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Linear Algebra

20.1 Vectors
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v⃗ = (2, 1)

Figure 20.1: A visualization of a vector
v⃗ = (2, 1) in R2.

Vectors are a collection of entries (here, we focus only on real num-
bers). For example, the pair (1, 2) is a real vector of size 2, and the
3-tuple (1, 0, 2) is a real vector of size 3. We primarily categorize vec-
tors by their size. For example, the set of all real vectors of size n is
denoted as Rn. Any element of Rn can be thought of as representing
a point (or equivalently, the direction from the origin to the point) in
the n-dimensional Cartesian space. A real number in R is also known
as a scalar, as opposed to vectors in Rn where n > 1.

20.1.1 Vector Space

x

y

x⃗ = (2, 1)

y⃗ = (1, 2)

x⃗ + y⃗ = (3, 3)

Figure 20.2: A visualization of x⃗ + y⃗
where x⃗ = (2, 1) and y⃗ = (1, 2).

We are interested in two operations defined on vectors — vector
addition and scalar multiplication. Given vectors x⃗ = (x1, x2, . . . , xn)

and y⃗ = (y1, y2, . . . , yn) and a scalar c ∈ R, the vector addition is
defined as

x⃗ + y⃗ = (x1 + y1, x2 + y2, . . . , xn + yn) ∈ Rn

where we add each of the coordinates element-wise. As shown in
Figure 20.2, vector addition is the process of finding the diagonal
of the parallelogram made by the two vectors x⃗ and y⃗. The scalar
multiplication is similarly defined as

c⃗x = (cx1, cx2, . . . , cxn) ∈ Rn
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x⃗ = (4, 2)0.5⃗x = (2, 1)

Figure 20.3: A visualization of 0.5⃗x
where x⃗ = (4, 2).

As shown in Figure 20.3, scalar multiplication is the process of
scaling one vector up or down.

Rn is closed under these two operations — i. e., the resulting
vector of either operation is still in Rn. Any subset S of Rn that is
closed under vector addition and scalar multiplication is known as a
subspace of Rn.
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20.1.2 Inner Product

The inner product is defined as

x⃗ · y⃗ = x1y1 + x2y2 + . . . + xnyn =
n

∑
i=1

xiyi ∈ R

Closely related to the inner product is the norm of a vector, which
measures the length of it. It is defined as ∥⃗x∥ =

√
x⃗ · x⃗. 1 1 There are many other definitions of a

norm. This particular one is called an ℓ2
norm.Proposition 20.1.1. The inner product satisfies the following properties:

• Symmetry: x⃗ · y⃗ = y⃗ · x⃗

• Linearity: (a1⃗x1 + a2⃗x2) · y⃗ = a1 (⃗x1 · y⃗) + a2 (⃗x2 · y⃗)

and the norm satisfies the following property:

• Absolute Homogeneity: ∥a⃗x∥ = |a| ∥⃗x∥

20.1.3 Linear Independence

Any vector of the form

a1⃗x1 + a2⃗x2 + . . . + ak⃗xk

where ai’s are scalars and x⃗i’s are vectors is called a linear combination
of the vectors x⃗i’s. Notice that the zero vector 0⃗ (i. e., the vector with
all zero entries) can always be represented as a linear combination of
an arbitrary collection of vectors, if all ai’s are chosen as zero. This
is known as a trivial linear combination, and any other choice of ai’s is
known as a non-trivial linear combination.

Definition 20.1.2. k vectors x⃗1, x⃗2, . . . , x⃗k ∈ Rn are called linearly
dependent if 0⃗ can be represented as a non-trivial linear combination of the
vectors x⃗1, . . . , x⃗k; or equivalently, if one of the vectors can be represented as
a linear combination of the remaining k− 1 vectors. The vectors that are not
linearly dependent with each other are called linearly independent.

Consider the following analogy. Imagine trying to have a family
style dinner at a fast food restaurant, where the first person orders a
burger, the second person orders a chilli cheese fries, and the third
person orders a set menu with a burger and a chili cheese fries. The
third person’s order did not contribute to the diversity of the food
on the dinner table. Similarly, if some set of vectors are linearly
dependent, it means that at least one of the vectors is redundant.

