
18
Probability and Statistics

18.1 Probability and Event

18.1.1 Sample Space and Event

Probability is related to the uncertainty and randomness of the world.
It measures the likelihood of some outcome or event happening. To
formalize this concept, we introduce the following definition:

Definition 18.1.1 (Sample Space and Event). A set S of all possible
outcomes of a random phenomenon in the world is called a sample space.
Each element x ∈ S is called an outcome. A subset A ⊂ S is called an
event.

Example 18.1.2. The sample space of “the outcome of tossing two dice” is the
set S = {(1, 1), (1, 2), . . . , (6, 6)} of 36 elements. The event “the sum of the
numbers on the two dice is 5” is the subset A = {(1, 4), (2, 3), (3, 2), (4, 1)}
of 4 elements.

18.1.2 Probability

Given a sample space S, we define a probability for each event A of
that space. This probability measures the likelihood that the outcome
of the random phenomenon belongs to the set A.

Definition 18.1.3 (Probability). A probability Pr : S → R≥0 is a
mapping from each event A ⊂ S to a non-negative real number Pr[A] ≥ 0
such that the following properties are satisfied:

1. 0 ≤ Pr[A] ≤ 1 for any A ⊂ S

2. Pr[S] = 1

3. For any countable collection {A1, A2, . . .} of events that are pairwise
disjoint (i.e., Ai ∩ Aj = ∅ for any i ̸= j),

Pr

[
∞⋃

i=1

Ai

]
=

∞

∑
i=1

Pr[Ai]
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When the sample space is finite or countably infinite, 1 the properties above 1 A countably infinite set refers to a
set whose elements can be numbered
with integer indices. The set N of
natural numbers or the set Q of rational
numbers are examples of countably
infinite sets.

can be simplified into the following condition:

∑
x∈S

Pr[{x}] = 1

Example 18.1.4. Consider the sample space of “the outcome of tossing two
dice” again. Assuming the two dice are fair, the probability of each outcome
can be defined as 1/36. Then the probability of the event “the sum of the
numbers on the two dice is 5” is 4/36.

Example 18.1.5. We are picking a point uniformly at random from the sam-
ple space [0, 2]× [0, 2] in the Cartesian coordinate system. The probability of
the event that the point is drawn from the bottom left quarter [0, 1]× [0, 1] is
1/4.

18.1.3 Joint and Conditional Probability

In many cases, we are interested in not just one event, but multiple
events, possibly happening in a sequence.

Definition 18.1.6 (Joint Probability). For any set of events A =

{A1, . . . , An} of a sample space S, the joint probability of A is the proba-
bility Pr[A1 ∩ . . .∩ An] of the intersection of all of the events. The probability
Pr[Ai] of each of the events is also known as the marginal probability.

Example 18.1.7. Consider the sample space of “the outcome of tossing two
dice” again. Let A1 be the event “the number on the first die is 1” and let
A2 be the event “the number on the second die is 4.” The joint probability of
A1, A2 is 1/36. The marginal probability of each of the events is 1/6.

It is also useful to define the probability of an event A, based on
the knowledge that other events A1, . . . , An have occurred.

Definition 18.1.8 (Conditional Probability). For any event A and any
set of events A = {A1, . . . , An} of a sample space S, where Pr[A1 ∩ . . . ∩
An] > 0, the conditional probability of A given A is

Pr[A | A1, . . . , An] =
Pr[A ∩ A1 ∩ . . . ∩ An]

Pr[A1 ∩ . . . ∩ An]

Example 18.1.9. Consider the sample space of “the outcome of tossing
two dice” again. Let A1 be the event “the number on the first die is 1” and
let A2 be the event “the sum of the numbers on the two dice is 5.” The
conditional probability of A1 given A2 is 1/4. The conditional probability of
A2 given A1 is 1/6.

Using the definition of a conditional probability, we can define a
formula to find the joint probability of a set A of events of a sample
space.
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Proposition 18.1.10 (Chain Rule for Conditional Probability). Given a
set A = {A1, . . . , An} of events of a sample space S, where all appropriate
conditional probabilities are defined, we have the following

Pr[A1 ∩ . . . ∩ An] = Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 ∩ . . . ∩ An]

= Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 | A3 ∩ . . . ∩ An] · Pr[A3 ∩ . . . ∩ An]

...

= Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 | A3 ∩ . . . ∩ An] · · ·Pr[An]

Finally, from the definition of a conditional probability, we see that

Pr[B | A]Pr[A] = Pr[A ∩ B] = Pr[A | B]Pr[B]

This shows that

Pr[B | A] =
Pr[A | B]Pr[B]

Pr[A]

This is known as the Bayes’s Rule.

18.1.4 Independent Events

Definition 18.1.11 (Independent Events). Two events A, B are indepen-
dent if Pr[A], Pr[B] > 0 and

Pr[A] = Pr[A | B]

or equivalently
Pr[B] = Pr[B | A]

or equivalently
Pr[A ∩ B] = Pr[A] · Pr[B]

Example 18.1.12. Consider the sample space of “the outcome of tossing
two dice” again. Let A1 be the event “the number on the first die is 1” and
let A2 be the event “the number on the second die is 4.” A1 and A2 are
independent.

Example 18.1.13. Consider the sample space of “the outcome of tossing two
dice” again. Let A1 be the event “the number on the first die is 1” and let
A2 be the event “the sum of the numbers on the two dice is 5.” A1 and A2

are not independent.

18.2 Random Variable

In the previous section, we only learned how to assign a probability
to an event, a subset of the sample space. But in general, we can
assign a probability to a broader concept called a random variable,
associated to the sample space.
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Definition 18.2.1 (Random Variable). Given a sample space S, a mapping
X : S → R that maps each outcome x ∈ S to a value r ∈ R is called a
random variable.

Example 18.2.2. Consider the sample space of “the outcome of tossing two
dice” again. Then the random variable X = “sum of the numbers on the two
dice” maps the outcome (1, 4) to the value 5.

Definition 18.2.3 (Sum and Product of Random Variables). If
X, X1, . . . , Xn are random variables defined on the same sample space S
such that X(x) = X1(x) + . . . + Xn(x) for every outcome x ∈ S, then we
say that X is the sum of the random variables X1, . . . , Xn and denote

X = X1 + . . . + Xn

If X(x) = X1(x)× . . .× Xn(x) for every outcome x ∈ S, then we say that
X is the product of the random variables X1, . . . , Xn and denote

X = X1 · · ·Xn

Example 18.2.4. Consider the sample space of “the outcome of tossing two
dice” again. Then the random variable X = “sum of the numbers on the two
dice” is the sum of the two random variables X1 = “the number on the first
die” and X2 = “the number on the second die.”

18.2.1 Probability of Random Variable

There is a natural relationship between the definition of an event
and a random variable. Given a sample space S and random variable
X : S→ R, the “event that X takes a value in B” is denoted Pr[X ∈ B].
It is the total probability of all outcomes x ∈ S such that X(x) ∈ B. In
particular, the event that X takes a particular value r ∈ R is denoted
as X = r and the event that X takes a value in the interval [a, b] is
denoted as a ≤ X ≤ b and so on.

Example 18.2.5. Consider the sample space of “the outcome of tossing two
dice” and the random variable X = “sum of the numbers on the two dice”
again. Then

Pr[X = 5] = Pr[{(1, 4), (2, 3), (3, 2), (4, 1)}] = 4/36

Often we are interested in the probability of the events of the form
X ≤ x. Plotting the values of Pr[X ≤ x] with respect to x completely
identifies the distribution of the values of X.

Definition 18.2.6 (Cumulative Distribution Function). Given a random
variable X, there is an associated cumulative distribution function (cdf)
FX : R→ [0, 1] defined as

FX(x) = Pr[X ≤ x]
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Proposition 18.2.7. The following properties hold for a cumulative distribu-
tion function FX :

1. FX is increasing

2. lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1

18.2.2 Discrete Random Variable

If the set of possible values of a random variable X is finite or count-
ably infinite, we call it a discrete random variable. For a discrete ran-
dom variable, the probability Pr[X = i] for each value i that the
random variable can take completely identifies the distribution of X.
In view of this fact, we denote the probability mass function (pmf) by

pX(i) = Pr[X = i]

Proposition 18.2.8. The following properties hold for a probability mass
function pX :

1. ∑
i

pX(i) = 1

2. FX(x) = ∑
i≤x

pX(i)

18.2.3 Continuous Random Variable

We now consider the case where the set of all possible values of
a random variable X is an interval or a disjoint union of intervals
in R. We call such X a continuous random variable. In this case, the
probability of the event X = i is zero for any i ∈ R. Instead, we care
about the probability of the events of the form a ≤ X ≤ b.

