
17
Deep Learning for Natural Language Processing

17.1 Word Embeddings

In traditional NLP, each word is regarded as discrete symbols each
with a single value of weight. For example, in Chapter 1, we learned
how to use linear regression on sentiment prediction. But with this
approach, it is hard for the computer to learn the meaning of the
word; instead, each of the words remain as some abstract symbols
with numeric weights.

But how do computers know the meaning of words? We can easily
think of one solution: we can look up words in a dictionary. For
example, WordNet is a project that codes the meaning of the words
and the relationship between the words, so that the data can be used
for computers to parse. 1 But resources like WordNet require human 1 For more information, check http:

//wordnetweb.princeton.edu.labor to create and adapt, and it is impossible to keep up-to-date
(because new words are coined up and new meanings appear out of
existing words).

An alternative approach is to represent words as short (50 - 300
dimensions 2), real-valued vectors. These vectors encode the meaning 2 The dimension of word vectors is

a hyperparameter that needs to be
decided first.

and other properties of words. In this representation, the distance be-
tween vectors represent the similarity between words. This vectorized
form of the words are much easier to be used as inputs in modern
ML systems (especially neural networks). This vector form of words
is known as word embedding. In this section, we explore the process of
how to learn a good word embedding.

17.1.1 Distributional Hypothesis

Word embedding is based on a concept called the distributional hypoth-
esis, a theory developed by John Rupert Firth. The hypothesis, one of
the most successful ideas of modern statistical NLP, says that words
that occur in similar contexts tend to have similar meaning.

http://wordnetweb.princeton.edu
http://wordnetweb.princeton.edu

216 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 17.1.1 (Context). When a word w appears in a text, its context
is the set of words that appear nearby (within a fixed-size window).

Example 17.1.2. Assume that you first heard the word tejuino and have no
idea what the word means. But you learn that the word may appear in the
following four contexts.

• C1: A bottle of is on the table.

• C2: Everybody likes .

• C3: Don’t have before you drive.

• C4: We make out of corn.

Based on these contexts, it is reasonable to conclude that the word “tejuino”
refers to some form of alcoholic drink made from corn.

Problem 17.1.3. To find words with similar meanings as “tejuino,” we tried
filling out the contexts from Example 17.1.2 with 5 other words. The results
are given in Table 17.1, where 1 means that the word was appropriate to be
used in that context, and 0 means that it was inappropriate.

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

Table 17.1: Data showing if 6 words
are appropriate for the four contexts in
Example 17.1.2.

Which word is closest to “tejuino”?

17.1.2 Word-word Co-occurrence Matrix

Given a very large collection of documents with words from a dic-
tionary V, we construct a |V| × |V| matrix X, where the entry at the
i-th row, j-th column denotes the number of times (i. e., frequency)
that wj appears in the context window of wi. This matrix is called the
word-word co-occurrence matrix.

Example 17.1.4. Table 17.2 shows a portion of a word-word co-occurrence
matrix. Each row corresponds to the center word wi, and each column
corresponds to the context word wj. The value Xij at the (i, j) entry means
that the context word wj appeared Xij times in the context (of length 4) of
wi in total.

Although the portion shown in Table 17.2 mostly has non-zero entries, in
general, the entries of the matrix are mostly zero.

deep learning for natural language processing 217

· · · computer data result pie sugar · · ·
cherry · · · 2 8 9 442 25 · · ·

strawberry · · · 0 0 1 60 19 · · ·
digital · · · 1670 1683 85 5 4 · · ·

information · · · 3325 3982 378 5 13 · · ·

Table 17.2: A portion of a word-word
co-occurrence matrix for a corpus
of Wikipedia articles. Source: https:
//www.english-corpora.org/wiki/.

17.1.3 Factorization of Word-word Co-occurrence Matrix

Recall the example of movie recommendation through matrix factor-
ization in Chapter 9. In that example m× n matrix M was factorized
into M ≈ AB where the i-th row of A was a d-dimensional vector
that represented user i and the j-th column of B was a d-dimensional
vector that represented movie j.

We can imagine a similar factorization on the word-word co-
occurrence matrix. That is, we can represent each center word and
each context word as a d-dimensional vector such that Xij ≈ Ai∗ ·
B∗j. But this particular idea does not work on the word-word co-
occurrence matrix. The key difference is that X is a complete matrix
with no missing entries (although most entries are zero). Therefore
we instead use other standard matrix factorization techniques (e.g.,
Singular Value Decomposition).

