
6
Clustering

So far, we have considered ML models which require labeled data
in order to learn. However, there is a large class of models which
can learn from unlabeled data. From this chapter, we will begin to
introduce models from this modeling paradigm, called unsupervised
learning. In this chapter, we focus on one application of unsupervised
learning, called clustering algorithm.

6.1 Unsupervised Learning

Unsupervised learning is a branch of machine learning which only uses
unlabeled data. Examples of unlabeled data include a text corpus
containing the works of William Shakespeare (Chapter 8) or a set of
unlabeled images (Chapter 7). Some key goals in this setting include:

• Learn the structure of data: It is possible to learn if the data consists
of clusters, or if it can be represented in a lower dimension.

• Learn the probability distribution of data: By learning the probability
distribution where the training data came from, it is possible to
generate synthetic data which is “similar” to real data.

• Learn a representation for data: We can learn a representation that is
useful in solving other tasks later. With this new representation,
for example, we can reduce the need for labeled examples for
classification.

6.2 Clustering

Clustering is one of the main tasks in unsupervised learning. It is the
process of detecting clusters in the dataset. Often the membership
of a cluster can replace the role of a label in the training dataset. In
general, clusters reveal a lot of information about the underlying
structure of the data.

70 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 6.1: Height vs weight scatter
plot of basketball players. In the plot on
the right, the points in green and blue
respectively correspond to female and
male players.

In Figure 6.1, we see a scatter plot of measurements of height and
weight of basketball players. If you look at the plot on the left, it is
easy to conclude that there is a usual linear relationship between the
height and the weight of the athletes. However, upon further inspec-
tion, it seems like there are two clusters of the data points, separated
around the middle of the plot. In fact, this is indeed the case! If we
label the dataset with the additional information of whether the data
point is from a male or female athlete, the plot on the right shows
something more than just the linear relationship. In practice, however,
we do not always have access to this additional label. Instead, one
uses clustering algorithms to find natural clusterings of the data. This
raises the question of what a “clustering” is, in the first place.

Technically, any partition of the dataset D into k subsets C1, C2, . . . , Ck

can be called a clustering. 1 That is, 1 Here k, the number of clusters may be
given as part of the problem, or k may
have to be decided upon after looking
at the dataset. We’ll revisit this soon.

k⋃
i=1

Ci = D and
k⋂

i=1

Ci = ∅

But we intuitively understand that not all partitions are a natural
clustering of the dataset; our goal therefore will be to define what a
“good” clustering is.

6.2.1 Some Attempts to Define a “Good” Cluster

The sample data in Figure 6.1 suggests that our vision system has
evolved to spot natural clusterings in two or three dimensional data.
To do machine learning, however, we need a more precise definition
in Rd: specifically, for any partition of the dataset into clusters, we try
to quantify the “goodness” of the clusters.

Definition 6.2.1 (Cluster: Attempt 1). A “good” cluster is a subset of
points which are closer to each other than to all other points in the dataset.

But this definition does not apply to the clusters in Figure 6.1. The
points in the middle of the plot are far away from the points on the
top right corner or the bottom left corner. So whichever cluster we
assign the middle points to, they will be farther away from some

clustering 71

points in their assigned cluster than to some of the points on the
other cluster. Ok, so that did not work. Consider the following
definition.

Definition 6.2.2 (Cluster: Attempt 2). A “good” cluster is a subset of
points which are closer to the mean of their own cluster than to the mean of
other clusters.

