
3
Optimization via Gradient Descent

This chapter discusses how to train model parameters through op-
timization techniques that help find the best (or fairly good) model
that has low training loss. We assume that you have seen simple
root-finding techniques in high school or in calculus. Optimization
in machine learning often uses a procedure called gradient descent.
This chapter assumes your knowledge of basis multivariable calcu-
lus. If you have not taken a course in multivariable calculus, read
Chapter 19 to familiarize yourself with the basic definitions.

3.1 Gradient Descent

In general, a ML model has an associated loss function. The “best”
model is the one that minimizes the training loss. In most cases, it is
impossible or difficult to find the minimum analytically; instead, we
use a numerical method called the gradient descent algorithm to find
the (approximate) optimum.

3.1.1 Univariate Example

Let’s start with an univariate example to motivate the topic. Let
f (w) = 4w2 − 6w− 9 be a quadratic function. Figure 3.1 shows the
graph of this function.

Figure 3.1: The graph of f (w) =
4w2 − 6w− 9

Let’s say that f attains its minimum at some point w = w∗. How

34 introduction to machine learning lecture notes for cos 324 at princeton university

should we find the value of w∗? Here is an idea. Let’s start from
some random point on the curve and “walk down” the curve.

Notice from the graph that f ′(w∗) = 0. Also, f is decreasing (i.
e., f ′(w) < 0) when w < w∗ and increasing (i. e., f ′(w) > 0) when
w > w∗. So if we examine a point w and find that f ′(w) = 0, then we
have arrived at our minimum. If f ′(w) > 0, then we are currently on
the right side of the minimum, so we need to decrease w. On the other
hand, if f ′(w) < 0, then we need to increase w.

For example, we start with the point w = 0. Since f ′(w) = −6 < 0,
we know that we are on the left side of the minimum, so we update
w ← 1. Since f ′(w) = 2 > 0, we are now on the right side of
the minimum, so we update w ← 1

2 . When we iterate this process,
we hope that we eventually slide down to the bottom of the curve.
Observe that the change of value of w has the opposite sign from
f ′(w) at that point. That is, for each step of this iteration, we can
always find a η > 0 such that

w← w− η f ′(w)

This is not a mere coincidence — a similar result holds for a multi-
variate function.

3.1.2 Gradient Descent (GD)

Let f : Rd → R be a multivariate function. If we want to “walk
down” the curve of f as in the univariate case, we need to find a
direction from the current point w⃗ that decreases f .

A generalization of the Taylor expansion in the multivariable
setting shows that the value of f in a small neighborhood around
x⃗ = (x1, x2, . . . , xd) can be approximated as a linear function in terms
of the gradient.

f (w⃗ + h⃗) ≈ f (w⃗) +∇ f (w⃗) · h⃗

where h⃗ ∈ Rd is small enough (i. e.,
∥∥∥⃗h
∥∥∥ ≈ 0).

If ∇ f is nonzero and we choose h⃗ = −η∇ f where η is a suffi-
ciently small positive number, then

f (w⃗− η∇ f) ≈ f (w⃗)− η∥∇ f ∥2
2

Since ∥∇ f ∥2
2 is positive, being the squared length of the vector ∇ f ,

we conclude that the update w⃗← w⃗− η∇ f causes a decrease in value
of f . 1 This discussion motivates the gradient descent algorithm, which 1 In fact, the gradient ∇ f is known as

the direction of steepest increase of f .
Hence, the opposite direction −∇ f is
the direction of steepest decrease of f .

iteratively decreases the value of f until ∇ f = 0.

Definition 3.1.1 (Gradient Descent). Gradient descent is an iterative
algorithm that updates the weight vector w⃗ with the following rule:

w⃗← w⃗− η∇ f (w⃗) (3.1)

optimization via gradient descent 35

where η > 0 is a sufficiently small positive constant, called the learning
rate or step size.

We illustrate with an example.

