
15
Reinforcement Learning in Unknown Environments

In the previous Chapter 14, we established the principles of reinforce-
ment learning using a Markov Decision Process (MDP) with set of
states S, set of actions A, transition probabilities p(s′ | a, s), and the
rewards r(a | s, s′). We saw a method (value iteration) to find the
optimal policy that will maximize the expected reward for every state.
The main assumption of the chapter was that the agent has access to
the full description of the MDP — the set of states, the set of actions,
the transition probabilities, rewards, etc.

But what can we do when some of the parameters of the MDP are
not available to the agent in advance — specifically, the transition
probabilities and the rewards? Instead, the agent makes actions and
observes the new state and the reward it just received. Using such
experiences it begins to learns the reward and transition structure,
and then to translate this incremental knowledge into improved
actions.

The above scenario describes most real-life agents: the system
designer does not know a full description of the probabilities and
transitions. For instance, think of the sets of possible states and
transitions in the MuJoCo animals and walkers that we saw. Even
with a small number of joints, the total set of scenarios is too vast.
Thus the designer can set up an intuitive reward structure and let the
learner figure out from experience (which is tractable since it involves
a simulation).

Settings where agent must determine (or “figure out”) the MDP
through experience, specifically by taking actions and observing the
effects, is called the “model-free” setting of RL. This chapter will
introduce basic concepts, including the famous Q-learning algorithm.

In many settings today, the underlying MDP is too large for the
agent to reconstruct completely, and the agent uses deep neural
networks to represent its knowledge of the environment and its own
policy.

190 introduction to machine learning lecture notes for cos 324 at princeton university

15.1 Model-Free Reinforcement Learning

In model-free RL, we know the set of states S and the set of actions A,
but the transition probabilities and rewards are unknown. The agent
now needs to explore the environment to estimate the transition
probabilities and rewards. Suppose the agent is originally in state
s1, chooses to take an action a, and ends up in state s2. The agent
immediately observes some reward r(a | s1, s2), but we need more
information to figure out p(s2, |s1, a).

One way we can estimate the transition probabilities is through the
Maximum Likelihood Principle. This concept has been used before
when considering estimating unigram probabilities in Chapter 8. In
model-free RL, an agent can keep track of the number of times they
took action a at state s1 and ended up in state s2 — denote this as
#(s1, a, s2). Then the estimate of the transition probability p(s′|s, a) is:

p(s2|s1, a) =
#(s1, a, s2)

∑
s′

#(s1, a, s′)
(15.1)

The Central Limit Theorem (see Chapter 18) guarantees that esti-
mates will improve with more observations and quickly converge to
underlying state-action transition probabilities and rewards.

15.1.1 Groundhog Day

Groundhog Day is an early movie about a “time loop” and the title
has even become an everyday term. The film tracks cynical TV weath-
erman Phil Connors (Bill Murray) who is tasked with going to the
small town of Punxsutawney and filming its annual Groundhog Day
celebration. He ends up reliving the same day over and over again,
and becomes temporarily trapped. Along the way, he attempts to
court his producer Rita Hanson (Andie MacDowell), and is only
released from the time loop after a concerted effort to improve his
character.

Sounds philosophically deep! On the internet you can find various
interpretations of the movie: Buddhist interpretation (“many reincar-
nations ending in Nirvana”) and psychoanalysis (“revisiting of the
same events over and over again to reach closure”). The RL interpre-
tation is that Phil is in an model-free RL environment, 1 revisiting 1 Specifically a model-free RL environ-

ment with an ability to reset to an initial
state. This happens for example with a
robot vacuum that periodically returns
to its charging station. After charging,
it starts exploring the MDP from the
initial state again.

the same events of the day over and over again and figuring out his
optimal actions.

