokens, we are able to define a probability
distribution over all sentences of finite length, not just a given length
of k. For the sake of exposition, we will only consider the bigram
model for most parts of this section.

8.3.1 Re-estimating Bigram Probabilities

Consider the cowperson language again.

Example 8.3.1. The training corpus “Yee Haw Haw Yee Yee Yee Haw Yee”
actually consists of three different sentences: (1) "Yee Haw," (2) "Haw Yee
Yee," and (3) "Yee Haw Yee." We can append the start and stop tokens to the
corpus and transform it into

⟨s⟩ Yee Haw ⟨/s⟩
⟨s⟩ Haw Yee Yee ⟨/s⟩
⟨s⟩ Yee Haw Yee ⟨/s⟩

With these start and stop tokens in mind, we slightly relax the As-
sumption 2 of the n-gram model and investigate the probability of a
word w being the first or the last word of a sentence, separately from
other probabilities. We will denote these probabilities respectively as
Pr[w | ⟨s⟩] and Pr[⟨/s⟩ | w]. The former probability will be estimated
as

Pr[w | ⟨s⟩] ≈ Count(⟨s⟩ w)
total number of sentences

(8.11)

which is the proportion of sentences that start with the word w in the
corpus. The latter probability is estimated as

Pr[⟨/s⟩ | w] ≈ Count(w ⟨/s⟩)
Count(w)

(8.12)

which is the proportion of the occurrence of w that is at the end of a
sentence in the corpus.

Also, notice that other bigram probabilities are also affected when
introducing the stop tokens. In (8.6), the denominator originally did
not include the occurrence of the substring at the end of the sentence
because there was no word to follow that substring. However, if we
consider ⟨/s⟩ as a word in the dictionary, the denominator can now
include the case where the substring is at the end of the sentence.
Therefore, the denominator is just equivalent to the Count of the
substring in the corpus. Therefore, the bigram probabilities after
introducing start, stop tokens can be estimated instead as 6 6 If we consider ⟨s⟩ , ⟨/s⟩ as vocabularies

of the dictionary, (8.13) can also include
(8.11), (8.12).

96 introduction to machine learning lecture notes for cos 324 at princeton university

Pr[wj | wj−1] ≈
Count(wj−1wj)

Count(wj−1)
(8.13)

Example 8.3.2. We revisit Example 8.2.2. The bigram frequency table and
the bigram probability table can be recalculated as in Table 8.3 and Table 8.4.
7

7 Note that the values in the Total
column now correspond to the unigram
count of that word.

previous
next

“Yee” “Haw” ⟨/s⟩ Total

⟨s⟩ 2 1 0 3
“Yee” 1 2 2 5

“Haw” 2 0 1 3

Table 8.3: Bigram frequency table of the
cowperson language with start and stop
tokens.

previous
next

“Yee” “Haw” ⟨/s⟩ Total

⟨s⟩ 2/3 1/3 0/3 1
“Yee” 1/5 2/5 2/5 1

“Haw” 2/3 0/3 1/3 1

Table 8.4: Bigram probabilty table of the
cowperson language with start and stop
tokens.

Therefore, the bigram probabilities of the cowperson language, once we
introduce the start and stop tokens, are given as

Pr[”Yee” | ⟨s⟩] = 2
3

Pr[”Haw” | ⟨s⟩] = 1
3

Pr[”Yee” | ”Yee”] =
1
5

Pr[”Haw” | ”Yee”] =
2
5

Pr[⟨/s⟩ | ”Yee”] =
2
5

Pr[”Yee” | ”Haw”] =
2
3

Pr[”Haw” | ”Haw”] =
0
3

Pr[⟨/s⟩ | ”Haw”] =
1
3

8.3.2 Redefining the Probability of a Sentence

The biggest advantage of introducing stop tokens is that now we can
assign a probability distribution over all sentences of finite length,
not just a given length k. Say we want to assign a probability to the
sentence w1w2 . . . wk (without the start and stop tokens). By introduc-
ing start and stop tokens, we can interpret this as the probability of
w0w1 . . . wk+1 where w0 = ⟨s⟩ and wk+1 = ⟨/s⟩. Following the similar
logic from (8.2), we can define this probability by the Chain Rule.

Definition 8.3.3 (Bigram Model with Start, Stop Tokens). A bigram
model, once augmented with start, stop tokens, assigns the following proba-
bility to a sentence w1w2 . . . wk

8 8 Notice that we do not have the term
Pr[w0] in the expansion. A sentence
always starts with a start token, so the
marginal probability that the first word
is ⟨s⟩ can be understood to be 1.