One popular choice of factorization is running the Singular Value
Decomposition (SVD) on a weighted co-occurrence matrix. 3 This 3 The particular weighting scheme is

called PPMI. We will not get into the
detail here.

idea originates from a concept called Latent Semantic Anlysis. 4 If the
4 From Indexing by Latent Semantic
Analysis by Deerwester et al., 1990.

SVD returns the following decomposition,

 X

 =

 W




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σd


 W⊺



where X is a |V| × |V| matrix and W is a |V| × d matrix, then the i-th
row of matrix W can be regarded as the embedding for word wi.

Other modern approaches tend to treat word vectors as parame-
ters to be optimized for some objective function and apply the gra-
dient descent algorithm. But the principle is the same: “words that
occur in similar contexts tend to have similar meanings.” Some of the
popular algorithms with this approach include: word2vec (Mikolov et
al., 2013), GloVe (Pennington et al., 2014), and fastText (Bojanowski et
al., 2017).

Here we briefly explain the GloVe algorithm. Given the co-
occurrence table X, we will construct a center word vector u⃗i ∈ Rd

and a context word vector v⃗j ∈ Rd such that they optimize the follow-

https://www.english-corpora.org/wiki/
https://www.english-corpora.org/wiki/

218 introduction to machine learning lecture notes for cos 324 at princeton university

ing objective:

J(θ) = ∑
i,j∈V

f (Xij)
(

ui · vj + bi + b̃j − log Xij

)2
(17.1)

where f is some non-linear function and bi, b̃j are bias terms. This is
within the same line of logic as optimizing

L(A, B) =
1
|Ω| ∑

i,j∈Ω
(Mij − (AB)ij)

2 ((9.5) revisited)

17.1.4 Properties of Word Embeddings

A good word embedding should represent the meaning of the words
and their relationship with other words as accurately as possible.
Therefore there are some properties that we would like a word
embedding to preserve. We will discuss three such properties and
see how the current algorithms for word embedding perform on
preserving those properties.

1. Similar words should have similar word vectors: This is the most
important property we can think of.

Example 17.1.5. In a certain word embedding, the following is the list of 9
most nearest words to the word “sweden.”

Word Cosine distance
norway 0.760124
denmark 0.715460
finland 0.620022

switzerland 0.588132
belgium 0.585835

netherlands 0.574631
iceland 0.562368
estonia 0.547621
slovenia 0.531408

Notice Scandanavian countries are the top 3 entries on the list, and the rest
are also European country names.

2. Vector difference should encode the relationship between words: If
there are two or more pairs of words where each pair of words are
distinguishable by the same attribute, you can imagine that the vector
difference within each pair is nearly the same.

Example 17.1.6. In Figure 17.1, notice that vman− vwoman ≈ vking− vqueen.
The vector difference in common can be understood as representing the male-
female relationship. Similarly, there seems to be a common vector difference
for representing the difference in verb tense.

deep learning for natural language processing 219

Figure 17.1: Two pairs of words that
differ in the same attribute show
a similar difference in their word
embeddings.

3. The embeddings should be translated between different languages:
When we independently find the word embedding in different lan-
guages, we can expect to have a bijective mapping that preserves the
structure of the words in each language. 5 5 From Exploiting Similarities among

Languages for Machine Translation by
Mikolov et at., 2013.Example 17.1.7. In Figure 17.2, notice that if we let W to be the mapping

from English to Spanish word embeddings, vcuatro ≈W ◦ v f our

Figure 17.2: Word embeddings are
translated into the embeddings of other
languages.

17.2 N-gram Model Revisited

Recall the n-gram model from Chapter 8. It assigned a probability
Pr[w1w2 . . . wn] to every word sequence w1w2 . . . wn. We discussed
the concept of perplexity of the model to compare the performance
of unigram, bigram, and trigram models. While the n-gram model is
impressive, it has obvious limitations.

Problem 17.2.1. “The students opened their .” Can you guess the
next word?

Problem 17.2.2. “As the proctor started the clock, the students opened their
.” Can you guess the next word?

220 introduction to machine learning lecture notes for cos 324 at princeton university

In a lot of cases, words in a sentence are closely related to other
words and phrases that are far away. But the n-gram model cannot
look beyond the specified frame.