reinforcement learning in unknown environments 191

15.2 Atari Pong (1972): A Case Study

In 1972, the classic game of Pong was released by Atari. This was the
first commercially successful video game, and had a major cultural
impact on the perception of video games by the general public. The
rules of the game are simple: each player controls a virtual paddle
which can move vertically in order to rally a ball back and forth
(one participant may be an AI agent). If a player misses the ball, the
other player wins a point. We can consider the total number of points
accumulated by a player to be their reward so far. While technology
and video games have become far more advanced in the present, it
is still useful to analyze Pong today. This is because it is a simple
example of a physics-based system, similar to (but far less advanced
than) the MuJoCo stick figure simulations discussed in Chapter 13. It
thus provides a useful case study to demonstrate how an agent can
learn basic principles of physics through random exploration and
estimation of transition probabilities.

Let’s apply some simplifications in the interest of brevity. We
define the pong table to be 5× 5 pixels in size, the ball to have a size
of 1 pixel, and the paddles to be 2 pixels in height. We define the
state at a time t as the locations of the two paddles at time t, and the
locations of the ball at time t and time t− 1. 2 2 Storing the location of the ball at time

t− 1 and time t allows us to calculate
the difference between the two locations
and thus gives an estimate for the
velocity.

We additionally restrict attention to the problem of tracking and
returning the ball, also known as “Pico-Pong.” Thus, we define the
game to begin when the opponent hits the ball. The agent gets a
reward of +1 if they manage to hit the ball, −1 if they miss, and 0
if the ball is still in play. As soon as the agent either hits the ball or
misses, we define that the game ends. Of course, these additional
rules of the game are not available to the agent playing the game.
The agent needs to “learn” these rules by observing the possible
states, transitions, and corresponding rewards.

In general, these simplifications remove complications of modeling
the opponent and makes the MDP acyclic; an explanatory diagram
is shown in Figure 15.1. Throughout this section, we will build
intuition about different aspects of our Pico-Pong model through
some examples.

15.2.1 Pico-Pong Modeling: States

Suppose the agent is playing random paddle movements. Consider
the possible states of the game shown in Figure 15.2. We note that
out of the three, the third option is never seen. By the definition of
the game, the ball can never move away from the agent. Of course,
the agent is oblivious to this fact at first, but once the game proceeds,

192 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 15.1: The simplified Pico-Pong
setup which will be considered in this
case study.

the agent will be able to implicitly “learn” that the ball can never
move away from them.

Figure 15.2: Out of these possible states,
the third option is never seen.

15.2.2 Pico-Pong Modeling: Transitions

Let us now add another restriction to the game that the ball always
moves at a speed of 1 pixel every time step (i. e., moves to one of the
8 adjacent pixels) and in a straight linear path unless being bounced
against the top/bottom wall. Consider the possible transitions shown
in Figure 15.3. We note that out of the three, the third option is never
seen. By the restriction of the game, the ball cannot move 2 pixels in
one time step. The agent thus implicitly “learns” that the ball moves
at a constant speed of 1 pixel per time step.

Figure 15.3: Out of these possible
transitions, the third option is never
seen.

reinforcement learning in unknown environments 193

Problem 15.2.1. Suppose the agent is playing randomly and the ball is trav-
eling at a speed of 1 pixel per step. Which of the transitions in Figure 15.4 is
never seen, and why?

Figure 15.4: Out of these possible
transitions, one option is never seen.

15.2.3 Pico-Pong Modeling: Rewards

Suppose the agent is playing randomly and the ball is traveling at a
speed of 1 pixel per step. Consider the action in Figure 15.5. We note
that the associated reward will be +1 because in the resulting state
the agent has “hit” the ball. The agent thus implicitly learns that if
the ball is 1 pixel away horizontally, it should move to intercept it to
obtain a positive reward.

Figure 15.5: Taking action ↓ results in a
reward of +1.

Problem 15.2.2. Suppose the agent is playing randomly and the ball is
traveling at a speed of 1 pixel per step. What reward is achieved given the
current state and chosen action in Figure 15.6, and why?

