
4
Linear Classification

Multi-way Classification is a task of learning to predict a label on
newly seen data out of k possible labels. In binary classification, there
are only two possible labels, say ±1. Sentiment prediction in Chap-
ter 1 was an example of a binary classification task. In this chapter,
we introduce two other linear models that perform binary classi-
fication: logistic regression and Support Vector Machines (SVMs).
From these two models, we learn more about the thought process of
designing loss functions that are appropriate to the task. 1 1 All the linear models we will study fall

under an all-encompassing framework
called Generalized Linear Models. If you
ever are faced with a new situation
where none of the models below are an
exact match, try looking up this general
framework.

In this chapter, we are interested in using linear models to perform
classification. In a binary classification problem, the training dataset
consists of (point, label) pairs (⃗x, y) where y can take two values (e.g.,
{±1} or {0, 1}). In a more general multi-class classification problem,
the data has one of k labels, drawn from {0, 1, . . . , k− 1}.

4.1 General Form of a Linear Model

You already encountered a linear model in Chapter 1 — the least
squares regression model for sentiment prediction. Given an input x⃗,
we learned a parameter vector w⃗ that minimizes the loss ∑i(yi − w⃗ ·
x⃗i)2. The model can be seen as mapping an input vector x⃗ to a real
value w⃗ · x⃗. For sentiment classification, we changed this real-valued
output at test time to ±1 by outputting sign(w⃗ · x⃗).

You probably wondered there: Why don’t we simply use sign(w⃗ · x⃗)
directly as the output of the model while training? In other words, why
not do training on the following loss:

∑
i
(yi − sign(w⃗ · x⃗i))2 (4.1)

The answer is that using the sign(z) function in the loss makes
gradient-based optimization ill-behaved. The derivative of sign(z) is
0 except at z = 0 (where the derivative is discontinuous) and thus the
gradient is uninformative about how to update the weight vector.

48 introduction to machine learning lecture notes for cos 324 at princeton university

So the work-around in Chapter 1 (primarily for ease of exposition)
was to train the sentiment classification model using the least squares
loss ∑i(yi − w⃗ · x⃗i)2, which in practice is used more often in settings
where the desired output yi is real-valued output as opposed to bi-
nary. This gave OK results, but in practice one would use either of
the two linear models 2 introduced in this chapter: Logistic Regression 2 They are called linear because they use

the mapping x⃗ 7→ w⃗ · x⃗.and Support Vector Machines. These are similar in spirit to the linear
regression model — (1) given an input x⃗, the models learn a parame-
ter vector w⃗ that minimizes a loss, defined as a differentiable function
on w⃗ · x⃗; (2) at test-time, the model outputs sign(w⃗ · x⃗). 3 The main 3 There are other ways to output a

discrete ±1 label, but using the sign
function is the most canonical way. We
will discuss the behavior of the models
at test-time later in the chapter.

difference, however, is that the loss for the linear models introduced
in this chapter is designed specifically for the binary classification
task. Pay close attention to our “story” for why the loss makes sense.
This will prepare you to understand any new loss functions you
come across in your future explorations.

4.2 Logistic Regression

The logistic regression model arises from thinking of the answer
as being probabilistic: the model assigns a “probability” to each of
the two labels, with the sum of the two probabilities being 1. 4 This 4 This “probability” is what is called

subjective probability, analogous to what
we mean when say things like “I am
99 percent sure my friend X will like
movie Y.” There is only one person
X and one movie Y and they are not
drawn from some probability space.
Instead we’re expressing a subjective
feeling of near-certainty based upon
past observations of person X.

paradigm of a probabilistic answer is a popular way to design loss
functions in a host of ML settings, including deep learning.