Example 3.1.2. Let f (w1, w2) = (w2
1 + w2

2)
4 − 7(w2

1 + w2
2)

3 + 13(w2
1 +

w2
2)

2. From Figure 3.2, we see that it attains a global minimum at (0, 0).
The partial derivatives of f can be calculated as:

∂ f
∂w1

= 2w1(w2
1 + w2

2)(4(w
2
1 + w2

2)
2 − 21(w2

1 + w2
2) + 26)

∂ f
∂w2

= 2w2(w2
1 + w2

2)(4(w
2
1 + w2

2)
2 − 21(w2

1 + w2
2) + 26)

Now imagine initiating the gradient descent algorithm from the point
(0.5, 1) where the gradient vector is (7.5, 15). One iteration of gradient
descent with η = 0.01 would move from (0.5, 1) to (0.425, 0.85). The
gradient vector at (0.425, 0.85) is (7.90, 15.81) and the next iteration of GD
will move the point from (0.425, 0.85) to (0.35, 0.69). After 200 iterations,
the algorithm moves the point to (0.03, 0.06), which is very close to the
global minimum of f .

Figure 3.2: The graph of f (w1, w2) =
(w2

1 + w2
2)

4 − 7(w2
1 + w2

2)
3 + 13(w2

1 +
w2

2)
2. The function attains a global

minimum at (0, 0).

3.1.3 Learning Rate (LR)

Choosing an appropriate learning rate is crucial for GD. Figure 3.3
shows the result of two iterations of gradient descent with a different
learning rate. On the left, we see the result when λ is too small.
The change of w is too small, and the loss function converges to the
minimum very slowly. On the right, we see the result when λ is too
big. The change of w is too large that the algorithm “shoots past” the
minimum. If λ is even larger, the algorithm may even fail to converge
to the minimum.

36 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 3.3: Two iterations of gradient
descent with a different learning rate.

The natural question to ask is: what is the appropriate learning
rate? There is some theory, and the best setting is known in some
cases. But in general, it has to be set by trial and error, especially
for non-convex loss functions. For instance, we start with some
learning rate, say 0.5 and decrease η by 1

2 if we do not observe a
steady decrease in the training loss. Such heuristics are called training
schedules and they are derived via trial and error on that particular
dataset and model. 2 2 Constants whose values are decided

by trial and error based on dataset
and model are called hyperparameters.
Modern ML models have several
hyperparameters. Often optimization
packages will suggest a default value
and a fine-tuning method.

3.1.4 Non-convex Functions

For convex functions that are “bowl shaped,” gradient descent with
a small enough learning rate provably converges to the minimum
solution. But for non-convex functions, the best we can hope for is
converging to a point where ∇ f = 0. 3 Finding the global minimum

3 Points where the gradient is zero are
called stationary points, which include
local minima, local maxima, and
saddle points. It is possible for a GD
algorithm to terminate at a saddle point,
instead of the intended local minimum.
There is advanced theory on how to
escape saddle points, which will not be
covered in this course.

of a non-convex function is NP-hard in the worst case.
In practice, loss functions are non-convex and have multiple local

minima. Then, the gradient descent algorithm may converge to a
different local minimum based on the initialization of the parameter
vector w⃗.

Figure 3.4: An example of a convex
and a non-convex function in two
variables. For non-convex functions,
GD will reach a stationary point,
where gradient is zero. Figure from
https://www.kdnuggets.com/2016/

12/hard-thing-about-deep-learning.

html.

Example 3.1.3. Consider the function f (w) = 1
3 w4− 1

2 w3−w2 +w, which
has two local minima at (−1,−1) and (2,−1). As seen in Figure 3.5, the

https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html
https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html
https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html

optimization via gradient descent 37

local minimum that the gradient descent algorithm outputs depends on the
initial point.

Figure 3.5: The graph of f (w) =
1
3 w4 − 1

2 w3 − w2 + w with two local
minima.

3.2 Implications of Linearity of Gradient

The fact that gradient is a linear operator (i. e., ∇(f1 + f2) = ∇ f1 +

∇ f2) has great practical importance in machine learning.
Just like in (1.4), the training loss of a machine learning model is

usually defined as the average (or the sum) of the loss on individual
training data point. By the linearity of gradient, the gradient of the
entire loss can be found by taking the sum of the gradient of the loss
on individual data points.