Figure 15.6: What reward will result
when taking action ↓?

15.2.4 Playing Optimally in the Learned MDP

After allowing the agent to explore enough, the agent has “learned”
some information about the underlying MDP of the Pico-Pong model.
The first thing the agent can learn is that, out of all possible states,
there is a subset of states that never appear in the game (e.g., ball

194 introduction to machine learning lecture notes for cos 324 at princeton university

moving away from the agent or ball moving too fast). The agent will
be able to ignore these states, while learning how to play optimally in
states that did occur while exploring.

Figure 15.7: An example look-ahead
tree for the Pico-Pong model.

Also, the agent has now “learnt” the transition probabilities and
rewards of the MDP. Using these estimates, the agent is able to build
up a representation of the MDP. Since the underlying MDP for the
simplified Pico-Pong model is acyclic, the optimal policy can be
determined using a simple look-ahead tree. An example diagram is
shown in Figure 15.7.

We provide a specific example to aid the exposition. Suppose
an agent finds themselves in the state shown in Figure 15.8. Since
the path of the ball is already determined, the next possible state is
uniquely determined by the choice of the action — “go down” or
“stay in place” or “go up.” If the agent chooses to “go down,” the
game will end with a reward of +1. If the agent chooses to “stay in
place” or “go up,” the game continues for another time step, but no
matter the choice of action on that step, the game will end with a
reward of −1. Therefore, the agent will learn that the optimal policy
will assign the action of “go down” in the state shown in Figure 15.8.

Problem 15.2.3. Draw out the look-ahead tree from the state shown in
Figure 15.8.

Figure 15.8: A sample state in the game
play of Pico-Pong.

Problem 15.2.4. Suppose we start from the state shown in Figure 15.9.
Assuming optimal play, what is the expected reward for the agent? (Hint:
consider if the agent will be able to reach the ball in time.)

reinforcement learning in unknown environments 195

Figure 15.9: A sample state in the game
play of Pico-Pong.

Impressive! The agent has learnt how to return the ball in Pico-
Pong by first building up the MDP and its transitions/rewards
through repeated observations, and then computing the optimum
policy for the constructed MDP through a look-ahead tree. 3 3 How would you extend these ideas to

design a rudimentary ping pong robot
which can track and return the ball?

15.3 Q-learning

15.3.1 Exploration vs. Exploitation

Let us analyze the case study with Pico-Pong more deeply. We
can separate the process of learning into two different stages —
exploration and exploitation:

• Exploration: This pertains to what the agent did in the first phase.
Random paddle movements were used to help build up previously
unknown knowledge of the MDP — transition probabilities and
rewards.

• Exploitation: This pertains to what the agent did in the second
phase. Specifically, the agent used the learnt MDP to play opti-
mally.

In general, an RL environment is more complicated than Pico-
Pong, and there is no clear-cut boundary of when an agent has
explored “sufficiently.” It is best to combine the two stages (i. e.,
exploration and exploitation) into one and “learn as you go.” Also,
it is difficult to balance between these two processes, and how to
find the correct trade-off between exploration and exploitation is a
recurring topic in RL.

15.3.2 Q-function

We now introduce the Q-function, an important concept that helps tie
together concepts of exploration and exploitation when considering
general MDPs with discounted rewards.

Definition 15.3.1 (Q-function). We define the Q-function Q : S× A→ R

as a table which assigns a real value Q(s, a) to each pair (s, a) where s ∈ S
and a ∈ A.