Definition 4.2.1 (Logistic model). Given the input x⃗, 5 the model assigns

5 As in Chapter 1 we assume x⃗ contains
a dummy coordinate x0 that is 1 at
all points: this allows us to include a
constant bias term when we take the
dot product w⃗ · x⃗ with the weight vector.

the “Probability that the output is +1” to be

σ(w⃗ · x⃗) = 1
1 + exp(−w⃗ · x⃗) (4.2)

where σ is the sigmoid function (see Chapter 19). This implies that “Proba-
bility that the output is −1” is given by

1− 1
1 + exp(−w⃗ · x⃗) =

exp(−w⃗ · x⃗)
1 + exp(−w⃗ · x⃗) =

1
1 + exp(w⃗ · x⃗) (4.3)

See Figure 4.1. Note that “the probability that the output is +1”
is greater than 1

2 precisely if w⃗ · x⃗ > 0. Furthermore, increasing the
value of w⃗ · x⃗ causes the probability to rise towards 1. Conversely, if
w⃗ · x⃗ < 0, then “the probability of label −1” is greater than 1

2 . When
w⃗ · x⃗ = 0, the probability of label +1 and −1 are both equal to 1

2 . In
this way, the logistic model can be seen as a continuous version of the
sign(w⃗ · x⃗).

Example 4.2.2. If x⃗ = (1,−3) and w⃗ = (0.2,−0.1), then the probability of
label +1 is

1
1 + exp(−0.2− 0.3)

=
1

1 + e−0.5 ≃ 0.62

linear classification 49

Figure 4.1: The graph of the probability
that the output of a logistic model is +1

(red) or -1 (blue) given w⃗ · x⃗.

4.2.1 Defining Goodness of Probabilistic Predictions

Thus far, we explained how the logistic model generates its output
given an input vector x⃗ and the current weight vector w⃗. But we have
not yet talked about how to train the model. To define a loss function,
we need to decide what are the “good” values for w⃗. Specifically, we
formulate a definition of “quality” of probabilistic predictions.

Definition 4.2.3 (Maximum Likelihood Principle). Given a set of
observed events, the goodness of a probabilistic prediction model 6 is the 6 This is a definition of goodness, not the

consequence of some theory.probability it assigned to the observed events.

We illustrate with an example.

Example 4.2.4. You often see weather predictions that include an estimate
of the probability of rain. Table 4.1 shows the predictions by two models at
the start of each day of the week. After the week is over, we have observed if
it actually rained on each of the days. Based on these observations, which
model made better predictions this week?

M T W Th F
Model 1 60% 20% 90% 50% 40%
Model 2 70% 50% 80% 20% 60%
Rained? Y N Y N N

Table 4.1: Weather predictions by Model
1 and Model 2.

We can answer this question by seeing which model assigns higher
likelihood to the events that were actually observed (i.e., whether or not it
rained). For instance, the likelihood of the observed sequence according to
Model 1 is

0.6× (1− 0.2)× 0.9× (1− 0.5)× (1− 0.4) = 0.1296

50 introduction to machine learning lecture notes for cos 324 at princeton university

The corresponding number for Model 2 is 0.0896 (check this!). So Model 1
was a “better” model for this week.

4.2.2 Loss Function for Logistic Regression

We employ the Maximum Likelihood Principle from the previous
part to define the loss function for the logistic model. Suppose we
are provided the labeled dataset {(⃗x1, y1), (⃗x2, y2), . . . , (⃗xN , yN)} for
training where yi is a ±1 label for the input x⃗i. By the description
given in Definition 4.2.1, the probability assigned by the model with
the weights w⃗ to the i-th labeled data point is

1
1 + exp(−yiw⃗ · x⃗i)

which means that the total probability (“likelihood”) assigned to the
dataset is

P =
N

∏
i=1

1
1 + exp(−yiw⃗ · x⃗i)

(4.4)

We desire the model w⃗ that maximizes P. Since log(x) is an increas-
ing function, the best model is also the one that maximizes log P,
hence the one that minimizes − log P = log 1

P . This leads to the
logistic loss function:

log

(
N

∏
i=1

(1 + exp(−yiw⃗ · x⃗i))

)
=

N

∑
i=1

log(1 + exp(−yiw⃗ · x⃗i)) (4.5)

Note that this expression involves a sum over training data points,
which as discussed in Section 3.2, is a very desirable and practical
property of loss in machine learning.