3.2.1 Stochastic Gradient Descent

Since computing the gradient of the loss involves some computation
on each of the data points, the computation can be quite slow for
today’s large data sets, which can contain millions of data points.
A simple workaround is to estimate the gradient at each step by
randomly sampling k data points and averaging the corresponding
loss gradients. This is very analogous to opinion polls, which can
also be seen as sampling from a distribution on vectors and using the
average of the sample as a substitute for the population average. This
algorithm is called Stochastic Gradient Descent (SGD). 4 This technique 4 Some authors call this the Batch SGD

and use the name SGD only for the case
where k = 1.

works for two reasons: (1) all training data points are assumed to be
sampled from the same distribution; (2) the overall training loss is
just the sum/average of loss for individual data points.

3.2.2 Mini-batch Stochastic Gradient Descent

Today, large scale machine learning is done using special-purpose
processors called Graphical Processing Units (GPUs). 5 These highly 5 As the name suggests, these were orig-

inally developed for computer graphics
operations needed in computer games.
Around 2012, deep learning experts
realized their usefulness for deep learn-
ing. At the time writing code for GPUs
was extremely difficult, but today’s
environments have made this much
easier.

38 introduction to machine learning lecture notes for cos 324 at princeton university

specialized architectures have the ability to perform fast parallel
computations. To exploit these special capabilities, a special vari-
ant of SGD — Mini-batch SGD — can be used. Here the dataset is
randomly partitioned into mini batches whose size is dictated by
the degree of parallelism available in the GPU, usually a power of 2,
such as 256. The members of each batch are loaded onto a different
processor. Together the processors compute the gradient for one mini-
batch in one go, add up the gradients to perform a single iteration for
the gradient descent. Then they move on to the next batch, perform
another update step, and so on.

3.2.3 Federated Learning

This is a conceptual framework for training a ML model on data
belonging to different parties, who do not wish to hand the data over
to a central server. Consider the following two examples:

1. Hospitals who wish to train an ML model on their pooled data,
but who are forbidden by privacy laws to hand the data to other
organizations.

2. Owners of Internet of Things (IoT) devices, who wish to benefit
from training on their data but do not wish to submit the data.

In Federated Learning, the model is trained at a central server,
whereas data remains with the data owners, who actively participate
in the training. Users retrieve the current model parameters from
the server and calculate the gradients locally. They send only the
gradients, but not the data, to the server, and the overall gradient is
calculated at the server as the weighted sum (or average) of the user
gradients.

3.3 Regularizers

This section describes regularization, a useful idea that often improves
generalization of the model. The main idea is that instead of min-
imizing the training loss function ℓ(w⃗), we minimize the function

ℓ(w⃗) + λR(w⃗) (3.2)

where λ > 0 is a constant and R(w⃗) is some non-negative function.
R(w⃗) is called a regularizer or sometimes penalty. We refer to (3.2) as
the regularized loss function.

The most commonly used regularizer is the ℓ2 regularizer where
the squared ℓ2 norm R(w⃗) = ∥w⃗∥2

2 of the weight vector is used.

optimization via gradient descent 39

Example 3.3.1. Recall the sentiment prediction model using least squares
loss. Suppose the training data consists of two data points: (⃗x1, y1) =

((1, 0, 1),−1) and (⃗x2, y2) = ((1, 1, 0),+1). Then the least squares loss,
without any regularizer, can be written as

1
2
((−1− (w0 + w2))

2 + (1− (w0 + w1))
2) (3.3)

A little thought suggests that the minimum value of this loss is 0 provided
there exists (w0, w1, w2) such that

(−1− (w0 + w2))
2 = 0 = (1− (w0 + w1))

2.

You can verify that infinitely many solutions exist: all w⃗∗ = (w0, w1, w2)

that lie on the line (0, 1,−1) + t(1,−1,−1) where t ∈ R. In other words,
the loss has infinitely many minimizers.