196 introduction to machine learning lecture notes for cos 324 at princeton university

Intuitively, the value Q(s, a) is the current estimate of the expected
discounted reward when we take action a from state s. In other words, it
is the estimate of the value vπ(s) if π is any policy that will assign
the action a to state s. Using the currently stored values of the Q-
function, we can define a canonical policy πQ. For each state s, the
policy will assign the action a that maximizes the Q(s, a) value; that
is,

πQ(s) = arg max
a

Q(s, a)

Since the agent only has access to the estimate values Q(s, a), but
not the actual value function v, this is the most optimal policy to
the agent’s knowledge. Therefore, if the agent chooses to take an
exploitation step, they will take an action prescribed by the policy πQ

with respect to the currently maintained Q-function.
Instead of relying on the currently stored Q-function, we can also

choose to take an exploration step. Every time we take an exploration
step and receive additional information about the RL environment,
we update the values of the Q-function accordingly. The goal of the
Q-learning is to learn the optimal Q-function, which approximates the
optimal policy π∗ and the optimal value function v∗ as closely as
possible. We formalize the notion as follows:

Definition 15.3.2 (Optimal Q-function). The optimal Q-function is a
Q-function that satisfies the following two conditions:

• The corresponding canonical policy πQ is an optimal policy for the MDP.

• The Q-function satisfies the following condition:

Q(s, a) = ∑
s′ ; a

p(s′ | s, a)(r(a | s, s′) + γ max
b

Q(s′, b)) (15.2)

The first condition of Definition 15.3.2 states that for a fixed state s,
the action a that maximizes Q(s, a) is a = π∗(s). This condition only
cares about the relative ordering of the values of Q(s, a) — as long
as Q(s, π∗(s)) is the maximum value among all Q(s, a), then it is fine.
This condition guarantees that the action we take in the exploitation
step is an optimal action.

The second condition is formally stating that the values of the
Q-function are estimates of the expected reward when we take action
a from state s. It also suggests that Q-function needs to “behave
like” a value function vπ for some policy π. However, whereas a
similar condition for a value function vπ only needs to hold for one
particular action (i. e., a = π(s)) given a state s, this condition for a
Q-function should hold for any arbitrary action a. Note that for an
optimal Q-function, the term maxb Q(s′, b) in (15.2) is equivalent to
vπQ(s

′).

reinforcement learning in unknown environments 197

15.3.3 Q-learning

Now that we have defined the Q-function and the optimal Q-function,
it is time for us to study how to learn the optimal Q-function. This
process is called Q-learning. The basic idea is to probabilistically
choose between exploration or exploitation: we define some probabil-
ity ϵ ∈ [0, 1] such that we choose a random action a with probability ϵ

(exploration) or choose the action a according to the current canonical
policy πQ with probability 1− ϵ (exploitation). If we choose the explo-
ration option, we use its outcome to update the Q(s, a) table. But how
should we define the update rule?

Let’s take a step back and consider a (plausibly?) real life scenario.
You are a reporter for the Daily Princetonian at Princeton, and want
to estimate the average wealth of alumni at a Princeton Reunions
event. The alumni, understandably vexed by such a request, strike
a compromise that you are only allowed to ask one alum about their
net worth. Can you get an estimate of the average? Well, you could
pick an alum at random and ask them their net worth! 4 4 The expectation gives the right aver-

age. But typically the answer would be
far from the true average; especially if
Jeff Bezos happens to be attending the
reunion.

With this intuition, we return to the world of Q-learning. Suppose
you start at some state st, take an action at, receive a reward of rt, and
arrive at state st+1. We call this process an experience. Now, when we
update the current estimate of Q(st, at), we ideally want to mimic the
behavior of the optimal Q-function in (15.2) and update it to:

Q(st, at) = ∑
s′ ; at

p(s′ | st, at) · (r(at | st, s′) + γ max
b

Q(s′, b)) (15.3)

Notice that this is the weighted average of the expected reward
r(at | st, s′) + γ maxb Q(s′, b) over all possible next states s′ given the
action at. But in practice, the agent only has the ability to take a single
experience; they lack the ability to “reset” and retake the step to try
all states s′ according to the transition probability p(s′ | st, at). We
thus must consider an alternative idea — we define the estimate for
Q(st, at) according to the experience at time step t as

Q′t = rt + γ max
b

Q(st+1, b)

