
7
Low-Dimensional Representation

High-dimensional datasets arise in quite a few settings. This chapter
concerns a phenomenon that arises frequently: the data points (i.
e., vectors) collectively turn out to be “approximately low rank.” A
running theme in this chapter is that arrays and matrices, which in
introductory courses like COS 126 and COS 226 were thought of as
data structures (i. e., an abstraction from programming languages),
are treated now as objects that we can pass through some remarkable
(but simple) mathematical procedures.

If a large dataset of N vectors in Rd has rank k, then we can think
of a natural compression method. Let U be the k-dimensional sub-
space spanned by the vectors, and identify k basis vectors for U. For
each of the N vectors, find the k coefficients of their representation
in terms of the basis vectors. Following this method, instead of spec-
ifying the N vectors using Nd real numbers, we can represent them
using k(N + d) real numbers, which is a big win if d is much larger
than k.

Figure 7.1: v⃗1, v⃗2, v⃗3 ∈ R3 (left) and
their 2-dimensional representationŝ⃗v1, ̂⃗v2, ̂⃗v3 ∈ R2.

Example 7.0.1. Figure 7.1 shows three vectors v⃗1 = (3.42,−1.33, 6.94), v⃗2 =

(7.30, 8.84, 1.95), v⃗3 = (−7.92,−6.37,−5.66) in R3. The three vectors
have rank 2 — they are all in the 2-dimensional linear subspace generated

82 introduction to machine learning lecture notes for cos 324 at princeton university

by u⃗1 = (8, 8, 4) and u⃗2 = (1,−4, 6). Specifically,

v⃗1 = 0.31⃗u1 + 0.95⃗u2

v⃗2 = 0.95⃗u1 − 0.31⃗u2

v⃗3 = −0.95⃗u1 − 0.31⃗u2

Therefore, we can represent these vectors in a 2-dimensional plane, aŝ⃗v1 = (0.31, 0.95), ̂⃗v2 = (0.95,−0.31), ̂⃗v3 = (−0.95,−0.31)

7.1 Low-Dimensional Representation with Error

Of course, in general, high dimensional datasets are not exactly
low rank. We’re interested in datasets which have low-dimension
representations once we allow some error.

Definition 7.1.1 (Low-dimensional Representation with Error). We
say a set of vectors v⃗1, v⃗2, . . . , v⃗N ∈ Rd has rank k with mean-squared
error ϵ if there exist some basis vectors u⃗1, u⃗2, . . . , u⃗k ∈ Rd and N vectorŝ⃗v1, ̂⃗v2, . . . , ̂⃗vN ∈ span(⃗u1, u⃗2, . . . , u⃗k) such that

1
N ∑

i

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

2
≤ ϵ (7.1)

We say that ̂⃗v1, . . . , ̂⃗vN are the low-rank or low-dimensional approxi-
mation of v⃗1, . . . , v⃗N . Typically we will assume without loss of generality
that the basis vectors are orthonormal (i.e., have ℓ2 norm equal to 1 and are
pairwise orthogonal).

Definition 7.1.1 can be thought of as a lossy compression of the
dataset of vectors since the low-dimensional representation of vectors
is roughly correct, but with a bound of ϵ on the MSE. This compres-
sion view will be used in Section 7.3.

Figure 7.2: v⃗1, v⃗2, v⃗3 ∈ R3 (left) and
their 2-dimensional approxima-
tions ̂⃗v1, ̂⃗v2, ̂⃗v3 represented in the
2-dimensional subspace spanned by
u⃗1, u⃗2.

low-dimensional representation 83

Example 7.1.2. Figure 7.2 shows three vectors v⃗1 = (3.42,−1.33, 6.94), v⃗2 =

(7.30, 8.84, 1.95), v⃗3 = (−6.00,−7.69,−6.86) in R3. The three vectors
have rank 2 with mean-squared error 2.5. If you choose the basis vec-
tors u⃗1 = (8, 8, 4), u⃗2 = (1,−4, 6) and the low-rank approximationŝ⃗v1 = v⃗1, ̂⃗v2 = v⃗2, ̂⃗v3 = (−7.92,−6.37,−5.66) ∈ span(⃗u1, u⃗2) then,

1
3 ∑

i

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

2
≃ 2.28 ≤ 2.5

Note that the basis vectors in this example are only orthogonal and not
orthonormal, but it is easy to set them as orthonormal by normalizing them.

Problem 7.1.3. Show that if u⃗1, u⃗2, . . . , u⃗k ∈ Rd is any set of orthonor-
mal vectors and v⃗ ∈ Rd then the vector ̂⃗v in span(⃗u1, u⃗2, . . . , u⃗k) that

minimizes
∥∥∥⃗v− ̂⃗v∥∥∥2

2
is

k

∑
j=1

(⃗v · u⃗j)⃗uj (7.2)

(Hint: If α1, α2, . . . , αk minimize
∥∥∥⃗v−∑j α j⃗uj

∥∥∥2

2
then the gradient of this

expression with respect to α1, α2, . . . , αk must be zero.)

