
14
Markov Decision Process

In this chapter, we formally introduce the Markov Decision Process
(MDP), a way to formulate an RL environment. We then present
ways to find the optimal strategy of an agent, provided that the agent
knows the full details of the MDP — that is, knows everything about
the environment.

14.1 Markov Decision Process (MDP)

Let’s review the key ingredients of RL. We have the agent, who senses
the environment and captures it as the current state. There is a finite
number of actions available at any given state, and taking an action a
in state s will cause a transition to s′ with probability p(s′ | s, a). Each
transition is accompanied by a reward r(a | s, si) ∈ R. Finally, the
goal of the agent is to maximize the expected reward via a sequence
of actions.

A Markov Decision Process (MDP) is a formalization of these con-
cepts. It is a directed graph which consists of four key features:

• A set S which contains all possible states

• A set A which contains all possible actions

• For each valid tuple of action a and states s1, s2, there is an as-
signed probability p(s2 | s1, a) of transition to s2 if action a is taken
in s1

• For each valid tuple of action a and states s1, s2, there is an as-
signed reward r(a | s1, s2), which is obtained if action a is taken to
transition from s1 to s2

If a designed MDP has M actions and N states, we can specify the
MDP by a table of transition probabilities (with MN2 numbers) and a
table for rewards (with MN2 numbers).

176 introduction to machine learning lecture notes for cos 324 at princeton university

14.1.1 Revisiting the Cake Eating Example

Let’s return to the case study on eating cake from Subsection 13.3,
and formally express it through a MDP. The set of states is given
as S = {0, 1, 2, 3}, where each state represents the number of slices
left. The set of actions is given as A = {1, 2, 3}, where each action
represents the number of slices you choose to eat on a given night.
Notice that reward only depends on how many slices you take, not
how many slices are left after your roommate goes through the fridge.
That is, we can define the reward r(a | s, ∗) for each a ∈ A to be the
same for every s ∈ S where a is feasible. 1 1 We still need to include the previous

state s because not all actions are
feasible at each state. For example, you
can’t eat 2 slices when there is only 1
slice left.

Example 14.1.1. Let’s revisit Example 13.3.2 as a motivating example.
If we let a = 2, s1 = 3, and s2 = 0, then the probability of the specified
transition is p(s2 | s1, a) = 0.5. The associated reward is r(a | s1, s2) = 1.5
as discussed earlier.

We are now ready to generalize to the a more complete MDP,
which is shown in Figure 14.1. Note that every transition is labeled
with its probability, associated action, and associated reward.

Figure 14.1: A more complete diagram
of the cake problem when described as
a MDP.

14.1.2 Discounting the Future

The MDP describing cake eating in the previous subsection was
acyclic. 2 However, in general, MDPs can have directed cycles, and 2 This is also known as an Episodic

MDP.the agent’s actions can allow it to continuously collect rewards along
that cycle. For instance, continuing our cake theme, we may have a
scenario in which you receive a fresh cake every 3 days. But now we
run into a problem: how can we calculate the expected reward when
there is an unbounded number of steps?

The solution lies in the concept of future discounting. The basic
idea is to reduce, or discount, the amount of reward we get from

markov decision process 177

future steps. In an MDP, we represent this through a discount factor
0 < γ ≤ 1 and an associated infinite sum. 3 3 This is related to notions of discount-

ing commonly considered in economics.
Definition 14.1.2 (Future Discounting). If a reward rt is received at
time t = 0, 1, 2, . . . , then the perceived value of these rewards rd, or the
discounted reward, at t = 0 is:

rd = r0 + γr1 + γ2r2 + γ3r3 + · · ·

Example 14.1.3. Consider the cake eating problem again and let rt denote the
reward we get on night t. If the reward is discounted by a factor of γ every
night, the total expected discounted reward E[total] can be rewritten as

E[total] = E[r1] + γ ·E[r2] + γ2 ·E[r3]

Consider taking the action a = 2 on the first night. If γ = 0.9, then the
expected discounted reward is

1.5 + 0.9 · (0.5 · 1 + 0.5 · 0) = 1.95

This is the same as in Example 13.3.2 except the reward taken from the
second night is discounted by a factor of 0.9. Now consider taking the action
a = 1 on the first night and on the second night. If γ = 0.9, the expected
discounted reward is

1 + 0.9 · (0.5 · 1 + 0.5 · 1) + 0.92 · (0.52 · 1) = 2.1025

Here, we first take the reward of 1 on the first night without any discount
factor. Then, we calculate the expected reward from the second night — 1
whether or not the roommate eats a slice — and discount it by a factor of 0.9.
Finally, we calculate the expected reward from the third night — 1 only if
the roommate did not eat any slice on the first two nights — and discount it
by a factor of 0.92.