Example 20.1.3. The set {(−1, 2), (3, 0), (1, 4)} of three vectors is linearly
dependent because

(1, 4) = 2 · (−1, 2) + (3, 0)

can be represented as the linear combination of the remaining two vectors.
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Example 20.1.4. The set {(−1, 2, 1), (3, 0, 0), (1, 4, 1)} of three vectors is
linearly independent because there is no way to write one vector as a linear
combination of the remaining two vectors.

20.1.4 Span

Definition 20.1.5. The span of a set of vectors x⃗1, . . . , x⃗k is the set of all
vectors that can be represented as a linear combination of x⃗i’s.

Example 20.1.6. (1, 4) is in the span of {(−1, 2), (3, 0)} because

(1, 4) = 2 · (−1, 2) + (3, 0)

Example 20.1.7. (1, 4, 1) is not in the span of {(−1, 2, 1), (3, 0, 0)} because
there is no way to choose a1, a2 ∈ R such that

(1, 4, 1) = a1(−1, 2, 1) + a2(3, 0, 0)

The span is also known as the subspace generated by the vectors
x⃗1, . . . , x⃗k. This is because if you add any two vectors in the span, or
multiply one by a scalar, it is still in the span (i. e., the span is closed
under vector addition and scalar multiplication).

Example 20.1.8. In the R3, the two vectors (1, 0, 0) and (0, 1, 0) span the
2-dimensional XY-plane. Similarly, the vectors (1, 0, 1) and (0, 2, 1) span
the 2-dimensional plane 2x + y− 2z = 0. 2 2 The term dimension will be formally

defined soon. Here, we rely on your
intuition.In Example 20.1.8, we see examples where 2 vectors span a 2-

dimensional subspace. In general, the dimension of the subspace
spanned by k vectors can go up to k, but it can also be strictly smaller
than k. This is related to the linear independence of the vectors.

Proposition 20.1.9. Given k vectors, x⃗1, . . . , x⃗k ∈ Rn, there is a maximum
number d ≥ 1 such that there is some subcollection x⃗i1 , . . . , x⃗id of these
vectors that are linearly independent. Then

span(⃗x1, . . . , x⃗k) = span(⃗xi1 , . . . , x⃗id) (20.1)

is a d-dimensional subspace of Rn.
Conversely, if we know that the span of the k vectors is a d-dimensional

subspace, then the maximum number of vectors that are linearly indepen-
dent with each other is d, and any subcollection of linearly independent d
vectors satisfies (20.1).

Proposition 20.1.9 states that the dimension of the span of some
set of k vectors is equivalent to the maximum number d of linearly
independent vectors. It also states that the span of the k vectors is
equal to the span of the linearly independent d vectors, meaning all
of the information is captured by the d vectors; the remaining k− d
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vectors are just redundancies. But trying to directly compute the
maximum number of linearly independent vectors is inefficient —
it may require checking the linear independence of an exponential
number of subsets of the vectors. In the next section, we discuss a
concept called matrix rank that is very closely related to this topic.

20.1.5 Orthogonal Vectors

Definition 20.1.10. If vectors x⃗1, . . . , x⃗k ∈ Rn satisfy x⃗i · x⃗j = 0 for
any i ̸= j, then they are called orthogonal vectors. In particular, if they
also satisfy the condition that ∥⃗xi∥ = 1 for each i, then they are also
orthonormal.

In Rn, orthogonal vectors form a 90 degree angle with each other.

Example 20.1.11. The two vectors (1, 0), (0, 2) are orthogonal. So are the
vectors (1, 2), (−2, 1).
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y

x⃗ = (1, 2)y⃗ = (−2, 1)

Figure 20.4: A visualization of orthogo-
nal vectors x⃗ = (1, 2) and y⃗ = (−2, 1).

Given any set of orthogonal vectors, it is possible to transform it
into a set of orthonormal vectors, by normalizing each vector (i. e.,
scale it such that the norm is 1).

20.1.6 Basis

Definition 20.1.12. A collection {⃗x1, . . . , x⃗k} of linearly independent
vectors in Rn that span a set S is known as a basis of S. In particular, if
the vectors of the basis are orthogonal/orthonormal, the basis is called an
orthogonal/orthonormal basis of S.

The set S in Definition 20.1.12 can be the entire vector space Rn,
but it can also be some subspace of Rn with a lower dimension.

Example 20.1.13. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of three vec-
tors is a basis for R3. When we exclude the last vector (0, 0, 1), the set
{(1, 0, 0), (0, 1, 0)} is a basis of the 2-dimensional XY-plane in R3.