Definition 18.2.9 (Probability Density Function). Given a continuous
random variable X, there is an associated probability density function
(pdf) fX : R→ R≥0 such that

Pr[a ≤ X ≤ b] =
∫ b

a
fX(x)dx

for any a, b ∈ R.

Proposition 18.2.10. The following properties hold for a probability density
function fX :

1.
∫ ∞
−∞ fX(x)dx = 1

2. FX(x) =
∫ x
−∞ fX(y)dy
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18.2.4 Expectation and Variance

Definition 18.2.11 (Expectation). The expectation or the expected value
of a discrete random variable X is defined as

E[X] = ∑
i

i · pX(i) = ∑
i

i · Pr[X = i]

where pX is its associated probability mass function. Similarly, the expecta-
tion for a continuous random variable X is defined as

E[X] =
∫ ∞

−∞
x · fX(x)dx

where fX is the associated probability density function. In either case, it is
customary to denote the expected value of X as µX or just µ if there is no
source of confusion.

Example 18.2.12. Consider the sample space of “the outcome of tossing one
die.” Then the expected value of the random variable X = “the number on
the first die” can be computed as

E[X] = 1 · 6
36

+ 2 · 6
36

+ 3 · 6
36

+ 4 · 6
36

+ 5 · 6
36

+ 6 · 6
36

= 3.5

Proposition 18.2.13 (Linearity of Expectation). If X is the sum of the
random variables X1, . . . , Xn, then the following holds:

E[X] = E[X1] + . . . + E[Xn]

Also, if a, b ∈ R and X is a random variable, then

E[aX + b] = aE[X] + b

Example 18.2.14. Consider the sample space of “the outcome of tossing two
dice.” Then the expected value of the random variable X = “the sum of the
numbers of the two dice” can be computed as

E[X] = 3.5 + 3.5 = 7

since the expected value of the number on each die is 3.5.

Definition 18.2.15 (Variance). The variance of a random variable X, whose
expected value is µ, is defined as

Var[X] = E[(X− µ)2]

Its standard deviation is defined as

σX =
√

Var[X]

It is customary to denote the variance of X as σ2
X .
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Proposition 18.2.16. If a ∈ R and X is a random variable, then

Var[aX] = a2Var[X] σaX = |a| σX

Problem 18.2.17. Prove Chebyshev’s inequality:

Pr[|X− µ| ≥ kσ] ≤ 1
k2

for any k > 0. (Hint: Suppose the probability was greater than 1/k2. What
could you conclude about E[(X− µ)2]? )

18.2.5 Joint and Conditional Distribution of Random Variables

Just as in events, we are interested in multiple random variables
defined on the sample space.

Definition 18.2.18 (Joint Distribution). If X, Y are discrete random
variables defined on the same sample space S, the joint probability mass
function pX,Y is defined as

pX,Y(i, j) = Pr[X = i, Y = j]

where the event X = i, Y = j refers to the intersection (X = i) ∩ (Y = j).
If X, Y are continuous random variables defined on S, there is an as-

sociated joint probability density function fX,Y : R → R≥0 such
that

Pr[a ≤ X ≤ b, c ≤ Y ≤ d] =
∫ d

c

∫ b

a
fX,Y(x, y)dxdy

The joint probability mass/density function defines the joint distribution of
the two random variables.

Definition 18.2.19 (Marginal Distribution). Given a joint distribution
pX,Y or fX,Y of two random variables X, Y, the marginal distribution of X
can be found as

pX(i) = ∑
j

pX,Y(i, j)

if X, Y are discrete and

fX(x) =
∫ ∞

−∞
fX,Y(x, y)dy

if continuous. We can equivalently define the marginal distribution of Y.

Definition 18.2.20 (Conditional Distribution). Given a joint distribution
pX,Y or fX,Y of two random variables X, Y, we define the conditional
distribution of X given Y as

pX | Y(i | j) =
pX,Y(i, j)

pY(j)
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whenever pY(j) > 0 if X, Y are discrete and

fX | Y(x | y) =
fX,Y(x, y)

fY(y)

whenever fY(y) > 0 if continuous. We can equivalently define the condi-
tional distribution of Y given X.