Note that in Definition 14.1.2, if each rt ∈ [−R, R] and if γ < 1,
then the magnitude of discounted reward of the infinite sequence has
the following upper bound:

|rd| ≤ R(1 + γ + γ2 + · · ·) = R
1− γ

(14.1)

(14.1) is derived by considering the formula for the sum of an infinite
geometric series, which we can invoke if γ < 1. In general, γ is up
to the system designer. A lower γ would imply that the agent places
little importance on future rewards, whereas γ = 1 would imply that
there is effectively no discounting.

14.2 Policy and Markov Reward Process

Now that we have discussed what an action is and what it does in
an MDP, we want to specify what action an agent has to take in each
state. This is known as a policy.

178 introduction to machine learning lecture notes for cos 324 at princeton university

Example 14.2.1. Consider again the cake eating MDP example without
a discount factor. We already established through Example 13.3.2 and
Example 13.3.5 that to maximize the expected reward, you need to eat one
slice per day until all slices are gone. That is, in any state j where j = 1, 2, 3,
you need to take action 1.

In general, if S is the set of states, and A is the set of actions, then
a policy (not necessarily the optimum) π can be defined as a function
π : S→ A

Definition 14.2.2 (Policy). If S is the set of states, and A is the set of
actions, any function π : S → A is called a policy that describes which
action to take at each state. In particular, each state s should only be mapped
to a valid action a ∈ As at that state.

Recall that if there are M actions and N states, there are at most
MN2 transitions in the graph of the MDP. Because a policy specifies
one action per state, there are at most N2 transitions that remain
when we choose a specific policy. Therefore, it can be understood
that a policy trims out the MDP.

14.2.1 Markov Reward Process (MRP)

When we have an MDP and a fixed policy, we have what is called a
Markov Reward Process (MRP). There are no more decisions to make;
instead, all we need to do is take the action specified by the policy;
probabilistically follow a transition into a new state; and collect the
associated reward.

Example 14.2.3. Let’s revisit Figure 14.1. If we fix the policy to be π(s) = 1
for any s ∈ S, we can focus our attention to the action a = 1. Then there
are three trajectories that will lead from state 3 to state 0, based on what
the roommate does overnight. The first trajectory is 3 → 1 → 0 with
probability 0.5× 1 and reward 1 + 1. The second trajectory is 3 → 2 → 0
with probability 0.5× 0.5 and reward 1 + 1. The last trajectory is 3→ 2→
1→ 0 with probability 0.5× 0.5× 1 and reward 1 + 1 + 1.

In general, when we fix a policy π and an initial state s, we can
redraw the transition diagram of an MDP into a tree diagram for
the MRP, where each node corresponds to a state, and each edge
corresponds to a probabilistic transition. The top node represents the
initial state, and each subsequent row of the tree represents the set of
possible states after taking an action from their parent node.

Example 14.2.4. We revisit Example 14.2.3. We now transform Figure 14.1
into a tree diagram for the MRP as shown in Figure 14.2. The top node is
the initial state 3. The second row of the tree is all states that can be achieved
by taking the action 1 at state 3, and so on.

markov decision process 179

Figure 14.2: A tree representing the
MRP in Example 14.2.3.

Note that in an MRP tree, the same state can appear multiple
times, but each copy of the same state is identical — that is, the
subtree rooted at each copy must be identical. In Figure 14.2, the
state 1 appears twice in the tree. Every time it appears, it can only
lead to state 0 with probability 1. This is simply the result of fixing
a policy π — once we know the state we are in, we only have one
choice for the action to take.

The policy also induces a value function on this tree. The value
function assigns a value to each node of the tree, and each value
intuitively measures how much reward the agent should expect to
collect once the agent knows they have arrived at that node. By the
observation from the previous paragraph, this expected reward is the
same for two nodes if they are copies of the same state. Therefore,
we can equivalently define the value function for each state s instead.
Formally, we define the value function as the following.

Definition 14.2.5 (Value Function). vπ(s), the value of state s under the
policy π, is the expected discounted reward of a random trajectory starting
from s. We can define this value by using the following recursive formula:

vπ(s) = ∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvπ(s′)

)
(14.2)

Computing the value function as in (14.2) is also known as the Bellman
equation.

Let us unpack the intuition behind (14.2). Once we take action
π(s) at state s, it will bring us to state s′ with probability p(s′ | s, a),
immediately giving us a reward r(a | s, s′). Then, the expected reward
from that point on is already captured by the value vπ(s′). We just
need to apply the discount factor γ because we already took one time
step to reach s′ from s.

180 introduction to machine learning lecture notes for cos 324 at princeton university

On the other hand, if we pick any random trajectory starting
from s, its next node will be some state s′ that is reachable from s.
Therefore, the contribution of this particular trajectory to vπ(s) is
accounted for when we sum over that particular s′.