This estimate can be calculated using the observed reward rt and
looking up the Q values of the state st+1 on the Q-function table.
Note that the expectation of Q′t is exactly the right hand side of (15.3).
That is,

E[Q′t] = ∑
s′ ; at

p(s′ | st, at) · (r(at | st, s′) + γ max
b

Q(s′, b))

This is because the agent took a transition to state st+1 with probabil-
ity p(st+1 | st, at) (of course, the agent does not know this value). This

198 introduction to machine learning lecture notes for cos 324 at princeton university

is thus analogous to the single-sample estimate of average alumni
wealth at the Princeton Reunions event. We can now define the
following update rule of the Q-learning process:

Q(st, at)← Q(st, at) + η(Q′t −Q(st, at))

= (1− η)Q(st, at) + ηQ′t
(15.4)

for some learning rate η > 0. You can understand this update rule in
two different ways. First, we are gently nudging the value of Q(st, at)

towards the estimate Q′t from the most recent experience. We can
alternatively think of the updated value of Q(st, at) as the weighted
average of the previous value of Q(st, at) and the estimate Q′t. In
either approach, the most important thing to note is that we combine
both the previous Q value and the new estimate to compute the
updated Q value. This is because the new estimate is just a single
sample that can be far off from the actual expectation, and also
because after enough iterations, we can assume the previous Q value
to contain information from past experience.

Example 15.3.3. Let’s return to our adventures in Pico-Pong and consider
the situation in Figure 15.10. Denote the state in the left diagram as st and
the state in the right as st+1. Suppose the current value of Q(st, a) = 0.4
with a =↑. Assuming that Q(st+1, a) = 0 for all a, we can compute the
estimate Q′t from this experience as

Q′t = rt + γ max
b

Q(st+1, b) = 1

Then the Q value will be increased to 0.4 + 0.6η.

Figure 15.10: The diagram representing
two states in a game of Pico-Pong.

15.3.4 Deep Q-learning

Note that the update rule in (15.4) looks similar to the Gradient De-
scent algorithm. They are both iterative processes which incorporate
a learning rate η. In fact, you can consider the Q-learning update rule
to be trying to minimize the squared difference between Q(st, at) and
Q′t. The similarity between the Q-learning update rule and the Gra-
dient Descent algorithm allows us to utilize a deep neural network

reinforcement learning in unknown environments 199

to learn the optimal Q-function. Such a network is called the Deep Q
Network (DQN).

In a DQN, the Q-function can be represented by the parameters
W of the network. We emphasize this by denoting the Q-function as
QW(s, a). Now instead of directly updating the Q-function as in the
update rule

Q(st, at)← Q(st, at) + η(Q′t −Q(st, at)) (15.4 revisited)

we instead update the parameters W such that the Q-function is
updated accordingly.

First consider the case that Q′t > Q(st, at). That is, the estimated
Q-value is larger than the currently stored value. Then the update
rule (15.4) will increase the value of Q(st, at). To mimic this behavior,
we want to find an update rule for W that will increase the Q-value.
This is given as:

W← W + β · ∇WQW(st, sa)

for some learning rate β > 0.

Problem 15.3.4. Suppose Q′t < Q(st, at). How should we design the weight
updates?

One final thing to note is a technique called experience replay. Ex-
periencing the environment can be expensive (i. e., computation time,
machine wear, etc.). Therefore, it is customary to keep a history of
old experiences and their rewards, and periodically take a random
sample out of the old experiences to update the Q values. In partic-
ular, experience replay ensures that DQNs are efficient and avoid
“catastrophic forgetting.” 5 5 Catastrophic forgetting is a phe-

nomenon where a neural network, after
being exposed to new information,
“forgets” information it had learned
earlier.