Problem 4.2.5. Verify that the gradient for the logistic loss function is

∇ℓ =
N

∑
i=1

−yi⃗xi

1 + exp(yiw⃗ · x⃗i)
(4.6)

4.2.3 Using Logistic Regression for Roommate Matching

In this part, we use the following example to illustrate some of the
material covered in the previous parts.

Example 4.2.6. Suppose Princeton University decides to pair up newly
admitted undergraduate students as roommates. All students are asked to
fill a questionnaire about their sleep schedule and their music taste. The
questionnaire is used to generate a compatibility score in [0, 1] for each of
the two attributes, for each pair of students. Table 4.2 shows the calculated

linear classification 51

Sleep (S) Music (M) Compatible?
1 0.5 +1

0.75 1 +1
0.25 0 −1

0 1 −1

Table 4.2: Sample data of compatibility
scores for four pairs of students.

compatibility scores for four pairs of roommates from previous years and
whether or not they turned out to be compatible (+1 for compatible, −1 for
incompatible).

We wish to train a logistic model to predict if a pair of students
will be compatible based on their sleep and music compatibility
scores. To do this, we first convert the data in Table 4.2 into a vector
form.

x⃗1 = (1, 1, 0.5)

x⃗2 = (1, 0.75, 1)

x⃗3 = (1, 0.25, 0)

x⃗4 = (1, 0, 1)

y1 = +1

y2 = +1

y3 = −1

y4 = −1

(4.7)

where the first coordinate xi
0 of x⃗i is a dummy variable to introduce a

constant bias term, and the second and third coordinates are respec-
tively for sleep and music compatibility scores.

Figure 4.2: Graph representing the
points in Table 4.2. The x-, y-axis in
the graph correspond to the Sleep
and Music compatibility scores, or the
second and third coordinates in (4.7).

Consider two models — Model 1 with the weight vector w⃗1 =

(0, 1, 0) and Model 2 with the weight vector w⃗2 = (0, 0, 1). Model 1
only looks at the sleep compatibility score to calculate the probability
that a pair of students will be compatible as roommates, whereas

52 introduction to machine learning lecture notes for cos 324 at princeton university

Model 2 only uses the music compatibility score. For example, Model
1 assigns the probability that the first pair of students are compatible
as

σ(w⃗1 · x⃗1) =
1

1 + exp(−1)
≃ 0.73

We can calculate the probability for the other pairs and for Model 2

and fill out the following Table 4.3:

Pair 1 Pair 2 Pair 3 Pair 4
Model 1 0.73 0.68 0.56 0.50
Model 2 0.62 0.73 0.50 0.73

Compatible? Y Y N N

Table 4.3: Roommate compatibility
predictions by Model 1 and Model 2.

Then the likelihood of the observations (YYNN) according to
Model 1 can be calculated as

0.73× 0.68× (1− 0.56)× (1− 0.50) ≃ 0.11

where as the likelihood of the observations according to Model 2 is

0.62× 0.73× (1− 0.50)× (1− 0.73) ≃ 0.06

Therefore, the Maximum Likelihood Principle tells us that Model 1 is
a “better” model than Model 2.

The full logistic loss for this training data can be written as

4

∑
i=1

log(1 + exp(−yiw⃗ · x⃗i)) = log(1 + exp(−(w0 · 1 + w1 · 1 + w2 · 0.5))+

log(1 + exp(−(w0 · 1 + w1 · 0.75 + w2 · 1))+
log(1 + exp(w0 · 1 + w1 · 0.25 + w2 · 0)+
log(1 + exp(w0 · 1 + w1 · 0 + w2 · 1)

and the values that minimize this loss can be found as w0 = −21, w1 =

32, w2 = 8.9.