Here Mean and Variance are defined as follows:

Definition 6.2.3 (Mean and Variance of Clusters). Let Ci be one of the
clusters for a dataset D. Let mi = |Ci| denote the cluster size. The mean of
the cluster Ci is

y⃗i =
1

mi
∑

x⃗∈Ci

x⃗

and the variance within the cluster Ci is

σ2
i =

1
mi

∑
x⃗∈Ci

∥⃗x− y⃗i∥2
2

You may notice that Definition 6.2.2 appears to be using circular
reasoning: it defines clusters using the mean of the clusters, but the
mean can only be calculated once the clusters have been defined. 2 2 Such circular reasoning occurs in most

natural formulations of clustering. Look
at the Wikipedia page on clustering for
some other formulations.6.3 k-Means Clustering

In this section, we present a particular partition of the dataset called
the k-means clustering. Given k, the desired number of clusters, the
k-means clustering partitions D into k clusters C1, C2, . . . , Ck so as to
minimize the cost function:

k

∑
i=1

∑
x⃗∈Ci

∥⃗x− y⃗i∥2
2 (6.1)

This can be seen as minimizing the average of the individual cost of
the k clusters, where cost of Ci is ∑

x⃗∈Ci

∥⃗x− y⃗i∥2
2. 3 This idea is similar 3 Notice that each cluster cost is the

cluster size times the variance.
in spirit to our earlier attempt in Definition 6.2.2 — we want the
distance of each data point to the mean of the cluster to be small. But
this method is able to circumvent the problem of circular reasoning.

The process of finding the optimal solution for (6.1) is called the
k-means clustering problem.

6.3.1 k-Means Algorithm

Somewhat confusingly, the most famous algorithm that is used
to solve the k-means clustering problem is also called k-means. It is
technically a heuristic, meaning it makes intuitive sense but it is not

72 introduction to machine learning lecture notes for cos 324 at princeton university

guaranteed to find the optimum solution.4 The following is the k- 4 There is extensive research on finding
near-optimal solutions to k-means. The
problem is known to be NP-complete,
so we believe that an algorithm that is
guaranteed to produce the optimum
solution on all instances must require
exponential time.

means algorithm. It is given some initial clustering (we discuss some
choices for initialization below) and we repeat the following iteration
until we can no longer improve the cost function:

Maintain clusters C1, C2, . . . , Ck

For each cluster Ci, find the mean y⃗i

Initialize new clusters C′i ← ∅
for x⃗ ∈ D do

ix = arg mini ∥⃗x− y⃗i∥2
C′ix
← C′ix

∪ {⃗x}
end for
Update clusters Ci ← C′i

At each iteration, we find the mean of each current cluster. Then
for each data point, we assign it to the cluster whose mean is the
closest to the point, without updating the mean of the clusters. In
case there are multiple cluster means that the point is closest to, we
apply the tie-breaker rule that the point gets assigned to the current
cluster if it is among the closest ones; otherwise, it will be randomly
assigned to one of them. Once we have assigned all points to the new
clusters, we update the current set of clusters, thereby updating the
mean of the clusters as well. We repeat this process until there is no
point that is mis-assigned.

6.3.2 Why Does k-Means Algorithm Terminate in Finite time?

The k-means algorithm is actually quite akin to Gradient Descent, in
the sense that the iterations are trying to improve the cost.

Lemma 6.3.1. Given a set of points x⃗1, x⃗2, . . . , x⃗m, their mean y⃗ = 1
m

m
∑

i=1
x⃗i

is the point that minimizes the average squared distance to the points.

Proof. For any vector z⃗, let C(⃗z) denote the sum of squared distance
to the set of points. That is,

C(⃗z) =
m

∑
i=1
∥⃗z− x⃗i∥2

2 =
m

∑
i=1

((⃗z− x⃗i) · (⃗z− x⃗i))

=
m

∑
i=1

(⃗z · z⃗− 2⃗z · x⃗i + x⃗i · x⃗i)

=
m

∑
i=1

(∥⃗z∥2
2 − 2⃗z · x⃗i + ∥⃗xi∥2

2)

To find the optimal z⃗, we set the gradient ∇C to 0

∇C(⃗z) =
m

∑
i=1

(2⃗z− 2⃗xi) = 0

clustering 73

which yields the solution

z⃗ =
1
m

m

∑
i=1

x⃗i

We are ready to prove the main result.