Pr[w1w2 . . . wk] =
k+1

∏
i=1

Pr[wi | wi−1] (8.14)

where the bigram probabilities are estimated as in (8.13).

n-gram language models 97

Example 8.3.4. The probability that we see the sentence “Yee Haw Yee” in
the cowperson language can be calculated as

Pr[”Yee” | ⟨s⟩]× Pr[”Haw” | ”Yee”]× Pr[”Yee” | ”Haw”]× Pr[⟨/s⟩ | ”Yee”]

=
2
3
× 2

5
× 2

3
× 2

5
≃ 0.07

Note that this probability is taken over all sentences of finite length.

Problem 8.3.5. Verify that (8.14) defines a probability distribution over all
sentences of finite length.

8.3.3 Beyond Bigram Models

In general, if we have an n-gram model, then we may need to in-
troduce more than 1 start or stop tokens. For example, in a trigram
model, we will need to define the probability that the word is the first
word of the sentence as Pr[w | ⟨s⟩ ⟨s⟩]. Based on the number of start
and stop tokens introduced, the n-gram probabilities will need to be
adjusted accordingly.

8.4 Testing a Language Model

So far, we discussed how to define an n-gram language model given
a corpus. This is analogous to training a model given a training
dataset. Naturally, the next step is to test the model on a newly
seen held-out data to ensure that the model generalizes well. In this
section, we discuss how to test a language model.

8.4.1 Shakespeare Text Production

First consider a bigram text generator — an application of the bi-
gram model. The algorithm initiates with the start token ⟨s⟩. It then
outputs a random word w1 from the dictionary, according to the
probability Pr[w1 | ⟨s⟩]. It then outputs the second random word
w2 from the dictionary, according to the probability Pr[w2 | w1]. It
repeats this process until the newly generated word is the stop to-
ken ⟨/s⟩. The final output of the algorithm will be the concatenated
string of all outputted words.

It is possible to define a text generator for any n-gram model in
general. Figure 8.4 shows the output of the unigram, bigram, trigram,
quadrigram text generators when the models were trained on all
Shakespeare texts.

Notice the sentence “I will go seek the traitor Gloucester.” in the
output of the quadrigram text generator. This exact line appears in
King Lear, Act 3 Scene 7. This is not a coincidence. Figure 8.5 presents

98 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 8.3: An example run of the
bigram text generator.

Figure 8.4: The outputs of unigram,
bigram, trigram, quadrigram text
generators trained on Shakespeare texts.

the snapshot of the bigram, trigram, and quadrigram text generators
once they have outputted the phrase “go seek the.” You can see that
bigram models and trigram models assign very small probabilities to
the word “traitor” because there are many more instances of phrases
“the” or “seek the” in the corpus than “go seek the.” On the other
hand, the quadrigram model assigns a very large probability to the
word “traitor” because there is only a limited number of times that
the phrase “go seek the” appears in the corpus.

Figure 8.5: The probability of the next
word given the previous three words
are “go seek the” in the n-gram model,
where n = 2, 3, 4.

Once the quadrigram model outputs the word “traitor” after the

n-gram language models 99

phrase “go seek the,” the problem is even worse. As can be seen
in Figure 8.6, the quadrigram model assigns probability of 1 to the
word “Gloucester” meaning that the phrase “seek the traitor” only
appears before the word “Gloucester.” So the model has memorized
one completion of the phrase from the training text. From this exam-
ple, we can see that text production based on n-grams is sampling
and remixing text fragments seen in the training corpus.

Figure 8.6: The probability of the next
word given the previous three words
are “seek the traitor.”

The Shakespeare corpus consists of N = 884, 647 words and V =

29, 066 distinct words from the dictionary. There are about V2 ≈ 845
million possible combinations of bigrams, but Shakespeare only used
around 300, 000 of them in his text. So 99.96% of the possible bigrams
were never seen. The percentage is much higher for quadrigrams!
Furthermore, for the quadrigrams that do appear in the corpus,
most do not even repeat. Thus what comes out of the quadrigram
model looks like Shakespeare because it is a memorized fragment of
Shakespeare.9 9 Do this remind you of overfitting?

8.4.2 Perplexity

Having described a way to train a simple language model, we now
turn our attention to a formal way of testing 10 a language model. 10 This method is used even for testing

state of the art models.Just like any other model in ML, a language model will be given
a corpus w1w2 . . . wT . Then we can assess the performance of the
model by its perplexity on the corpus.

Definition 8.4.1 (Perplexity). The perplexity of a language model on the
corpus w1w2 . . . wT is defined as

Pr[w1w2 . . . wT]
− 1

T = T

√
1

Pr[w1w2 . . . wT]
(8.15)

Note that, perplexity is defined for any probabilistic language
model: the Chain Rule of joint probability applies to every model,

100 introduction to machine learning lecture notes for cos 324 at princeton university

and does not require the n-gram assumptions. That is, 11 11 Assume for now that start and stop
tokens do not exist in the corpus.