Given some subspace S, the basis of S is not unique. However,
every basis of S must have the same size — this size is called the
dimension of S. For a finite dimensional space S, it is known that
there exists an orthogonal basis of S. There is a well-known algorithm
— Gram-Schmidt process — that can transform an arbitrary basis
into an orthogonal basis (and eventually an orthonormal basis via
normalization).

20.1.7 Projection

Vector projection is the key concept used in the Gram-Schmidt process
that computes an orthogonal basis. Given a fixed vector a⃗, it decom-
poses any given vector x⃗ into a sum of two components — one that is
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orthogonal to a⃗ (“distinct information”) and the other that is parallel
to a⃗ (“redundant information”).

Definition 20.1.14 (Vector Projection). Fix a vector a⃗ ∈ Rn. Given
another vector x⃗, the projection of x⃗ on a⃗ is defined as

proj⃗a (⃗x) =
x⃗ · a⃗
a⃗ · a⃗ a⃗

and is parallel to the fixed vector a⃗. The remaining component

x⃗− proj⃗a (⃗x)

is called the rejection of x⃗ from a⃗ and is orthogonal to a⃗.

Proposition 20.1.15 (Pythagorean Theorem). If x⃗, y⃗ are orthogonal, then

∥⃗x + y⃗∥2 = ∥⃗x∥2 + ∥⃗y∥2

In particular, given two vectors a⃗, x⃗, we have

∥⃗x− proj⃗a (⃗x)∥2 = ∥⃗x∥2 − ∥proj⃗a (⃗x)∥2

Now assume we are given a space S and a subspace T ⊂ S. Then
a vector x⃗ ∈ S in the larger space does not necessarily belong in T.
Instead, we can find a vector x⃗′ ∈ T that is “closest” to x⃗ using vector
projection. 3 3 We ask you to prove this in Prob-

lem 7.1.3.
Definition 20.1.16 (Vector Projection on Subspace). Given a space S, its
subspace T with an orthogonal basis {⃗t1, . . . ,⃗ tk}, and a vector x⃗ ∈ S, the
projection of x⃗ on T is defined as

projT (⃗x) =
k

∑
i=1

proj⃗ti
(⃗x) =

k

∑
i=1

x⃗ · t⃗i

t⃗i · t⃗i
t⃗i

the sum of projection of x⃗ on each of the basis vectors of T.

20.2 Matrices

Matrices are a generalization of vectors in 2-dimension — a m × n
matrix is a collection of numbers assembled in a rectangular shape
of m rows and n columns. The set of all real matrices of size m× n
is denoted as Rm×n. A vector of size n is customarily understood as
a column vector — that is, a n× 1 matrix. Also, if m = n, then the
matrix is known as a square matrix.

20.2.1 Matrix Operation

Similarly to vector operations, we are interested in four matrix opera-
tions — matrix addition, scalar multiplication, matrix multiplication,



250 introduction to machine learning lecture notes for cos 324 at princeton university

and transpose. Given a scalar c ∈ R and matrices X, Y ∈ Rm×n such
that

X =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...
xm,1 xm,2 · · · xm,n

 and Y =


y1,1 y1,2 · · · y1,n

y2,1 y2,2 · · · y2,n
...

...
. . .

...
ym,1 ym,2 · · · ym,n


the matrix addition is defined as

X + Y =


x1,1 + y1,1 x1,2 + y1,2 · · · x1,n + y1,n

x2,1 + y2,1 x2,2 + y2,2 · · · x2,n + y2,n
...

...
. . .

...
xm,1 + ym,1 xm,2 + ym,2 · · · xm,n + ym,n


where we add each of the coordinates element-wise. The scalar
multiplication is similarly defined as

cX =


cx1,1 cx1,2 · · · cx1,n

cx2,1 cx2,2 · · · cx2,n
...

...
. . .

...
cxm,1 cxm,2 · · · cxm,n


The matrix multiplication XY is defined for a matrix X ∈ Rℓ×m and
a matrix Y ∈ Rm×n; that is, when the number of columns of the
first matrix is equal to the number of rows of the second matrix. The
output XY of the matrix multiplication will be a ℓ× n matrix. The (i, j)
entry of the matrix XY is defined as

(XY)i,j =
m

∑
k=1

xi,kyk,j

That is, it is defined as the inner product of the i-th row of X and the
j-th column of Y.