4.2.4 Testing the Model

After training the model on the training data, we can use it to define
label probabilities on any new data point. However, the probabilities
do not explicitly tell us what label to output on a new data point.
There are two options:

1. (Probabilistic) If p is the probability of the label +1 according
to (4.2), then use a random number generator to output +1 with
probability p and −1 with probability 1− p.

2. (Deterministic) Output the label with a higher probability.

linear classification 53

Recall from an earlier discussion that Pr[+1] ≥ Pr[−1] if and
only if w⃗ · x⃗ ≥ 0. In other words, the second deterministic option is
equivalent to the sign(z) function: sign(w⃗ · x⃗)!

We conclude that logistic regression is quite analogous to what we
did in Chapter 1, except instead of least squares loss, we are using
logistic loss to train the model. The logistic loss is explicitly designed
with binary classification in mind. 7 7 Using logistic loss (and ℓ2 regularizer)

instead of least squares in our senti-
ment dataset boosts test accuracy from
78.1% to 80.7%.4.3 Support Vector Machines

A Support Vector Machine (SVM) 8 is also a linear model. It comes in 8 From An optimal algorithm for training
maximum margin classifiers. by Boser,
Guyon, and Vapnik in COLT 1992. The
name Support Vector Machine comes
from a theorem that characterizes
the optimum model in terms of “sup-
port vectors.” We will not cover that
theorem here.

several variants, including a more powerful kernel SVM that we will
not study here. But this rich set of variants made it an interesting
family of models, and it is fair to say that in the 1990s its popularity
was somewhat analogous to the popularity of deep nets today. It
remains a very useful model for your toolkit. The version we are
describing is a so-called soft margin SVM.

As in the least squares regression, the main idea in designing the
loss is that the label should be +1 or −1 according to sign(w⃗ · x⃗). But
we want to design a loss with a well-behaved gradient that provides
a clearer direction of improvement. To be more specific, we want the
model to have more “confident” answers, and we will penalize the
model if it comes up with a correct answer but with a low degree of
“confidence.”

For z ∈ R, let us define

Hinge(z) = max{0, 1− z} (4.8)

Figure 4.3: The graph of the hinge
function.

Note that this function is always at least zero, and strictly positive
for z < 1. When z decreases to negative infinity, there is no finite
upper bound to the value. The derivative is zero for z > 1 and 1 for
z < 1. The derivative is currently undefined at z = 1, but we can
arbitrarily choose between 0 or 1 as the newly defined value.

For a single labeled data point (⃗x, y) where y ∈ {−1, 1}, the SVM
loss is defined as

ℓ = Hinge(yw⃗ · x⃗) (4.9)

and its gradient is

∇ℓ =

−y⃗x yw⃗ · x⃗ < 1

0 yw⃗ · x⃗ > 1

The SVM loss for the entire training dataset can be defined as

∑
i

Hinge(yiw⃗ · x⃗i) (4.10)

54 introduction to machine learning lecture notes for cos 324 at princeton university

that is, the sum of the SVM loss on each of the training data points.
Suppose y = +1. Then this loss is 0 only when w⃗ · x⃗ > 1. In other

words, making loss zero not only requires w⃗ · x⃗ to be positive, but also
be comfortably above 0. If w⃗ · x⃗ dips below 1, the loss is positive and
increases towards +∞ as w⃗ · x⃗ → −∞. (Likewise if the label y = −1,
then the loss is 0 only when w⃗ · x⃗ < −1.)

Recall that the goal of a gradient-based optimization algorithm is
to minimize the loss. Therefore, the loss gives a clear indication of
the direction of improvement until the data point has been classified
correctly with a comfortable margin away from 0, out of the zone of
confusion.