Pr[w1w2 . . . wT] = Pr[w1]×
T

∏
i=2

Pr[wi | w1 . . . wi−1]

Then the perplexity of the model can be rewritten as

T

√√√√ 1
Pr[w1]

×
T

∏
i=2

1
Pr[wi | w1 . . . wi−1]

(8.16)

Example 8.4.2. Consider the uniform (“clueless”) model which assumes that
the probability of all words are equal in any given situation. That is, if V is
the vocabulary size (i.e., size of the dictionary),

Pr[wi] = Pr[wi | w1 . . . wi−1] =
1
V

for any given w1, . . . , wi ∈ V. This model assigns
(

1
V

)T
to every sequence

of T words, including the corpus. Therefore, the perplexity of the model is((
1
V

)T
)− 1

T

= V

Now we try to understand perplexity at an intuitive level. (8.16) is
the geometric mean 12 of the following T values: 12 The geometric mean of T numbers

a1, a2, . . . , aT is defined as (∏i ai)
1/T

1
Pr[w1]

,
1

Pr[w2 | w1]
, . . . ,

1
Pr[wT | w1 . . . wT−1]

Now note that a probabilistic model splits the total probability of 1
to fractions and distributes them to the potential options for the next
word. So the inverse of an assigned probability for a word can be
thought roughly as the number of choices the model considered for the
next word. With this viewpoint, perplexity as written in (8.16) means:
how much has the model narrowed down the number of choices for the next
word on average? The clueless model had not narrowed down the
possibilities at all and had the worst-possible perplexity equal to the
number of vocabulary words.

Example 8.4.3. Consider a well-trained language model. At any given place
of text, it can identify a set of 20 words and assigns probability 1

20 to each of
them to be the next word. It happens that the next word is always one of
the 20 words that the model identifies. The perplexity of the model is((

1
20

)T
)− 1

T

= 20

Interestingly enough, the true perplexity of English is believed to
be between 15 and 20. That is, if at an “average” place in text, you
ask humans to predict the next word, then they are able to narrow
down the list of potential next words to around 15 to 20 words. 13 13 The perplexity of state of the art

language models is under 20 as well.

n-gram language models 101

8.4.3 Perplexity on Test Corpus

The perplexity of a language model is analogous to a loss of an ML
model. 14 Similar to ML models we have been studying so far, it is 14 It is customary to use the logarithm

of the perplexity, as we also did for
logistic loss in Chapter 4.

possible to define a train perplexity and a test perplexity. The “good-
ness” of the model will be defined by how low the perplexity was on
a previously unseen, held-out data.

For example, when n-gram models are trained on 38 million words
and tested on 1.5 million words from Wall Street Journal articles,
they show the following test perplexities in Table 8.5. 15 Note that 15 To be more exact, the models were

augmented with smoothing, which will
be introduced shortly.

the state-of-the-art deep learning models achieve a test perplexity of
around 20 on the same corpus.

Unigram Bigram Trigram
962 170 109

Table 8.5: Test perplexities of n-gram
models on WSJ corpus.

8.4.4 Perplexity With Start and Stop Tokens

When start and stop tokens are introduced to a corpus, we also need
to redefine how to calculate the perplexity of the model. Again, we
will only focus on a bigram model for the sake of exposition.

Say the corpus consists of t sentences:

⟨s⟩w1,1w1,2, . . . , w1,T1 ⟨/s⟩
⟨s⟩w2,1w2,2, . . . , w2,T2 ⟨/s⟩

...

⟨s⟩wt,1wt,2, . . . , wt,Tt ⟨/s⟩

The probability of the corpus w1,1w1,2 . . . wt,Tt is redefined as the
product of the probability of each of the sentences:

Pr[w1,1w1,2 . . . wt,Tt] =
t

∏
i=1

Pr[wi,1wi,2 . . . wi,Ti]

=
t

∏
i=1

Ti+1

∏
j=1

Pr[wi,j | wi,j−1] (8.17)

Now we apply the interpretation of the perplexity that it is the geo-
metric mean of probabilities of each word. Notice that we multiplied

t
∑

i=1
(Ti + 1) probabilities to calculate the probability of the corpus.

If we let T =
t

∑
i=1

Ti denote the total number of words (excluding

start and stop tokens) of the corpus, the number of probabilities we
multiplied can be written as T∗ = T + t. 16 16 This can also be thought as adding

the number of stop tokens to the
number of words in the corpus.