Proposition 20.2.1. The above matrix operations satisfy the following
properties:

• c(XY) = (cX)Y = X(cY)

• (X1 + X2)Y = X1Y + X2Y

• X(Y1 + Y2) = XY1 + XY2

Finally, the transpose X⊺ ∈ Rn×m of a matrix X ∈ Rm×n is the re-
sulting matrix when the entries of X are reflected down the diagonal.
That is,

(X⊺)i,j = Xj,i
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Proposition 20.2.2. The transpose of a matrix satisfies the following
properties:

• (X + Y)⊺ = X⊺ + Y⊺

• (cX)⊺ = c(X⊺)

• (XY)⊺ = Y⊺X⊺

20.2.2 Matrix and Linear Transformation

Recall that a vector of size n is often considered a n × 1 matrix.
Therefore, given a matrix A ∈ Rm×n and a vector x⃗ ∈ Rn, we
can define the following operation

y⃗ = A⃗x ∈ Rm

through matrix multiplication. This shows that A can be understood
as a mapping from Rn to Rm. We see that ai,j (the (i, j) entry of the
matrix A) is the coefficient of xj (the j-th coordinate of the input
vector) when computing yi (the i-th coordinate of the output vector).
Since each yi is linear in terms of each xj, we say that A is a linear
transformation.

20.2.3 Matrix Rank

Matrix rank is one of the most important concepts in basic linear
algebra.

Definition 20.2.3. Given a matrix A ∈ Rm×n of m rows and n columns,
the number of linearly independent rows is known to be always equal to the
number of linearly independent columns. This common number is known as
the rank of A and is denoted as rank(A).

The following property of rank is implied in the definition, but we
state it explicitly as follows.

Proposition 20.2.4. The rank of a matrix is invariant to reordering rows/-
columns.

Example 20.2.5. Consider the matrix M =

[
1 1 −2 0
−1 −1 2 0

]
, we notice

that the second row is simply the first row negated, and thus the rank of M
is 1.

Example 20.2.6. Consider the matrix M =

1 0 0
0 1 0
0 0 1

, the rank of M is 3

because all the row (or column) vectors are linearly independent (they form
basis vectors of R3).
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Example 20.2.7. Consider the matrix M =

 1 0 1
−2 −3 1
3 3 0

, the rank of

M is 2 because the third row can be expressed as the second row subtracted
from the first row.

When we interpret a matrix as a linear transformation, the rank
measures the dimension of the output space.

Proposition 20.2.8. A ∈ Rm×n has rank k if and only if the image of the
linear transformation, i.e., the subspace

{A⃗x | x⃗ ∈ Rn}

of Rm, has dimension k.

There are many known algorithms to compute the rank of a
matrix. Examples include Gaussian elimination or certain decom-
positions (expressing a matrix as the product of other matrices with
certain properties). Given m vectors in Rn, we can find the maximum
number of linearly independent vectors by constructing a matrix with
each row equal to each vector 4 and finding the rank of that matrix. 4 By Proposition 20.2.4, the order of the

rows can be arbitrary.

20.2.4 Eigenvalues and Eigenvectors

Say we have a square matrix A ∈ Rn×n. This means that the linear
transformation expressed by A is a mapping from Rn to itself. For
most vectors x⃗ ∈ Rn, x⃗ is mapped to a very “different” vector A⃗x
under this mapping. However, some vectors are “special” and they
are mapped to another vector with the same direction.

Definition 20.2.9 (Eigenvalue/Eigenvector). Given a square matrix
A ∈ Rn×n, if a vector v⃗ ∈ Rn satisfies

Av⃗ = λ⃗v

for some scalar λ ∈ R, then v⃗ is known as an eigenvector of A, and λ is its
corresponding eigenvalue.

Each eigenvector can only be associated with one eigenvalue, but
each eigenvalue may be associated with multiple eigenvectors.

Proposition 20.2.10. If x⃗, y⃗ are both eigenvectors of A for the same eigen-
value λ, then any linear combination of them is also an eigenvector for A
with the same eigenvalue λ.