Now if impose an ℓ2 regularizer, the loss becomes

1
2
((−1− (w0 + w2))

2 + (1− (w0 + w1))
2) + λ(w2

0 + w2
1 + w2

2) (3.4)

Any minimizer of this loss must make the gradient zero. In other words, the
minimizer will satisfy the following system of linear equations:

(2 + 2λ)w0 + w1 + w2 = 0

w0 + (1 + 2λ)w1 = 1

w0 + (1 + 2λ)w2 = −1

You can verify that w⃗∗∗ =
(

0, 1
1+2λ ,− 1

1+2λ

)
is the unique minimizer for

any λ > 0. For a sufficiently small value of λ, the corresponding w⃗∗∗ is
close enough to the line (0, 1,−1) + t(1,−1,−1). That is, it has a non-zero
training loss, but the value is very close to zero. Combined with the fact it
has a small norm, w⃗∗∗ becomes the minimizer for the regularized loss.

Figure 3.6: The graph of the line
(0, 1,−1) + t(1,−1,−1) and the point
w⃗∗∗ = (0, 1

1+2λ ,− 1
1+2λ) when λ = 0.01

Note that if w⃗∗ is the minimizer of ℓ(w⃗) and w⃗∗∗ the minimizer
of the regularized loss, then by definition of a minimizer, it always

40 introduction to machine learning lecture notes for cos 324 at princeton university

holds that ℓ(w⃗∗) ≤ ℓ(w⃗∗∗). In general, regularization ends up lead-
ing to training models with a higher value of ℓ(w⃗). This is considered
acceptable because the models often generalize better. In other words,
a slightly higher training loss is considered a price worth paying for a
significantly lower test loss. This is illustrated by the example of sen-
timent prediction from Chapter 1. As hinted there, the results shown
used a model trained with an ℓ2 regularizer. The dataset involves 15k
distinct words, so that is the number of model variables. There are
8k data points. Recall from Problem 1.2.5 that in such settings, there
usually will exist a linear model that perfectly fits the data points.
Indeed, we see in Table 3.1 that this is the case when we don’t use a
regularizer. However, using a regularizer prevents the model from
perfectly fitting the training data. But the test loss drops tenfold with
regularization.

No regularizer With ℓ2-regularizer
Train MSE 0.0000 0.0727
Test MSE 7.9469 0.7523

Training accuracy 100.00% 99.55%
Test accuracy 61.67% 78.07%

Table 3.1: Training sentiment model on
the SST with and without ℓ2 regularizer.

3.3.1 Effects of Regularization

Here we briefly list some benefits of regularization.

1. Regularizers often help improve generalization. Above we saw a
concrete example with the sentiment prediction model.

2. Adding a scalar multiple of ∥w⃗∥2
2 to a function can speed up

optimization by slightly reshaping the optimization landscape.
The mathematical treatment of this is beyond the scope of this
course.

3. Without a regularizer term, models such as logistic regression and
soft-margin SVMs begin to lose their power. This will be explained
when we discuss these models in Chapter 4.

3.3.2 Why Does Regularization Help?

The simplest answer is that we do not fully understand this concept
yet. In this section, we present some intuitions derived from simple
models, but keep in mind that these ideas might be misleading in
more complicated models.

The usual explanation given is that the norm of the parameter
vector controls the expressiveness or complexity of the model. Here
“complexity” is being used in the sense of “complicatedness”. By

optimization via gradient descent 41

trying to minimize loss as well as the norm of the parameter vector,
the learned model tends to stay simple. 6 Whereas this discussion 6 Recall the famous Occam’s Razor for

judging goodness of scientific theories:
The simpler the theory that explains the
known facts, the more likely it is to be
correct. An ML model can be seen as a
“theory” about relationships in the data,
and thus the simplest theory is to be
preferred.

can be made fairly rigorous for linear models, it does not seem to
apply to more complicated models: for instance regularization often
helps a lot in deep learning, but the rigorous explanation appear to
be at best incomplete and at worst incorrect there. 7

7 See the blog https://www.offconvex.

org for posts about generalization and
deep learning. They also discuss how
other ideas such as VC dimension,
which we did not cover in this course,
also do not apply in deep learning.