102 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 8.4.4 (Perplexity with Start, Stop Tokens). The perplexity of a
bigram model with start, stop tokens can be redefined as

T∗

√√√√√√ 1
t

∏
i=1

Ti+1
∏
j=1

Pr[wi,j | wi,j−1]

(8.18)

8.4.5 Smoothing

One big problem with our naive definition of the perplexity of a
model is that it does not account for a zero denominator. That is,
if the model assigns probability exactly 0 to the corpus, then the
perplexity of the model will be ∞! 17 17 Mathematically, it is undefined, but

here assume that the result is a positive
infinity that is larger than any real
number.

Example 8.4.5. Suppose the phrase “green cream” never appeared in the
training corpus, but the test corpus contains the sentence “You like green
cream.” Then a bigram model will have a perplexity of ∞ because it assigns
probability 0 to the bigram “green cream.”

To address this issue, we generally apply smoothing techniques,
which never allow the model to output a zero probability. By reducing
the naive estimate of seen events and increasing the naive estimate
of unseen events, we can always assign nonzero probabilities to
previously unseen events.

The most commonly used smoothing technique is the 1-add
smoothing (a.k.a, Laplace smoothing). We describe how the smooth-
ing works for a bigram model. The main idea of the 1-add smoothing
can be summarized as “add 1 to all bigram counts in the bigram
frequency table.” Then the bigram probability as defined in Defini-
tion 8.2.1 can be redefined as

Pr[wj | wj−1] ≈
Count(wj−1wj) + 1

∑
w
(Count(wj−1w) + 1)

=
Count(wj−1wj) + 1

∑
w
(Count(wj−1w)) + V

(8.19)
where V is the size of the dictionary. If we had augmented the corpus
with the start and the stop tokens, the denominator in (8.19) is just
equal to Count(wj−1) + V∗ 18 and so the bigram probability can be 18 V∗ = V + 1 is the size of the dictionary

after adding the start and the stop
tokens. It is customary to add only
one to the vocabulary count. It may
help to look at the number of rows and
columns in the bigram frequency table
8.3.

written as

Pr[wj | wj−1] ≈
Count(wj−1wj) + 1
Count(wj−1) + V∗

(8.20)

Notice that the denominator is just V∗, the new vocabulary size,
added to the unigram count of wj−1.

Example 8.4.6. Recall the cowperson language with the start and stop
tokens from Example 8.3.2. Upon further research, it turns out the language
actually consists of three words: {Yee, Haw, Moo}, but the training corpus

n-gram language models 103

“Yee Haw Haw Yee Yee Yee Haw Yee” left out one of the vocabularies in
the dictionary. By applying add-1 smoothing to the bigram model, we can
recalculate the bigram frequency and the bigram probability table as in
Table 8.6 and Table 8.7

previous
next

“Yee” “Haw” “Moo” ⟨/s⟩ Total

⟨s⟩ 3 2 1 1 7
“Yee” 2 3 1 3 9

“Haw” 3 1 1 2 7
“Moo” 1 1 1 1 4

Table 8.6: Bigram frequency table of the
cowperson language with start and stop
tokens with smoothing.

previous
next

“Yee” “Haw” “Moo” ⟨/s⟩ Total

⟨s⟩ 3/7 2/7 1/7 1/7 1
“Yee” 2/9 3/9 1/9 3/9 1

“Haw” 3/7 1/7 1/7 2/7 1
“Moo” 1/4 1/4 1/4 1/4 1

Table 8.7: Bigram probability table of
the cowperson language with start and
stop tokens with smoothing.

The probability that we see the sentence "Moo Moo" in the cowperson
language, which would have been 0 before smoothing, is now assigned a
non-zero value:

Pr[”Moo” | ⟨s⟩]× Pr[”Moo” | ”Moo”]× Pr[⟨/s⟩ | ”Moo”]

=
1
7
× 1

4
× 1

4
≃ 0.01

Problem 8.4.7. Verify that (8.19) defines a proper probability distribution
over the conditioned event. That is, show that

∑
w

Pr[w | w′] = 1

for any w in the dictionary.

Another smoothing technique is called backoff smoothing. The
intuition is that n-gram probabilities are less likely to be zero if n is
smaller. So when we run into an n-gram probability that is zero, we
replace it with a linear combination of n-gram probabilities of lower
values of n.

Example 8.4.8. Recall Example 8.4.5. The bigram probability of “green
cream” can be approximated instead as

Pr[“cream′′ | “green′′] ≈ Pr[“cream′′]

Also, say we want to calculate the trigram probability of “like green cream,”
which is also zero in the naive trigram model. We can approximate it instead
as

Pr[“cream′′ | “like green′′] ≈ α Pr[“cream′′]+ (1− α)Pr[“cream′′ | “green′′]

104 introduction to machine learning lecture notes for cos 324 at princeton university

where α is a hyperparameter for the model.

There are other variants of the backoff smoothing, 19 with some 19 For instance, Good-Turing and
Kneser-Ney smoothing.theory for what the “best” choice is, but we will not cover it in these

notes.