18.2.6 Bayes’ Rule for Random Variables

Sometimes it is easy to calculate the conditional distribution of X
given Y, but not the other way around. In this case, we can apply
the Bayes’ Rule to compute the conditional distribution of Y given X.
Here, we assume that X, Y are discrete random variables. By a simple
application of Bayes’ Rule, we have

Pr[Y = j | X = i] =
Pr[X = i | Y = j]Pr[Y = j]

Pr[X = i]

Now by the definition of a marginal distribution, we have

Pr[X = i] = ∑
j′

Pr[X = i, Y = j] = ∑
j′

Pr[X = i | Y = j′]Pr[Y = j′]

for all possible values j′ that Y can take. If we plug this into the
denominator above,

Pr[Y = j | X = i] =
Pr[X = i | Y = j]Pr[Y = j]

∑
j′

Pr[X = i | Y = j′]Pr[Y = j′]

Example 18.2.21. There is a coin, where the probability of Heads is
unknown and is denoted as θ. You are told that there is a 50% chance that it
is a fair coin (i.e., θ = 0.5) and 50% chance that it is biased to be θ = 0.7.
To find out if the coin is biased, you decide to flip the coin. Let D be the
result of a coin flip. Then it is easy to calculate the conditional distribution
of D given θ. For example,

Pr[D = H | θ = 0.5] = 0.5

But we are more interested in the probability that the coin is fair/biased
based on the observation of the coin flip. Therefore, we can apply the Bayes’
Rule.

Pr[θ = 0.7 | D = H] =
Pr[D = H | θ = 0.7]Pr[θ = 0.7]

Pr[D = H]

which can be calculated as

Pr[D = H | θ = 0.7]Pr[θ = 0.7]
Pr[D = H | θ = 0.7]Pr[θ = 0.7] + Pr[D = H | θ = 0.5]Pr[θ = 0.5]

=
0.7 · 0.5

0.7 · 0.5 + 0.5 · 0.5
≃ 0.58
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So if we observe one Heads, there is a 58% chance that the coin was biased
and a 42% chance that it was fair.

Problem 18.2.22. Consider Example 18.2.21 again. This time, we decide to
throw the coin 10 times in a row. Let N be the number of observed Heads.
What is the probability that the coin is biased if N = 7?

18.2.7 Independent Random Variables

Analogous to events, we can define the independence of two random
variables.

Definition 18.2.23 (Independent Random Variables). Two discrete
random variables X, Y are independent if for every i, j, we have

pX(i) = pX | Y(i | j)

or equivalently,

pY(j) = pY | X(j | i)

or equivalently

pX,Y(x, y) = pX(x) · pY(y)

Two continuous random variables X, Y are independent if the analogous
conditions hold for the probability density functions.

Definition 18.2.24 (Mutually Independent Random Variables). If any
pair of n random variables X1, X2, . . . , Xn are independent of each other,
then the random variables are mutually independent.

Proposition 18.2.25. If X1, . . . , Xn are mutually independent random
variables, the following properties are satisfied:

1. E[X1 · · ·Xn] = E[X1] · · ·E[Xn]

2. Var[X1 + . . . + Xn] = Var(X1) + . . . + Var(Xn)

We are particularly interested in independent random variables
that have the same probability distribution. This is because if we
repeat the same random process multiple times and define a random
variable for each iteration, the random variables will be independent
and identically distributed.

Definition 18.2.26. If X1, . . . , Xn are mutually independent random
variables that have the same probability distribution, we call them indepen-
dent, identically distributed random variables, which is more commonly
denoted as iid or i.i.d. random variables.
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18.3 Central Limit Theorem and Confidence Intervals

Now we turn our attention to two very important topics in statistics:
Central Limit Theorem and confidence intervals.

You may have seen confidence intervals or margin of error in the
context of election polls. The pollster usually attaches a caveat to the
prediction, saying that there is some probability that the true opinion
of the public is ±ϵ of the pollster’s estimate, where ϵ is typically a
few percent. This section is about the most basic form of confidence
intervals, calculated using the famous Gaussian distribution. It
also explains why the Gaussian pops up unexpectedly in so many
settings.