Another explanation 8 is that a regularizer serves as a penalty for

8 See the online lecture video by An-
drew Ng. https://www.youtube.com/
watch?v=KvtGD37Rm5I&ab_channel=

ArtificialIntelligence-AllinOne

large weights and forces the model to choose smaller absolute values
of parameters. According to this explanation, adding regularizers to
a model penalizes higher-order terms or unnecessary variables and
is able to avoid overfitting. Indeed, Figure 3.7 shows that the weights
of the parameters in our sentiment model is significantly smaller
when trained with a regularizer. But one lingering question with
this explanation is: How come attaching the same penalty to all variables
forces the model to identify variables that are needed, and those that are not?
What causes this disparate treatment of the variables?

Figure 3.7: The histogram of weights of
the parameters in the sentiment predic-
tion model with (right) or without (left)
an ℓ2 regularizer.

Now consider this explanation — ℓ2 regularization introduces a
new dynamic to gradient descent, whereby gradient updates have to
constantly battle against a rescaling that is always trying to whittle
all variables down to zero. The effort succeeds only for variables
where gradient updates are pushing hardest to make them nonzero.
Therefore, the weights for “necessary” variables survive, while
“unnecessary” variables are thrown away. To say this more precisely,
consider the regularized loss ℓ(w⃗) + λ ∥w⃗∥2

2 whose gradient is

∇ℓ+ 2λw⃗

Thus the update rule in gradient descent can be written as

w⃗t+1 ← w⃗t − η(∇ℓ+ 2λw⃗t)

where w⃗t denotes the weight vector at the t-th time step. This update
rule can be rewritten as

w⃗t+1 ← w⃗t(1− 2ηλ)− η∇ℓ (3.5)

The first term is down-scaling: if for example η = λ = 0.1, this
amounts to multiplying the current vector by 0.98, and this of course
will make w⃗ very small in a few hundred iterations.

https://www.offconvex.org
https://www.offconvex.org
https://www.youtube.com/watch?v=KvtGD37Rm5I&ab_channel=ArtificialIntelligence-AllinOne
https://www.youtube.com/watch?v=KvtGD37Rm5I&ab_channel=ArtificialIntelligence-AllinOne
https://www.youtube.com/watch?v=KvtGD37Rm5I&ab_channel=ArtificialIntelligence-AllinOne

42 introduction to machine learning lecture notes for cos 324 at princeton university

The second term is the gradient update. It can counteract the
down-scaling by making the variables larger. But notice that the
amount of change is based on how much each of the coordinates con-
tribute to reducing the loss. Variables that are not useful will tend not
to get increased by the gradient update and thus will keep getting
down-scaled to low values. 9 The choice of λ mediates between these 9 It is one of those “use it or lose it”

situations!two processes.

3.4 Gradient Descent in Programming

In this section, we briefly discuss how to implement the Gradient De-
scent algorithm in Python. It is customary to use the numpy package
to speed up computation and the matplotlib package for visualization.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

initialize variables

num_iter = ...

x = np.zeros(num_iter + 1)

y = np.zeros(num_iter + 1)

x[0], y[0], eta = ...

define functions to calculate f and grad_f

def f(x, y):

...

return f

def grad_f(x, y):

...

return grad_f

run Gradient Descent

for i in range(num_iter):

grad_x, grad_y = grad_f(x[i], y[i])

x[i + 1] = x[i] - eta * grad_x

y[i + 1] = y[i] - eta * grad_y

plot the surface

xmin, xmax, ymin, ymax, n = ...

X, Y = np.meshgrid(np.linspace(xmin, xmax, n),

np.linspace(ymin, ymax, n))

Z = f(X, Y)

fig = plt.figure(figsize=(12, 10))

ax = fig.add_subplot(projection=’3d’)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

ax.view_init(elev=ax.elev, azim=ax.azim)

ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, alpha=0.5)

plot the trajectory of Gradient Descent

ax.plot(x, y, f(x, y), color=’orange’, markerfacecolor=’black’,

markeredgecolor=’k’, marker=’o’, markersize=5)

optimization via gradient descent 43

We first start off by importing necessary packages and initializing
variables. The following code initializes numpy arrays of length
num_iter + 1, with all entries initialized to 0

x = np.zeros(num_iter + 1)

y = np.zeros(num_iter + 1)

Sometimes, it is useful to make use of np.ones(), which will generate
arrays filled with entries equal to 1.