Example 4.3.1. Recall the roommate compatibility data from Table 4.2.
Consider the soft-margin SVM with the weight vector w⃗ = (−1.5, 3, 0).
This means the decision boundary — the set of points where w⃗ · x⃗ = 0 — is
drawn at Sleep = 1

2 , and the margins — the set of points where w⃗ · x⃗ = ±1
— are drawn at Sleep = 5

6 and Sleep = 1
6 . Figure 4.4 shows the decision

boundary and the two margin lines of the model. The SVM loss is zero
for the point (1, 0.5) because it is labeled +1 and away from the decision
boundary with enough margin. Similarly, the loss is zero for the point (0, 1).
The loss for the point (0.75, 1), however, can be calculated as

Hinge(1 · (−1.5 · 1 + 3 · 0.75)) = 0.25

and similarly, the loss for the point (0.25, 0) is 0.25.

Figure 4.4: The decision boundary of
a soft-margin SVM on the roommate
matching example. The region to the
left of the two dotted lines is where
the model confidently classifies as
−1; the region to the right is where it
confidently classifies as +1; and the
region between the two dotted lines is
the zone of confusion.

The gradient of the loss at the point (0.75, 1) is

−y⃗x = (−1,−0.75,−1)

linear classification 55

and the update rule for a gradient descent algorithm will be written as

w⃗← (−1.5, 3, 0)− 0.1(−1,−0.75,−1) = (−1.4, 3.075, 0.1)

where η = 0.1, and the new SVM loss will be

Hinge(1 · (−1.4, 3.075, 0.1) · (1, 0.75, 1)) = 0

which is now lower than the SVM loss before the update.

4.4 Multi-class Classification (Multinomial Regression)

So far, we have only seen problems where the model has to classify
using two labels ±1. In many settings there are k possible labels
for each data point 9 and the model has to assign one of them. The 9 This is the case in most settings in

modern machine learning. For instance
in the famous ImageNet challenge, each
image belongs to one of 1000 classes.

conceptual framework is similar to logistic regression, except the
model defines a nonzero probability for each label as follows. The
notation assumes data is d-dimensional and the model parameters
consist of k vectors θ⃗1, θ⃗2, . . ., θ⃗k ∈ Rd. We define a new vector z⃗ ∈ Rk

where each coordinate zi satisfies zi = θ⃗i · x⃗. Then the probability
of a particular label is defined through the softmax function (see
Chapter 19):

Pr[label i on input x⃗] = so f tmax(⃗z)

=
exp(⃗θi · x⃗)

∑k
j=1 exp(⃗θ j · x⃗)

(4.11)

This distribution can be understood as assigning a probability to
label i such that it is exponentially proportional to the value of θ⃗i · x⃗.

Problem 4.4.1. Using the result of Problem 19.2.4, verify that the definition
of logistic regression as in (4.2), (4.3) are equivalent to the definition of
multi-class regression as in (4.11).

Problem 4.4.2. Reasoning analogously as in logistic regression, derive a
training loss for this model using Maximum Likelihood Principle.

Since exp(z) > 0 for every real number z the model above assigns
a nonzero probability to every label. In some settings that may be
appropriate. But as in case of logistic regression, at test time we also
have the option of extracting a deterministic answer out of the model:
the i ∈ {1, 2, . . . , k} that has the largest value of θ⃗ j · x⃗.

4.5 Regularization with SVM

It is customary to use a regularizer, typically ℓ2, with logistic regres-
sion models and SVMs. When a ℓ2 regularizer is applied, the full

56 introduction to machine learning lecture notes for cos 324 at princeton university

SVM loss is rewritten as

∑
i

Hinge(yiw⃗ · x⃗i) + λ ∥w⃗∥2
2 (4.12)

Let’s see why regularization is sensible for SVMs, and even needed.
The Hinge function (4.8) treats the point z = 1 as special. In terms
of the SVM loss, this translates to the thought that having w⃗ · x⃗ > 1
is a more “confident” classification of x⃗ than just having sign(w⃗ · x⃗)
to be correct (i. e., w⃗ · x⃗ > 0). But this choice is arbitrary because we
have not specified the scale of w⃗. If w⃗ · x⃗ = 1/10 then scaling w⃗ by
a factor 10 ensures w⃗ · x⃗ > 1. Thus the training algorithm has cheap
and meaningless ways of reducing the training loss. By applying an
ℓ2 regularizer, we are able to prevent this easy route for the model,
and instead, force the training to find optimal weights w⃗ with a small
norm.