Theorem 6.3.2. Each iteration of the k-means Algorithm 6.3.1, possibly
except for the last iteration before termination, strictly decreases the total
cluster cost (6.1).

Proof. We follow the same notation as in Algorithm 6.3.1. The total
cost at the end of one iteration is:

k

∑
i=1

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2

where y⃗′i is the mean of the newly defined cluster C′i . Notice that
each of the cluster cost ∑

x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 is the sum of the squared dis-

tance between a set of points x⃗ ∈ C′i and their mean. By Lemma 6.3.1,
this sum is smaller than the sum of squared distance between the
same set of points to any other point. In particular, we can compare
with y⃗i, the mean of Ci before the update. That is,

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 ≤ ∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2

for any 1 ≤ i ≤ k. If we sum over all clusters, we see that

k

∑
i=1

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 ≤
k

∑
i=1

∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2

Now notice that the summand ∥⃗x− y⃗i∥2
2 in the right hand side of the

inequality is the squared distance between the point x⃗ and the mean
y⃗i (before update) of the cluster C′i that x⃗ is newly assigned to. In
other words, we can rewrite this term as ∥⃗x− y⃗ix∥

2
2 and instead sum

over all points x⃗ in the dataset. That is,

k

∑
i=1

∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2 = ∑

x⃗∈D
∥⃗x− y⃗ix∥

2
2

Finally, recall that the index ix was defined as ix = arg mini ∥⃗x− y⃗i∥2.
In particular, if j was the index of the cluster that a data point x⃗
originally belonged to, then ∥⃗x− y⃗ix∥

2
2 ≤

∥∥⃗x− y⃗j
∥∥2

2. Therefore, we
have the following inequality,

∑
x⃗∈D
∥⃗x− y⃗ix∥

2
2 ≤

k

∑
j=1

∑
x⃗∈Cj

∥∥⃗x− y⃗j
∥∥2

2

74 introduction to machine learning lecture notes for cos 324 at princeton university

The equality holds in the inequality above if and only if when
∥⃗x− y⃗ix∥

2
2 =

∥∥⃗x− y⃗j
∥∥2

2 for each point x⃗, which means that the origi-
nal cluster Cj was one of the closest clusters to x⃗. By the tie-breaker
rule, ix would have been set to j. This is exactly the case when the
algorithm terminates immediately after this iteration since no point
is reassigned to a different cluster. In all other cases, we have a strict
inequality:

∑
x⃗∈D
∥⃗x− y⃗ix∥

2
2 <

k

∑
j=1

∑
x⃗∈Cj

∥∥⃗x− y⃗j
∥∥2

2

Notice that the right hand side of the inequality is the total cost at the
beginning of the iteration.

Now we are ready to prove that the k-means algorithm is guaran-
teed to terminate in finite time. Since each iteration strictly reduces
the cost, we conclude that the current clustering (i. e., partition) will
never be considered again, except at the last iteration when the al-
gorithm terminates. Since there is only a finite number of possible
partitions of the dataset D, the algorithm must terminate in finite
time.

6.3.3 k-Means Algorithm and Digit Classification

You might be familiar with the MNIST hand-written digits dataset.
Here, each image, which depicts some digit between 0 and 9, is
represented as a an 8× 8 matrix of pixels and each pixel can take on a
different luminosity value from 0 to 15.

We can apply k-means clustering to differentiate between images
depicting the digit “1” and the digit “0.” After running the model
with k = 2 on 360 images of the two digits, we achieve the clusters in
Figure 6.2. 5 Note the presence of two colored regions: a point is col- 5 This 2D visualization of the clusters

is achieved through a technique called
low dimensional representation, which
is covered in Chapter 7.

ored red if a hypothetical held-out data point at that location would
get assigned a “0;” otherwise it is colored blue. This assignment is
based on which cluster center is closer.

Figure 6.2: Sample images from the
MNIST dataset (left) and 2D visu-
alization of the k-means clusters
differentiating between the digits “1”
and “0” (right). Only two images were
misclassified!

clustering 75

This example also shows that clustering into two clusters can be
turned into a technique for binary classification — use training data
to come up with two clusters; at test time, compute a ±1 label for
each data point according to which of the two cluster centers it is
closer to.