Example 17.2.3. The following is a text generated by a 4-gram model

Today the price of gold per tan, while production of shoe
lasts and shoe industry, the bank intervened just after it

considered and rejected an imf demand to rebuild depleted
european stocks, sept 30 and primary 76 cts a share.

The generated text is surprisingly grammatical, but incoherent.

Example 17.2.3 shows that we need to consider more than three
words at a time if we want to model language well. But if we use
a larger value of n for the n-gram model, the data will become too
sparse to estimate the probabilities. But even when we restrict our-
selves to words that appear in the dictionary, there are 1021 distinct
sequences of 4 words.

17.2.1 Feedforward Neural Language Model

The idea of feedforward neural language model was proposed by Bengio
et al. in 2003 in a paper called A Neural Probabilistic Language Model.
The intuition is to use a neural network to learn the probabilistic
distribution of language, instead of estimating raw probabilities. The
key ingredient in this model is the word embeddings we discussed
earlier.

Example 17.2.4. Assume we are given two contexts “You like green
” and “You like yellow ” to fill the blanks in. A n-gram

model will try to calculate the raw probabilities Pr[w | You like green] and
Pr[w | You like yellow]. However, if the word embeddings showed that
vgreen ≈ vyellow, then we can imagine that the two contexts are similar
enough. Then we may be able to estimate the probabilities better.

Now we show how to use feedforward neural language model
on a n-gram model. Assume we want to estimate the probability
Pr[wn+1 | w1 . . . wn]. Then the first step is to find a find a word
embedding

v1, v2, . . . , vn ∈ Rd

of each word w1, w2, . . . , wn. Then we concatenate the word embed-
dings into 6 6 the order of the input vectors cannot

changex⃗ = (v1, . . . , vn) ∈ Rnd

This will be the input layer. Then we define the fully connected
hidden layer as

h⃗ = tanh(Wx⃗ + b⃗) ∈ Rh

deep learning for natural language processing 221

where W ∈ Rh×nd and b⃗ ∈ Rh. Then we define the output layer as

z⃗ = Uh⃗ ∈ R|V|

where U ∈ R|V|×h. Then finally, the probability will be calculated
with the softmax function:

Pr[w = i | w1 . . . wn] = softmaxi (⃗z) =
ezi

∑
k∈V

ezk

So the total number of parameters to train in this network is

d |V|+ ndh + h + h |V|

where the terms are respectively for the input embeddings, W, h⃗, U.
When d = h, sometimes we tie the input and output embeddings.
That is, we can consider U to be the parameters required for the
output embeddings. At this point, the language model reduces
to a |V|-way classification, and we can create lots of training ex-
ample by sliding the input-output indices. That is, when given
a huge text, we can create lots of input-output tuple as follows:
((w1, . . . , wn), wn+1), ((w2, . . . , wn+1), wn+2),

17.2.2 Beyond Feedforward Neural Language Model

But the feedforward language model still has its limitations. The
main reason is that W ∈ Rh×nd scales linearly with the window
size. Of course, this is better than the traditional n-gram model
which scales exponentially with n. Another limitation of the neu-
ral LM is that the model learns separate patterns for the same item.
That is, a substring wkwk+1, for example, will correspond to differ-
ent parameters in W when trained on (wkwk+1 . . . wk+n−1) or on
(wk−1wk . . . wk+n−2).

To mitigate these limitations, we can choose to use similar model-
ing ideas but use better and bigger neural network architectures like
recurrent neural networks (RNN) or transformers.

Here we briefly explain the core ideas of a RNN. RNNs are a fam-
ily of neural networks that handle variable length inputs. Whereas
feedforward NNs map a fixed-length input to a fixed-length output,
recurrent NNs map a sequence of inputs to a sequence of outputs. The
sequence length can vary and the key is to reuse the weight matrices at
different time steps. When the inputs are given as x⃗1, x⃗2, . . . x⃗T ∈ Rd

and we want to find outputs h⃗1, h⃗2, . . . h⃗T ∈ Rh, we train the parame-
ters

W ∈ Rh×h, U ∈ Rh×d, b⃗ ∈ Rh

such that
h⃗t = g(Wh⃗t−1 + U⃗xt + b⃗) ∈ R

222 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 17.3: A visual representation of
an RNN architecture.

where g is some non-linear function (e.g., ReLU, tanh, sigmoid). We
can also set h⃗0 = 0⃗ for simplicity.