Problem 7.1.3 illustrates how to find the low-dimensional represen-
tation of the vectors, once we specify the k basis vectors. Notice that
(7.2) is the vector projection of v⃗ onto the subspace U spanned by the

vectors u⃗1, u⃗2, . . . , u⃗k. Therefore, the approximation error
∥∥∥⃗v− ̂⃗v∥∥∥2

2
is

the squared norm of the component of v⃗ that is orthogonal to U. 1 1 Also known as the vector rejection of v⃗
from U.Problem 7.1.4 is only for more advanced students but all students

should read its statement to understand the main point. It highlights
how miraculous it is that real-life datasets have low-rank represen-
tations. It shows that generically one would expect ϵ in (7.1) to be
1− k/n, which is almost 1 when k≪ n. And yet in real life ϵ is small
for fairly tiny k.

Problem 7.1.4. Suppose the v⃗i’s are unit vectors 2 and the vectors 2 Note: the maximum possible value
of ϵ when v⃗i’s are unit vectors is 1.
Convince yourself!

u⃗1, u⃗2, . . . , u⃗k were the basis vectors of a random k-dimensional subspace in
Rd. (That is, chosen without regard to the v⃗i’s.) Heuristically argue that the
ϵ one would need in (7.1) would be 1− k/n.

7.1.1 Computing the Low-Dimensional Representation with Error

In Problem 7.1.3, we have already seen how to find the low-dimension
representation with error, once we are given the basis vectors. All
there remains is to identify a suitable value of k and find the corre-
sponding basis vectors that will minimize the error.

There is a simple linear algebraic procedure, the Singular Value
Decomposition (SVD). Given a set of vectors v⃗i and a positive integer

84 introduction to machine learning lecture notes for cos 324 at princeton university

k, SVD can output the best orthonormal basis in sense of Defini-
tion 7.1.1 that has the lowest possible value of ϵ. In practice, we treat
k as a hyperparameter and use trial and error to find the most suit-
able k. Problem 7.1.5 shows that the accuracy of the low-dimensional
representation will decrease when we choose a smaller number of
dimensions. So we are making a choice between the accuracy of the
representations against how condensed our compression is.

Problem 7.1.5. Show that as we decrease k in Definition 7.1.1, the corre-
sponding ϵ can only increase (i.e., cannot decrease).

Formally, SVD takes a matrix as its input; the rows of this matrix
are the vector v⃗i’s. The procedure operates on this matrix to output
a low-rank approximation. We discuss details in Section 20.3. To
follow the rest of this chapter, you do not need to understand details
of the procedure. You just need to remember the fact that the best
k-dimensional representation is computable for each k. In practice,
programming languages have packages that will do the calculations
for you. Below is a Python code snippet that will calcuate the SVD.

import sklearn.decomposition.TruncatedSVD

n * n matrix

data = ...

prepare transform on dataset matrix "data"

svd = TruncatedSVD(n_components=k)

svd.fit(data)

apply transform to dataset and output an n * k matrix

transformed = svd.transform(data)

Now we see some fun applications.

7.2 Application 1: Stylometry

In many cases in old literature, the identity of the author is disputed.
For instance, the King James Bible (i. e., the canonical English bible
from the 17th century) was written by a team whose identities and
work divisions are not completely known. Similarly the Federalist
Papers, an important series of papers explicating finer points of the
US government and constitution, were published in the early days of
the republic with the team of authors listed as Alexander Hamilton,
James Madison, and John Jay. But it was not revealed which paper
was written by whom. In such cases, can machine learning help
identify who wrote what?

Here we present a fun example about the books in the Wizard of
Oz series. 3 L. Frank Baum was the author of the original Wonderful 3 Original paper at http://dh.

obdurodon.org/Binongo-Chance.pdf.
A survey paper by Erica Klarreich in
Science News Dec 2003: Statistical tests
are unraveling knotty literary mysteries
at http://web.mit.edu/allanmc/www/
stylometrics.pdf

Wizard of Oz, which was a best-seller in its day and remains highly
popular to this day. The publisher saw a money-making opportunity

http://dh.obdurodon.org/Binongo-Chance.pdf
http://dh.obdurodon.org/Binongo-Chance.pdf
http://web.mit.edu/allanmc/www/stylometrics.pdf
http://web.mit.edu/allanmc/www/stylometrics.pdf

low-dimensional representation 85

and convinced Baum to also write 15 follow-up books. After Baum’s
death the publisher managed to pass on the franchise to Ruth Plumly
Thompson, who wrote many other books.

Figure 7.3: Royal Book of Oz
(1921). Cover image from https:

//en.wikipedia.org/wiki/The_Royal_

Book_of_Oz

However, the last of the Baum books, Royal Book of Oz (RBOO), al-
ways seemed to Oz readers closer in style to Thompson’s books than
to Baum’s. But with all the principals in the story now dead, there
seemed to be no way to confirm the suspicion. Now we describe how
simple machine learning showed pretty definitively that this book
was indeed written by Ruth Plumly Thompson. The main idea is to
represent the books vectors in some way and then find their low-rank
representations.