15.4 Applications of Reinforcement Learning

15.4.1 Q-learning for Breakout (1978)

We previously considered using reinforcement learning for Pong. We
can also use it for another famous Atari game called Breakout. One
particular design uses a CNN to process the screen and uses the
"score" as a reward. As shown in Figure 15.11, the model becomes
quite successful after several epochs.

15.4.2 Self-help Apps

Self-help apps are designed to aid in recovery of the user from ad-
diction, trauma, heart disease, etc. A typical design involves an RL
algorithm which determines the next advice/suggestion based upon
reversals, achieved milestones, etc. so far. These can be a helpful
supplement to expensive therapy/consultation.

200 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 15.11: An application of Q-
learning to the famous Atari game
Breakout.

15.4.3 Content Recommendation

At reputable websites, we might imagine that there exists a page cre-
ation system designed to capture the “reward” of user engagement.
We can use MDP techniques to model this situation. Specifically,
we can define s0 as the outside link which brought the user to the
landing page and/or the past history of the user on the site. If the
user clicks on a link, a new page is created and we can define s1

as a concatenation of s0 and the new link. If the user again clicks
on a link, another new page is created and we can define s2 as the
concatenation of s1 and the new link.

15.5 Deep Reinforcement Learning

Deep Reinforcement Learning is a subfield of machine learning that
combines the methods of Deep Learning and Reinforcement Learning
that we have discussed earlier. 6 The goal of it is to create an artificial 6 Source: https://www.youtube.com/

watch?v=x5Q79XCxMVcagent with human-level intelligence (Artifical General Intelligence,
AGI). In general, Reinforcement Learning defines the objective and
Deep Learning gives the mechanism for optimizing that objective.
Deep RL combines the problem given by the RL specification with
the solution given by the DL technique. In the cited source video,
RL expert David Silver made three broad conjectures related to this
topic.

1. RL is enough to formalize the problem of intelligence

2. Deep neural networks can represent and learn any computable
function

3. Deep RL can solve the problem of intelligence

Many Deep RL models are trained to play games (e.g., chess, Go) be-
cause it is easy to evaluate progress. By letting them compete against

https://www.youtube.com/watch?v=x5Q79XCxMVc
https://www.youtube.com/watch?v=x5Q79XCxMVc

reinforcement learning in unknown environments 201

humans, we can easily compare them to human-level intelligence. As
an example, Google Deepmind trained a Deep RL model called DQN
to play 49 arcade games. 7 The computer is not given the explicit set 7 For the full paper, visit https:

//storage.googleapis.com/

deepmind-media/dqn/DQNNaturePaper.

pdf

of rules; instead, given only the pixels and game score as input, it
learns by using deep reinforcement learning to maximize its score.
Amazingly, on about half of the games, the model played at least at a
human level of intelligence!

15.5.1 Chess: A Case Study

Founders of AI considered chess to be the epitome of human in-
telligence. In principle, the best next move can be calculated via a
look-ahead tree (similar to Figure 13.5 from the cake-eating example).
Since chess is a two-player game, we can use an algorithm called the
min-max search on the look-ahead game tree. 8 8 Source: https://www.youtube.com/

watch?v=l-hh51ncgDIUsually, RL agents are playing against the nature that causes
them to take random transitions according to the MDP’s transition
probabilities. But in chess, the agent plays against an opponent that
is trying to make the agent take the largest possible loss (the largest
possible gain for the opponent). That is why we need a min-max
evaluation of the look-ahead tree.

Figure 15.12: An example look-ahead
game tree for chess with depth 3. White
will choose the right option.

In Figure 15.12, the numbers at the leaf nodes represent a static
evaluation of how good the game configuration is for white. This
is an approximation for the actual value of the node. An example
metric in chess would be the difference in the number of pieces (#
white − # black). These numbers are evaluated either when the game
terminates or when the algorithm has reached the specified number
of steps to look ahead. If the game ever reaches the specified node,
the white has two options to choose from: if white chooses the left
child node, it will end up with reward of −1; whereas if it chooses
the right child node, the reward will be 3. Then to maximize reward,

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://www.youtube.com/watch?v=l-hh51ncgDI
https://www.youtube.com/watch?v=l-hh51ncgDI

202 introduction to machine learning lecture notes for cos 324 at princeton university

the best move of white will be to choose 3. 9 9 For those who are familiar with chess
or game theory in general, this is
known as the best response.Figure 15.13: Black will choose the left
option.