We then define functions that will calculate the values of f and ∇ f
given an array of data points (x, y).

def f(x, y):

...

return f

def grad_f(x, y):

...

return grad_f

This allows us to run the Gradient Descent algorithm as in

for i in range(num_iter):

grad_x, grad_y = grad_f(x[i], y[i])

x[i + 1] = x[i] - eta * grad_x

y[i + 1] = y[i] - eta * grad_y

Here we iteratively update the value of (x, y) using ∇ f (x, y) and
store each of the points in the array x and y.

We next plot the surface of the function f (x, y). To start, we first
create a grid of (x, y) points to evaluate f (x, y) at.

X, Y = np.meshgrid(np.linspace(xmin, xmax, n),

np.linspace(ymin, ymax, n))

Z = f(X, Y)

The function call np.linspace(min, max, n) generates an array of n
equally spaced values from min to max. For example, the code

np.linspace(-2, 2, 5)

will create an array [−2,−1, 0, 1, 2]. Then np.meshgrid(x, y) will create
a grid from the array of x values and the array of y values. We can
now perform the 3D plotting with the following code.

fig = plt.figure(figsize=(12, 10))

ax = fig.add_subplot(projection=’3d’)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

ax.view_init(elev=ax.elev, azim=ax.azim)

ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, alpha=0.5)

Feel free to change the values of the optional parameters to under-
stand their purpose. Unlike the code for plotting a scatter plot of

44 introduction to machine learning lecture notes for cos 324 at princeton university

linear regression in Chapter 1, here we create an object of the Axes
class with the function plt.figure().gca()10. Then we call its instance 10 You can read more about the

differences between these two
matplotlib interfaces at https:
//matplotlib.org/matplotblog/posts/

pyplot-vs-object-oriented-interface/

methods to add features to it (e.g., x-, y-, z-labels).
Finally, we can plot the trajectory of the Gradient Descent algo-

rithm with the code

ax.plot(x, y, f(x, y), color=’orange’, markerfacecolor=’black’,

markeredgecolor=’k’, marker=’o’, markersize=5)

You can alternatively call

ax.scatter(x, y, f(x, y))

but the names of optional parameters might be slightly different.

3.4.1 Using Machine Learning Packages

When the function f is simple and it is possible to calculate ∇ f by
hand, we can implement the Gradient Descent algorithm by hand
as in the previous subsection. However, in most ML programs, the
loss function f is very high-dimensional, and it is difficult to write
a single function to directly compute the gradient ∇ f . Instead, we
can make use of functions defined in popular ML packages. Here, we
introduce one such package called PyTorch:

• torch: This is a popular package used for designing and training
deep learning models. PyTorch uses an object-oriented interface
for user convenience and provides access to optimized array data
structures called tensors to make computations faster and more
efficient. The package also provides support for GPU training. 11 11 Documentation is available at https:

//pytorch.org/docs/stable/index.

htmlUsing PyTorch, Gradient Descent can be implemented in just a few
lines:

import torch

model = ...

opt = torch.optim.SGD(model.parameters(), lr=0.1)

The code above will create an instance of the Optimzer class, which
has pre-defined methods that will compute the gradients and auto-
mate the Gradient Descent process.

3.4.2 Beyond Vanilla Gradient Descent

If you visit the documentation for the torch.optim, 12 you may notice 12 https://pytorch.org/docs/stable/

optim.htmlthat there are other algorithms listed as an alternative to the Stochas-
tic Gradient Descent. A lot of these algorithms are extensions of the
GD algorithm we explained throughout this chapter, which have
proven to be more effective than the vanilla GD algorithm in certain
cases (e.g., Adam, Adagrad, Nesterov momentum). For example,

https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

optimization via gradient descent 45

these algorithms may choose to add a momentum to the gradient, so
that the rate of change of f will be accelerated if it has been updating
in the same direction in the recent few steps. These algorithms may
also choose to use a different learning rate for each of the model
parameters. In particular, the appropriate learning rate can be com-
puted based on the mean and the variance of the gradient values
from the recent few steps.

