
19
Calculus

19.1 Calculus in One Variable

In this section, we briefly review calculus in one variable.

19.1.1 Exponential and Logarithmic Functions

When we multiply the same number a by n times, we denote it as an.
The exponential function is a natural extension of this concept.

Definition 19.1.1 (Exponential Function). There is a unique function
f : R → R such that f (n) = en for any n ∈ N and f (x + y) = f (x) f (y)
for any x, y ∈ R. This function is called the exponential function and is
denoted as ex or exp(x).

Figure 19.1: The graph of the exponen-
tial function.

Proposition 19.1.2. The following properties hold for the exponential
function:

1. exp(x) > 0 for any x ∈ R

2. exp(x) is increasing

3. lim
x→−∞

exp(x) = 0

4. lim
x→∞

exp(x) = ∞

5. exp(−x) = 1
exp(x)

We are also interested in the inverse function of the exponential
function.

Definition 19.1.3 (Logarithmic Function). The logarithmic function
log : (0, ∞) → R is defined as the inverse function of the exponential
function. That is, log(x) = y where x = ey.

Figure 19.2: The graph of the logarith-
mic function.

Proposition 19.1.4. The following properties hold for the logarithmic
function:
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1. log(x) is increasing

2. lim
x→0+

log(x) = −∞

3. lim
x→∞

log(x) = ∞

4. log(xy) = log(x) + log(y)

19.1.2 Sigmoid Function

In Machine Learning, a slight variant of the exponential function,
known as the sigmoid function is widely used.

Definition 19.1.5 (Sigmoid Function). The sigmoid function denoted as
σ : R→ R is defined as

σ(x) =
1

1 + exp(−x)

Figure 19.3: The graph of the sigmoid
function.

Proposition 19.1.6. The following properties hold for the sigmoid function:

1. 0 < σ(x) < 1 for any x ∈ R

2. σ(x) is increasing

3. lim
x→−∞

σ(x) = 0

4. lim
x→∞

σ(x) = 1

5. The graph of σ is symmetrical to the point
(

0, 1
2

)
. In particular,

σ(x) + σ(−x) = 1

Because of the last property in Proposition 19.1.6, the sigmoid
function is well suited for binary classification (e.g., in logistic re-
gression in Chapter 1). Given some output value x of a classification
model, we interpret it as the measure of confidence that the input is
of label 1, where we implicitly assume that the measure of confidence
that the input is of label 2 is −x. Then we apply the sigmoid function
to translate this into a probability distribution over the two labels.

19.1.3 Differentiation

Definition 19.1.7 (Derivative). Given a function f : R → R, its
derivative f ′ is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

We alternatively denote f ′(x) as d
dx f (x).
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Example 19.1.8. The derivative of the exponential function is itself:

exp′(x) = exp(x)

and the derivative of the logarithmic function is:

log′(x) =
1
x

In general, there are more than two variables, that are related to
each other through a composite function. The chain rule helps us find
the derivative of the composite function.

Definition 19.1.9 (Chain Rule). If there are functions f , g : R→ R such
that y = f (x) and z = g(y), then

(g ◦ f )′(x) = g′( f (x)) f ′(x) =
d

dy
g( f (x)) · d

dx
f (x)

or equivalently
dz
dx

=
dz
dy
· dy

dx

19.2 Multivariable Calculus

In this section, we introduce the basics of multivariable calculus,
which is widely used in Machine Learning. Since this is a general-
ization of the calculus in one variable, it will be useful to pay close
attention to the similarity with the results from the previous section.

19.2.1 Mappings of Several Variables

So far, we only considered functions of the form f : R → R that
map a real value x to a real value y. But now we are interested in
mappings f : Rn → Rm that map a vector x⃗ = (x1, . . . , xn) with
n coordinates to a vector y⃗ = (y1, . . . , ym) with m coordinates. In
general, a function is a special case of a mapping where the range is R.
If the mappings are of the form f : Rn → R (i. e., m = 1), it can still be
called a function of several variables.

First consider an example where m = 1.

Example 19.2.1. Let f (x1, x2) = x2
1 + x2

2 be a function in two variables.
This can be understood as mapping a point x⃗ = (x1, x2) in the Cartesian
coordinate system to its squared distance from the origin. For example,
f (3, 4) = 25 shows that the point the squared distance between (3, 4) and
the origin (0, 0) is 25.