A running example in this chapter is estimating the bias of a coin
we have been given. Specifically, Pr[Heads] = p where p is unknown
and may not be 1/2. We wish to estimate p by repeatedly tossing the
coin. If we toss the coin n times, we expect to see around np Heads.
Confidence intervals ask the converse question: after having seen the
number of heads in n tosses, how “confidently” can we estimate p?

18.3.1 Coin Tossing

Suppose we toss the same coin n times. For each i = 1, 2, . . . , n, define
the random variable Xi as an indicator random variable such that

Xi =

1 i-th toss was Heads

0 otherwise

It is easily checked that X1, . . . , Xn are iid random variables, each
with E[Xi] = p and Var[Xi] = p(1− p). Also if we have another
random variable X = “number of heads,” notice that X is the sum of
X1, . . . , Xn. Therefore, E[X] = np and Var[X] = np(1− p).

Problem 18.3.1. Show that if Pr[Heads] = p then E[X] = np and
Var[X] = np(1− p). (Hint: use linearity of expectation and the fact that
Xi’s are mutually independent.)

Suppose p = 0.8. What is the distribution of X? Figure 18.1 gives
the distribution of X for different n’s.

Let’s make some observations about Figure 18.1.

Expected value may not happen too often. For n = 10, the expected
number of Heads is 8, but that is seen only with probability 0.3. In
other words, with probability 0.7, the number of Heads is different
from the expectation. 2 2 In such cases, expectation can be a

misleading term. It may in fact be never
seen. For instance, the expected number
of eyes in an individual drawn from
the human population is somewhere
between 1 and 2 but no individual has a
non-integral number of eyes. Thus mean
value is a more intuitive term.

The highly likely values fall in a smaller and smaller band around the
expected value, as n increases.

For n = 10, there is a good chance that the number of Heads is
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Figure 18.1: Distribution of X when we
toss a coin n times, and p = 0.8. The
plots were generated using a calculator.

quite far from the the expectation. For n = 100, the number of
Heads lies in [68, 90] with quite high probability. For n = 1000 it
lies in [770, 830] with high probability.

The probability curve becomes more symmetrical around the mean. Contrast
between the case where n = 10 and the case where n = 100.

Probability curve starts resembling the famous Gaussian distribution .
Also called Normal Distribution and in popular math, the Bell curve,
due to its bell-like shape.

18.3.2 Gaussian Distribution

We say that a real-valued random variable X is distributed according
to N (µ, σ2), the Gaussian distribution with mean µ and variance σ2,
if

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (18.1)

It is hard to make an intuitive sense of this expression. The following
figure gives us a better handle.

Figure 18.2: Cheatsheet for the Gaus-
sian distribution with mean µ and
variance σ2. It is tightly concentrated
in the interval [µ− kσ, µ + kσ] for even
k = 1 and certainly for k = 2, 3. Source:
https://en.wikipedia.org/wiki/

Normal_distribution

Figure 18.2 shows that X concentrates very strongly around the
mean µ. The probability that X lies in various intervals around µ of
the type [µ− kσ, µ + kσ] are as follows: (i) For k = 1 it is 68.3%; (ii) For
k = 2 it is 95.5%; (iii) For k = 3 it is 99.7%.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution


236 introduction to machine learning lecture notes for cos 324 at princeton university

18.3.3 Central Limit Theorem (CLT)

This fundamental result explains our observations in Subsection 18.3.1.

Theorem 18.3.2 (Central Limit Theorem, informal statement). Suppose
X1, X2, . . . , is a sequence of random variables that are mutually independent
and each of whose variance is upper bounded by some constant C. Then
as n → ∞, the sum X1 + X2 + . . . + Xn tends to N (µ, σ2) where µ =

∑i E[Xi] and σ2 = ∑i Var(Xi).

We won’t prove this theorem. We will use it primarily via the
“cheatsheet” of Figure 18.2.

18.3.4 Confidence Intervals

We return to the problem of estimating the bias of a coin, namely
p = Pr[Heads]. Suppose we toss it n times and observe X heads.
Then X = ∑i Xi where Xi is the indicator random variable that
signifies if the i-th toss is Heads.