The key idea is that different authors use English words at differ-
ent frequencies. Surprisingly, the greatest difference lies in frequen-
cies of function words such as with, however, upon, rather than
fancy vocabulary words (the ones found on your SAT exam).

Example 7.2.1. Turns out Alexander Hamilton used upon about 10
times more frequently than James Madison. We know this from analyzing
their individual writing outside their collaboration on the Federalist Papers.
Using these kinds of statistics, it has been determined that Hamilton was
the principal author or even the sole author of almost all of the Federalist
Papers.

The statistical analysis of the Oz books consisted of looking at the
frequencies of 50 function words. All Oz books except RBOO were
divided into text blocks of 5000 words each. For each text block, the
frequency (i. e., number of occurrences) of each function word was
computed, which allows us to represent the block as a vector in R50.
There were 223 text blocks total, so we obtain 223 vectors in R50.

Figure 7.4: The top 50 most frequently
used function words in the Wizard
of Oz series. Their occurrences were
counted in 223 text blocks. Figure from
Binongo’s paper.

Then we compute a rank 2 approximation of these 223 vectors.
Figure 7.5 shows the scatter plot in the 2-dimensional visualization.

The two axes correspond to the two basis vectors we found for the
rank 2 approximation. It becomes quickly clear that the vectors from
the Baum books are in a different part of the space than those from
the Thompson books. It is also clear that RBOO vectors fall in the

https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz
https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz
https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz

86 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 7.5: Rank-2 visualization of the
223 text block vectors from books of
Oz. The dots on the left correspond
to vectors from Oz books known to be
written by Ruth Plumly Thompson. The
hearts on the left correspond to vectors
from RBOO. The ones on the right
correspond to ones written by L. Frank
Baum. Figure from Binongo’s paper.

same place as those from other Thompson books. Conclusion: Ruth
Plumly Thompson was the true author of Royal Book of Oz!

By the way, if one takes the non-Oz writings of Baum and Thomp-
son and plot their vectors in the 2D-visualization in Figure 7.6, they
also fall on the appropriate side. So the difference in writing style
came across clearly even in non-Oz books!

Figure 7.6: Rank-2 visualization of text
block vectors from books written by
Baum and Thompson outside of the Oz
series. Figure from Binongo’s paper.

low-dimensional representation 87

7.3 Application 2: Eigenfaces

This section uses the lossy compression viewpoint of low-rank rep-
resentations. As you may remember from earlier computer science
courses (e.g., Seam Carver from COS 226), images are vectors of
pixel values. In this section, let us only consider grayscale (i. e., B&W)
images where each pixel has an integer value in [−127, 127]. −127
corresponds to the pixel being pitch black; 0 corresponds to middle
gray; and 127 corresponds to total white. We can also reorganize the
entries to form a single vector:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

→ (a11, a12, · · · , a1n, a21, · · · , a2n, · · · , amn)

Once we have this vectorized form of an image, it is possible to
perform linear algebraic operations on the vectors. For example, we
can take 0.3 times the first image and add it to −0.8 times the second
image, etc. See Figure 7.7 for some of these examples.

Figure 7.7: Example of linear algebra on
images.

Eigenfaces was an idea for face recognition 4. The dataset in this 4 L. Sirovich; M. Kirby (1987). Low-
dimensional procedure for the character-
ization of human faces. Journal of the
Optical Society of America.

lecture is from a classic Olivetti dataset from 1990s. Researchers
took images of people facing the camera in good light, downsized
to 64× 64 pixels. This makes them vectors in R4096. Now we can
find a 64-rank approximation of the vectors using procedures we will
explore in more detail in Section 20.3.

Figure 7.8 shows four basis vectors in the low-rank approximation
of the images. The first image looks like a generic human with a
ill-defined nose and lips; the second image looks like having glasses
and a wider nose; the third image potentially looks like a female
face; the fourth image looks like having glasses, a moustache, and
a beard. All images in the dataset can be approximated as a linear

88 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 7.8: Some basis vectors (which
turn out to be face-like) in the low-rank
approximation of the Olivetti dataset.

combination of 128 of these basis images, and the approximations are
surprisingly accurate. Figure 7.9 shows four original images of the
dataset, compared with their 64-rank approximations and 128-rank
approximations.

Figure 7.9: 4 original images in the
Olivetti dataset (left), compared with
their 64-rank approximations (middle)
and 128-rank approximations (right).

From Figure 7.9, we also see that the approximations are more
accurate when the corresponding value of k is larger. In fact, Fig-

ure 7.10 shows the average value of ∥⃗vi−̂⃗vi∥2
2

∥⃗vi∥2
2

as a function of the

rank of the approximation. Note that this value roughly represents
the fraction of v⃗ lost in the approximation. It can be seen that the error
is a decreasing function in terms of k. 5 However, note that doing 5 This was also explored in Prob-

lem 7.1.5machine learning — specifically face recognition — on low-rank
representations is computationally more efficient particularly because
the images are compressed to a lower dimension. With a smaller
value of k, we can improve the speed of the learning.

Figure 7.10: What fraction of norm
of the image is not captured in the
low-dimensional representation, plotted
versus the rank k.