Proposition 20.2.10 shows that the set of eigenvectors for a par-
ticular eigenvalue forms a subspace, known as the eigenspace of that
eigenvalue. The dimension of this subspace is known as the geometric
multiplicity of the eigenvalue. The following result ties together some
of the concepts we discussed so far.
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Proposition 20.2.11 (Rank-Nullity Theorem). Given a square matrix
A ∈ Rn×n, the eigenspace of 0 is the set of all vectors that get mapped to
zero vector 0⃗ under the linear transformation A. This subspace is known as
the null space of A and its dimension (i.e., the geometric multiplicity of 0)
is known as the nullity of A and is denoted as nullity(A). Then

rank(A) + nullity(A) = n

20.3 Advanced: SVD/PCA Procedures

Now we briefly introduce a procedure called Principal Component
Analysis (PCA), which is commonly used in low-dimensional repre-
sentation as in Chapter 7.

We are given vectors v⃗1, v⃗2, . . . , v⃗N ∈ Rd and a positive integer k
and wish to obtain the low-dimensional representation in the sense
of Definition 7.1.1 that minimizes ϵ. This is what we mean by “best”
representation.

Theorem 20.3.1. The best low-dimensional representation consists of
k eigenvectors corresponding to the top k eigenvalues (largest numerical
values) of the matrix AA⊺ where the columns of A are v⃗1, v⃗2, . . . , v⃗N .

Theorem 20.3.1 shows what the best low-dimensional represen-
tation is, but it does not show how to compute it. It turns out some-
thing called the Singular Value Decomposition (SVD) of the matrix A
is useful. It is known that any matrix A can be decomposed into the
following product

A = UΣV⊺

where Σ is a diagonal matrix with entries equal to the square root
of the nonzero eigenvalues of AA⊺ and the columns of U are the
orthonormal eigenvectors of AA⊺, where the i-th column is the
eigenvector that corresponds to the eigenvalue at the i-th diagonal
entry of Σ. There are known computationally efficient algorithms that
will perform the SVD of a matrix.

In this section, we will prove Theorem 20.3.1 for the case where
k = 1. To do this, we need to introduce some preliminary results.

Theorem 20.3.2. If a square matrix A ∈ Rn×n is symmetric (i. e., A = A⊺),
then there is an orthonormal basis of Rn consisting of n eigenvectors of A. 5 5 This is known as the Spectral Theo-

rem.
Proof. A real symmetric matrix is known to be diagonalizable, and
diagonalizable matrices are known to have n eigenvectors that form a
basis for Rn. In particular, the eigenvectors are linearly independent,
meaning the eigenvectors corresponding to a particular eigenvalue
λ will form a basis for the corresponding eigenspace. Through the
Gram-Schmidt process, we can replace some of these eigenvectors
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such that the eigenvectors for λ are orthogonal to each other. That
is, if u⃗, v⃗ are eigenvectors for the same eigenvalue λ, then u⃗ · v⃗ = 0.
Now assume u⃗, v⃗ are two eigenvectors with distinct eigenvalues λ, µ

respectively. Then

λu⃗ · v⃗ = (λu⃗) · v⃗ = (Au⃗) · v⃗ =
n

∑
i,j=1

ai,jujvi

= u⃗ · (A⊺⃗v) = u⃗ · (Av⃗) = u⃗ · (µ⃗v) = µu⃗ · v⃗

where the third and the fourth equality can be verified by direct
computation. Since λ ̸= µ, we conclude u⃗ · v⃗ = 0. We have now
showed that u⃗ · v⃗ = 0 for any pair of eigenvectors u⃗, v⃗ — this means
that the basis of eigenvectors is also orthogonal. After normalization,
the basis can be made orthonormal.

The following result is not necessarily needed for the proof of
Theorem 20.3.1, but the proofs are similar.

Theorem 20.3.3. If A ∈ Rn×n is symmetric, then the unit vector x⃗ that
maximizes ∥A⃗x∥ is an eigenvector of A with an eigenvalue whose absolute
values is the largest out of all eigenvalues.