Since the Xi’s are mutually independent, we can apply the CLT
and conclude that X will approximately follow a Gaussian distribu-
tion as n grows. This is clear from Figure 18.1, where the probability
histogram (which is a discrete approximation to the probability
density) looks quite Gaussian-like for n = 1000. In this course we
will assume for simplicity that CLT applies exactly. Using the mean
and variance calculations from Problem 18.3.1, X is distributed like
N (µ, σ2) where µ = np, σ2 = np(1− p). Using the cheatsheet of
Figure 18.2, we can conclude that

Pr[X ̸∈ [np− 2σ, np + 2σ]] ≤ 4.6%

Since X ∈ [np− 2σ, np + 2σ] if and only if np ∈ [X− 2σ, X + 2σ], some
students have the following misconception:

Given the observation of X heads in n coin tosses, the probability that np ̸∈
[X− 2σ, X + 2σ] is at most 4.6%.

But there is no a priori distribution on p. It is simply some (unknown)
constant of nature that we’re trying to estimate. So the correct infer-
ence should be:

If np ̸∈ [X− 2σ, X + 2σ], then the probability (over the n coin tosses) that we
would have seen X heads is at most 4.6%.

The above is an example of confidence bounds. Of course, you may
note that σ also depends on p, so the above conclusion doesn’t give
us a clean confidence interval. In this course we use a simplifying
assumption: to do the calculation we estimate σ2 as np′(1− p′) where
p′ = X/n. (The intuitive justification is that we expect p to be close to
X/n.)
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Example 18.3.3. Suppose X = 0.8n. Using our simplified calculation,
σ2 ≈ n(0.8)(0.2), implying σ = 0.4

√
n. Thus we conclude that if p ̸∈

[0.8− 0.4/
√

n, 0.8 + 0.4/
√

n], then the probability of observing this many
Heads in n tosses would have been less than 100− 68.2%, that is, less than
31.8%.

The concept of confidence intervals is also relevant to ML models.

Example 18.3.4. A deep neural network model was trained to predict cancer
patients’ chances of staying in remission a year after chemotherapy, and
we are interested in finding out its accuracy p. When the model is tested
on n = 1000 held-out data points, this problem is equivalent to the coin
flipping problem. For each of the held-out data point, the probability that the
model makes the correct prediction is p. By observing the number of correct
predictions on the held-out data, we can construct a confidence interval for
p. Say the test accuracy was p′ = 70%. Then the 68% confidence interval
can be written as

np ∈ [np′ − σ, np′ + σ]

Substituting p′ = 0.7, σ ≈
√

np′(1− p′), n = 1000, we get

1000p ∈ [685.5, 714.5]

or equivalently,
p ∈ [0.6855, 0.7145]

18.3.5 Confidence Intervals for Vectors

In the above settings, sampling was being used to estimate a real
number, namely, Pr[Heads] for a coin. How about estimating a vec-
tor? For instance, in an opinion poll, respondents are being asked
for opinions on multiple questions. Similarly, in stochastic gradient
descent (Chapter 3), the gradient vector is being estimated by sam-
pling a small number of data points. How can we develop confidence
bounds for estimating a vector in Rk from n samples?

The confidence intervals for the coin toss setting can be easily
extended to this case using the so called Union Bound:

Pr[A1 ∪ A2 ∪ · · · ∪ Ak] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[Ak] (18.2)

This leads to the simplest confidence bound for estimating a vector in
Rk. Suppose the probability of the estimate being off by δi in the i-th
coordinate is at most qi. Then

Pr[estimate is off by δ⃗] ≤ q1 + q2 + · · ·+ qk

where δ⃗ = (δ1, δ2, . . . , δk)
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18.4 Final Remarks

The CLT applies to many settings, but it doesn’t apply everywhere.
It is useful to clear up a couple of frequent misconceptions that
students have:

1. Not every distribution involving a large number of samples is
Gaussian. For example, scores on the final exam are usually not
distributed like a Gaussian. Similarly, human heights are not really
distributed like Gaussians.

2. Not everything that looks Gaussian-like is a result of the Central
Limit Theorem. For instance, we saw that the distribution of
weights in the sentiment model in Chapter 1 looked vaguely
Gaussian-like, but they are not the sum of independent random
variables as far as we can tell.