In Figure 15.13, it is now black’s turn to choose. Note that the
reward for black is the opposite of the reward for white, so black
wants to minimize the value on the tree. Therefore, black will want to
choose the left child node.

So whenever we are at a configuration, we can create a look-
ahead tree for a reasonable number of steps and try to calculate
the best move. But the size of a game tree is astronomical, so it is
computationally infeasible to search all levels of the tree. 10 10 There is an optimization method

called alpha-beta pruning. Consult
the video referenced above for an
implementation on the game of chess.15.5.2 AlphaGo: A Case Study

Go is a game invented in China around 500 BC. It is played by 2
players on a 19× 19 grid. Players take turns placing stones on the grid,
and if any set of stones is entirely surrounded by opponent stones,
the enclosed stones are taken away from the board and awarded to
the opponent as points. Even though the rules are very simple, no
computer could beat a good human amateur at Go until 2015. 11 11 In comparison, IBM’s Deep Blue

model beat the world chess champion
Kasparov in 1997.

How can we utilize RL concepts to play this game? In general, we
can create a Deep Policy Net (DPN) to learn W, which is a function
that takes state s as an input and outputs a probability distribution
pW(a | s) over the next possible actions from s. AlphaGo is an
example of a DPN engineered by the Google Deepmind lab. It takes
the current board position as the input and uses ConvNet to learn the
internal weights, and outputs the value given by a softmax function.
In its initial setup, the DPN was trained using a big dataset of past
games. 12 12 Source: https://www.youtube.com/

watch?v=Wujy7OzvdJkTo be more specific, AlphaGo used supervised learning from
human data to learn the optimal policy (action to take at each game
setting). In other words, it used convolutional layers to replicate the
moves of professional players as closely as possible. Since the CNN

https://www.youtube.com/watch?v=Wujy7OzvdJk
https://www.youtube.com/watch?v=Wujy7OzvdJk

reinforcement learning in unknown environments 203

Figure 15.14: The diagram representing
the process of training AlphaGo.

is just mimicking human players, it cannot beat human champions.
However, it can be used to search the full game tree more efficiently
than the alpha-beta search. Formally, this method is called the Monte
Carlo Tree Search, where the CNN is used to decide the order in
which to explore the tree. After the policy network was sufficiently
trained, reinforcement learning was used to train the value network
for position evaluation. Given a board setting, the network was
trained to estimate the value (i. e., likelihood of winning) of that
setting.

AlphaGo Zero is a newer version of the model that does not
depend on any human data or features. In this model, policy and
value networks are combined into one neural network, and the model
does not use any randomized Monte-Carlo simulations. It learns
solely by self-play reinforcement learning and uses neural network
(ResNet) to evaluate its performance. Within 3 days of training,
AlphaGo Zero surpassed an earlier version of AlphaGo that beat Lee
Se Dol, the holder of 8 world titles; within 21 days, it surpassed the
version that beat Ke Jie, the world champion. Interestingly enough,
AlphaGo Zero adopted some opening patterns commonly played by
human players, but it also discarded some common human patterns
and it also discovered patterns unknown to humans.

The newest version of AlphaGo is called AlphaZero. It is a model
that can be trained to play not just Go but simultaneously Chess and
Shogi (Japanese chess). After just a few hours of training, AlphaZero
surpassed the previous computer world champions (Stockfish in
Chess, Elmo in Shogi, and AlphaGo Zero in Go). Just as AlphaGo Zero
did, AlphaZero was able to dynamically adopt or discard known
openings in chess.