6.3.4 Implementation Detail: How to Pick the Initial Clustering

The choice of initial clusters greatly influences the quality of the
solution found by the k-means algorithm. The most naive method is
to pick k data points randomly to serve as the initial cluster centers
and create k clusters by assigning each data point to the closest
cluster center. However, this approach can be problematic. Suppose
there exists some “ground truth” clustering of the dataset. By picking
the initial clusters randomly, we may end up splitting one of these
ground truth clusters (e.g., two initial centers are drawn from within
the same ground truth cluster), and the final clustering ends up
being very sub-optimal. Thus one tries to select the initial clustering
more intelligently. For instance the popular k-means++ initialization
procedure 6 is the following: 6 It was invented by Arthur and Vassil-

vitskii in 2007.

1. Choose one center uniformly at random among all data points.

2. For each data point x⃗ compute D(⃗x), the distance between x⃗ and
the nearest center which has already been chosen.

3. Choose a new data point at random as a new center, where a
point x⃗ is chosen with probability proportional to D(⃗x)2.

4. Repeat steps 2 and 3 until k centers have been chosen.

In COS 324, we will not expect you to understand why this is a
good initialization procedure, but you may be expected to be able to
implement this or similar procedures in code.

6.3.5 Implementation Detail: Choice of k

Above we assumed that the number of clusters k is given, but in
practice you have to choose the appropriate number of clusters k.

Example 6.3.3. Is there a value of k that guarantees an optimum cost of
0? Yes! Just set k = n (i.e., each point is its own cluster). Of course, this is
useless from a modeling standpoint!

Problem 6.3.4. Argue that the optimum cost for k + 1 clusters is no more
than the optimum cost for k clusters.

76 introduction to machine learning lecture notes for cos 324 at princeton university

Note that Problem 6.3.4 only concerns the optimum cost, which
as we discussed may not be attained by the k-means algorithm.
Nevertheless, it does suggest that we can try various values of k and
see when the cost is low enough to be acceptable.

A frequent heuristic is the elbow method: create a plot of the num-
ber of clusters vs. the final value of the cost as in Figure 6.3 and look
for an “elbow” where the objective tapers off. Note that if the dataset
is too complicated for a simple Euclidean distance cost, the data
might not be easy to cluster “nicely” meaning there is no “elbow”
shown on the plot.

Figure 6.3: Two graphs of number of
clusters vs. final value of cost. There is
a distinct elbow on the left, but not on
the right.

6.4 Clustering in Programming

In this section, we briefly discuss how to implement k-means algo-
rithm for digit classification in Python. As usual, we use the numpy
package to speed up computation and the matplotlib package for vi-
sualization. Additionally, we use the sklearn package to help perform
the clustering.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load_digits

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

prepare dataset

X, y = load_digits(n_class=2, return_X_y=True)

X = scale(X)

X_train, X_test = ...

define functions

def initialize_cluster_mean(X, k):

X: array of shape (n, d), each row is a d-dimensional data point

k: number of clusters

returns Y: array of shape (k, d), each row is the center of a cluster

def assign_cluster(X, Y)

X: array of shape (n, d), each row is a d-dimensional data point

Y: array of shape (k, d), each row is the center of a cluster

returns loss, the sum of squared distance from each point to its

assigned cluster

clustering 77

returns C: array of shape (n), each value is the index of the closest

cluster

def update_cluster_mean(X, k, C):

X: array of shape (n, d), each row is a d-dimensional data point

k: number of clusters

C: array of shape (n), each value is the index of the closest cluster

returns Y: array of shape (k, d), each row is the center of a cluster

def k_means(X, k, max_iters=50, eps=1e-5):

Y = initialize_cluster_mean(X, k)

for i in range(max_iters):

loss, C = assign_cluster(X, Y)