Proof. By Theorem 20.3.2, there is an orthonormal basis {⃗u1, . . . , u⃗n}
of Rn consisting of eigenvectors of A. Then any vector x⃗ is in the
span of the eigenvectors and can be represented as the linear combi-
nation

x⃗ = α1u⃗1 + α2u⃗2 + . . . + αnu⃗n

for some scalars αi’s. Then

∥⃗x∥2 = x⃗ · x⃗
= (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n) · (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

=
n

∑
i,j=1

αiαj (⃗ui · u⃗j)

=
n

∑
i=1

α2
i

where for the last equality, we use the fact that u⃗i’s are orthonormal
— that is, u⃗i · u⃗j = 0 if i ̸= j and u⃗i · u⃗i = 1. Since x⃗ has norm 1, we see

that
n
∑

i=1
α2

i = 1. Now notice that

A⃗x = A(α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

= α1Au⃗1 + α2Au⃗2 + . . . + αnAu⃗n

= α1λ1u⃗1 + α2λ2u⃗2 + . . . + αnλnu⃗n
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where λi is the eigenvalue for the eigenvector u⃗i. Following a similar
computation as above,

∥A⃗x∥2 =
n

∑
i=1

α2
i λ2

i

The allocation of weights αi that will maximize
n
∑

i=1
α2

i λ2
i while main-

taining
n
∑

i=1
α2

i = 1 is assigning αi = ±1 to the eigenvalue λi that has

the highest value of λ2
i . This shows that the unit vector x⃗ = ±u⃗i is an

eigenvector with the eigenvalue λi.

We now prove one last preliminary result.

Theorem 20.3.4. For a matrix A ∈ Rm×n, the matrix AA⊺ is symmetric
and its eigenvalues are non-negative.

Proof. The first part can be verified easily by observing that

(AA⊺)⊺ = (A⊺)⊺A⊺ = AA⊺

Now assume x⃗ is an eigenvector of A with eigenvalue λ. Then

AA⊺⃗x = λ⃗x

We multiply by x⃗⊺ on the left on both sides of the equation.

x⃗⊺AA⊺⃗x = x⃗⊺(λ⃗x) = λ ∥⃗x∥2

At the same time, notice that

x⃗⊺AA⊺⃗x = (A⊺⃗x)⊺(A⊺⃗x) = ∥A⊺⃗x∥2

which shows that
λ ∥⃗x∥2 = ∥A⊺⃗x∥2

Since ∥⃗x∥2 , ∥A⊺⃗x∥2 are both non-negative, λ is also non-negative.

We are now ready to (partially) prove the main result of this
section.

Proof of Theorem 20.3.1. We prove the case where k = 1. Recall
that we want to find a vector u⃗ that minimizes the error of the low-
dimensional representation:

N

∑
i=1

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

where ̂⃗vi is the low-dimensional representation of v⃗i that can be
computed as ̂⃗vi = (⃗vi · u⃗)⃗u
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by the result of Problem 7.1.3. Now by Proposition 20.1.15, we see
that

N

∑
i=1
∥⃗vi − (⃗vi · u⃗)⃗u∥2 =

N

∑
i=1

(
∥⃗vi∥2 − ∥(⃗vi · u⃗)⃗u∥2

)
=

N

∑
i=1

(
∥⃗vi∥2 − (⃗vi · u⃗)2

)
Since we are already given a fixed set of vectors v⃗i, we cannot change
the values of ∥⃗vi∥2. Therefore, minimizing the last term of the equa-

tion above amounts to maximizing
N
∑

i=1
(⃗vi · u⃗)2. Notice that

N

∑
i=1

(⃗vi · u⃗)2 = ∥A⊺u⃗∥2 = u⃗⊺AA⊺u⃗

By Theorem 20.3.2 and by Theorem 20.3.4, there is an orthonormal
basis {⃗u1, . . . , u⃗n} of Rn that consist of the eigenvectors of the matrix
AA⊺. Let λi be the eigenvalue corresponding to the eigenvector u⃗i.
Then similarly to the proof of Theorem 20.3.3, we can represent any
vector u⃗ as a linear combination of the eigenvectors as

u⃗ = α1u⃗1 + α2u⃗2 + . . . + αnu⃗n

Then we have
n
∑

i=1
α2

i = 1 and

u⃗⊺AA⊺u⃗ = (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)
⊺AA⊺(α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

= (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)
⊺(α1λ1u⃗1 + α2λ2u⃗2 + . . . + αnλnu⃗n)

=
n

∑
i,j=1

αiαjλj (⃗ui · u⃗j)

=
n

∑
i=1

α2
i λi

Again, the allocation of αi’s that maximize
n
∑

i=1
α2

i λi while maintaining

n
∑

i=1
α2

i = 1 is assigning αi = ±1 to the eigenvector corresponding to

the highest value of λi.