When m > 1, we notice that each coordinate y1, . . . , ym is a func-
tion of x1, . . . , xn. Therefore, we can decompose f into m functions
f1, . . . , fm : Rn → R such that

f (⃗x) = ( f1 (⃗x), . . . , fm (⃗x))
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Example 19.2.2. Let f (x1, x2) = (x2
1x2, x1x2

2) be a mapping from R2 to R2.
Then we can decompose f into two functions f1, f2 in two variables where

f1(x1, x2) = x2
1x2

f2(x1, x2) = x1x2
2

19.2.2 Softmax Function

The softmax function is a multivariable function widely used in Ma-
chine Learning, especially for multi-class classification (see Chapter 4,
Chapter 10). It takes in a vector of k values, each corresponding to
a particular class, and outputs a probability distribution over the k
classes — that is, a vector of k non-negative values that sum up to
1. The resulting probability is exponentially proportional to the input
value of that class. We formally write this as:

Definition 19.2.3 (Softmax Function). Given a vector z⃗ = (z1, z2, . . . , zk) ∈
Rk, we define the softmax function as a probability function so f tmax :
Rk → [0, 1]k where the “probability of predicting class i” is:

so f tmax(⃗z)i =
ezi

∑k
j=1 ezj

(19.1)

Problem 19.2.4. Show that for k = 2, the definition of the softmax function
is equivalent to the sigmoid function (after slight rearrangement/renaming of
terms).

The sigmoid function is used for binary classification, where it
takes in a single real value and converts it to a probability of one
class (and the probability of the other class can be inferred as its com-
plement). The softmax function is used for multi-class classification,
where it takes in k real values and converts them to k probabilities,
one for each class.

19.2.3 Differentiation

Just like with functions in one variable, we can define differentiation
for mappings in several variables. The key point is that now we will
define a partial derivative for each pair (xi, yj) of coordinate xi of the
domain and coordinate yj of the range.

Definition 19.2.5 (Partial Derivative). Given a function f : Rn → Rm, the
partial derivative of yj with respect to xi at the point x⃗ is defined as

∂yj

∂xi

∣∣∣∣⃗
x
= lim

h→0

f j(x1, . . . , xj + h, . . . , xn)− f j(x1, . . . , xj, . . . , xn)

h
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Definition 19.2.6 (Gradient). If f : Rn → R is a function of several
variables, the gradient of f is defined as a mapping ∇ f : Rn → Rn that
maps each input vector to the vector of partial derivatives at that point:

∇ f (⃗x) =
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

)∣∣∣∣⃗
x

Similarly to the chain rule in one variable, we can define a chain
rule for multivariable settings. The key point is that there are mul-
tiple ways that a coordinate xj can affect the value of zi. Defini-
tion 19.2.7 can be thought as applying the chain rule for one variable
in each of the paths, and adding up the results.

x1

x2

y1

y2

y3

z1

z2

Figure 19.4: A visualization of the chain
rule in multivariable settings. Notice
that x2 can affect the value of z1 in
three different paths. The amount of
effect from each path will respectively
be calculated as (∂z1/∂y1)(∂y1/∂x2)
(red), (∂z1/∂y2)(∂y2/∂x2) (blue), and
(∂z1/∂y3)(∂y3/∂x2) (cyan).

Definition 19.2.7 (Chain Rule). If f : Rn → Rm and g : Rm → Rℓ are
mappings of several variables, where y⃗ = f (⃗x) and z⃗ = g(⃗y), the following
chain rule holds for each 1 ≤ i ≤ ℓ and 1 ≤ j ≤ n:

∂zi
∂xj

=
m

∑
k=1

∂zi
∂yk
· ∂yk

∂xj

Example 19.2.8. Suppose we define the functions h = s + t2, s = 3x, and
t = x− 2. Then, we can find the partial derivative ∂h

∂x using the chain rule:

∂h
∂x

=
∂s
∂x

+
∂(t2)

∂x

=
∂s
∂x

+
∂(t2)

∂t
· ∂t

∂x
= 3 + 2t · 1
= 2x− 1

Problem 19.2.9. Suppose we define the functions h = s + t2, s = xy, and
t = x− 2y. Compute the partial derivative ∂h/∂x.