Problem 4.5.1. Write a justification for why it makes sense to limit the ℓ2

norm of the classifier during logistic regression. How can large norm lead to
false confidence (i.e., unrealistically low training loss)?

4.6 Linear Classification in Programming

In this section, we briefly discuss how to implement the logistic re-
gression model in Python. It is customary to use the numpy package
to speed up computation and the matplotlib package for visualization.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

prepare dataset

X = ... # array of shape (n, d), each row is a d-dimensional data point

y = ... # array of shape (n), each value = -1 or +1

w = ... # array of shape (d), each value is a weight for each dimension

X_train, X_test, y_train, y_test, eta = ...

define functions

def loss(X, y, w):

returns the logistic loss

return sum log(1 + exp(-y*w*x))

...

def grad_loss(X, y, w):

returns the gradient of the logistic loss

return sum (-y*x)/(1 + exp(y*w*x))

...

def gradient_descent(X, y, w0, eta)

...

return w

run Gradient Descent

w = gradient_descent(X_train, y_train, w, eta)

linear classification 57

plot the learned classifier

assuming data is 2-dimensional

colors = {1: ’blue’, -1: ’red’}

xmin, xmax, ymin, ymax = ...

plt.scatter(X[:,0], X[:,1], c=np.array([colors[y_i] for y_i in y]))

plt.plot([xmin, xmax], [ymin, ymax], c=’black’)

We have already discussed how to implement the majority of the
code sample above in previous chapters. The only parts that are new
are the functions to calculate the logistic loss and its gradient. This is
consistent with the theme of this chapter — to discuss how to design
loss functions that are appropriate for the task. Nevertheless, while
the content of this code sample is familiar, some sections of the code
introduce new Python functionality and syntax. We first consider the
logistic loss and gradient functions:

def loss(X, y, w):

returns the logistic loss

return sum log(1 + exp(-y*w*x))

...

def grad_loss(X, y, w):

returns the gradient of the logistic loss

return sum (-y*x)/(1 + exp(y*w*x))

...

In Java, the programming language you learned in earlier program-
ming classes, you would have to rely on a for loop to account for the
array inputs in the loss() and grad_loss() functions. However, Python
and numpy support many vectorized operations, including matrix mul-
tiplication and element-wise multiplication. These operations are
far more concise to read and will also improve the runtime of the
program by a great margin. Note that the code snippet above does
not contain these operations; it is simply pseudo-code for your intu-
ition. You will be introduced to these vectorized operations during
the precept, and you will be expected to implement the loss function
with these new tools in your programming assignments.

Next, we use a Python dictionary to store information correspond-
ing to the plot’s coloring scheme:

colors = {1: ’blue’, -1: ’red’}

This is equivalent to a hash table from Java. Here, 1 and −1 are the
keys and “blue” and “red” are respectively their values.

We will now discuss multi-dimensional arrays in Python. There
are multiple ways to perform array indexing. For example, if X is a
2-dimensional array, both X[i][j] and X[i, j] can be used to extract the
entry at the i-th row, j-th column. It is also possible to provide a set
of rows or a set of columns to extract. The following code snippet
generates an array of shape (2, 2), where each entry is from the row 0

58 introduction to machine learning lecture notes for cos 324 at princeton university

or 1 and column 0 or 2:

X[[0, 1], [0, 2]]

Note that similar to the 1D case, the : operator is used to perform
array slicing. Bounding indices can be omitted as shown in the
following code snippet:

X[:,0]

This extracts the full set of rows and the column 0, or in other words,
the first column of X.

Finally, we use a list comprehension to specify the plotting color for
each data point:

[colors[y_i] for y_i in y]

This is Python syntactic sugar that allows the user to create an array
while iterating over the elements of an iterator. The code snippet here
is equivalent to the following code.

list = []

for y_i in y:

list.append(colors[y_i])