Y = update_cluster_mean(X, k, Y)

if loss_change < eps:

break

return loss, C, Y

def scatter_plot(X, C):

plt.figure(figsize=(12, 10))

k = int(C.max()) + 1

from itertools import cycle

colors = cycle(’bgrcmk’)

for i in range(k):

idx = (C == i)

plt.scatter(X[idx, 0], X[idx, 1], c=next(colors))

plt.show()

run k-means algorithm and plot the result

loss, C, Y = k_means(X_train, 2)

low_dim = PCA(n_components=2).fit_transform(X_train)

scatter_plot(low_dim, C)

We start by importing outside packages.

from sklearn.datasets import load_digits

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

The load_digits() method loads the MNIST digits dataset, with around
180 data points per digit. The scale() method linearly scales each of
the data points such that the mean is 0 and variance is 1. The PCA()
method helps visualize the MNIST digits data points, which are 64-
dimensional, in the Cartesian plane (i. e., R2). See the next Chapter 7

for details on this process.
Next we prepare the dataset by calling the load_digits() method.

X, y = load_digits(n_class=2, return_X_y=True)

X = scale(X)

X_train, X_test = ...

Notice that we discard the target array y because we are performing
clustering, a type of unsupervised learning. If we were to perform
supervised learning instead, we would need to make use of y.

78 introduction to machine learning lecture notes for cos 324 at princeton university

Then we define the functions necessary for the k-means algorithm.

def initialize_cluster_mean(X, k):

return Y

def assign_cluster(X, Y)

return loss, C

def update_cluster_mean(X, k, C):

return Y

def k_means(X, k, max_iters=50, eps=1e-5):

Y = initialize_cluster_mean(X, k)

for i in range(max_iters):

loss, C = assign_cluster(X, Y)

Y = update_cluster_mean(X, k, Y)

if loss_change < eps:

break

return loss, C, Y

In practice, it is common to limit the number of cluster update itera-
tions (i. e., the parameter max_iters) and specify the smallest amount
of loss change allowed for one iteration (i. e., the constant ϵ). By termi-
nating the algorithm once either one of the conditions is reached, we
can get an approximate solution within a reasonable amount of time.

Next, take a look at the helper function used to plot the result of
the k-means algorithm.

def scatter_plot(X, C):

plt.figure(figsize=(12, 10))

k = int(C.max()) + 1

from itertools import cycle

colors = cycle(’bgrcmk’)

for i in range(k):

idx = (C == i)

plt.scatter(X[idx, 0], X[idx, 1], c=next(colors))

plt.show()

The cycle() method from the itertools package lets you iterate through
an array indefinitely, with the index wrapping around back to the
start, once it reaches the end of the array.

Now, consider the for loop section in the helper function above. We
first use Boolean conditions to concisely generate a new array.

idx = (C == i)

This generates a Boolean array with the same length as C, where each
entry is either True/False based on whether the corresponding entry in
C is equal to i. The following code is equivalent.

idx = np.zeros(C.size)

for j in range(C.size):

clustering 79

idx[j] = (C[j] == i)

We then use a technique called Boolean masking to extract a particular
subset of rows of X.

X[idx, 0]

Notice that in place of a list of indices of rows to extract, we are
indexing with the Boolean array we just defined. The code will extract
only the rows where the Boolean value is True. For example, if the
value of idx is [True, False, True], then the code above is equivalent to

X[[0, 2], 0]

Finally, we make use of the helper functions we defined earlier to
run the k-means algorithm and plot results.

_, C, _ = k_means(X_train, 2)

low_dim = PCA(n_components=2).fit_transform(X_train)

scatter_plot(low_dim, C)

The first line of this code snippet shows how we can use the _ symbol
to selectively disregard individual return values of a function call.
The second line of code uses the PCA() method to transform the
64-dimensional data X_train into 2-dimensional data so that we can
visualize it with the scatter_plot() method. We will learn the details of
this process in the next Chapter 7.