14.2.2 Connection with Dynamic Programming

In COS 226, you may have seen an implementation of a bottom-up
dynamic programming.

Figure 14.3: A Dynamic Programming
implementation of a coin changing
problem that uses the bottom-up
approach.

In such implementations, the algorithm divides the problem into
subproblems arranged as directed acyclic graphs and computes
“bottom-up.” The MDP from the cake eating problem is acylic and
our method using a look-ahead tree is similar to the dynamic pro-
gramming algorithms. Therefore, it seems like we can apply a similar
algorithm to the cake eating problem.

Example 14.2.6. Consider Example 14.2.3 again, but now with a discount
factor of 0.9. We will find the value vπ(s) of each state s by going bottom-up
from the tree in Figure 14.2. We start by noticing that vπ(0) = 0 as can be
seen from the bottom row. Then from the third node of the third row, we can
calculate

vπ(1) = 1 · (1 + 0.9 · 0) = 1

From the second node of the second row, we can calculate

vπ(2) = 0.5 · (1 + 0.9 · 0) + 0.5 · (1 + 0.9 · 1) = 1.45

Finally, from the top node, we can calculate

vπ(3) = 0.5 · (1 + 0.9 · 1) + 0.5 · (1 + 0.9 · 1.45) = 2.1025

But in general, the dynamic programming approach does not
completely apply to MDP. The biggest assumption for dynamic
programming algorithms is that the graph is acyclic, but MDPs are
generally allowed to have directed cycles if we can return to the same
state after a sequence of actions. Therefore, computing the expected
reward for even a single policy π involves solving a system of linear
equations.

markov decision process 181

Example 14.2.7. Assume that we have three states s1, s2, s3 and transitions
as in Figure 14.4 with a discount factor of γ = 0.7. Then the value at each
state is given as

vπ(s1) = 0.2× (1 + 0.7vπ(s1)) + 0.8× (2 + 0.7vπ(s2))

vπ(s2) = 0.5× (2 + 0.7vπ(s1)) + 0.5× (2 + 0.7vπ(s3))

vπ(s3) = 1× (0 + 0.7vπ(s2))

Unlike in Example 14.2.6, we cannot compute any of these values one by
one because the values are interdependent in a cyclic manner. Instead, we
need to solve the linear equation as a whole, which gives us the solution:
vπ(s1) ≈ 5.47, vπ(s2) ≈ 5.18, vπ(s3) ≈ 3.63.

Figure 14.4: Visual representation of the
MDP in Example 14.2.7.

14.3 Optimal Policy

Out of all choices for a policy, we are interested in the optimal policy,
the one that maximizes the expected (discounted) reward. Surpris-
ingly, it is known that there always exists a policy π∗ that obtains the
maximum expected reward from all initial states simultaneously; that
is π∗ = arg max

π
vπ(s) for every state s. 4. The value function of the 4 If there are multiple such policies, we

denote any one of them by π∗.
optimal policy is called the optimal value function and is often denoted
as v∗(s). Then we can express the optimal value function using (14.2)
as:

v∗(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γvπ(s′))

This is just restating the fact that the optimal value of state s is the
maximum of all possible values vπ(s) of s under a policy π — i. e.,
the Bellman equation evaluated with the values vπ(s′) of each child
node s′ under that specific policy π.

But we can even go further than this result. It is known that the
optimal value also satisfies the following:

v∗(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γv∗(s′)) (14.3)

182 introduction to machine learning lecture notes for cos 324 at princeton university

Notice that vπ(s′) in the summation has now been replaced with
v∗(s′). This property, known as the Bellman Optimality condition,
states that the optimal value is even the maximum when the Bellman
equation is evaluated with the values v∗(s′), regardless of the choice
of the policy π.

Notice that the right-hand side of (14.3) only depends on the
choice of the action a of the given state s, not any other states. There-
fore, we can rewrite (14.3) as:

v∗(s) = max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.4)

which also suggests that the optimal action at state s can be ex-
pressed as:

π∗(s) = arg max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.5)

But the problem is: it is unclear how to turn this into an efficient
algorithm. Computing the value v∗(s) depends on the value v∗(s′),
which can also depend on v∗(s), which becomes recursive.

In this section, we present an iterative algorithm called the value
iteration method which will be used to compute the optimal policy.
Before we describe the algorithm, we unpack the underlying ideas.

14.3.1 Developing Intuition about Optimality: Gridworld

To develop intuition about how to find an optimum policy, let’s
consider a classic example called Gridworld. 5 5 Source: Sutton and Barton 2020, https:

//web.stanford.edu/class/psych209/

Readings/SuttonBartoIPRLBook2ndEd.

pdf
Example 14.3.1 (Gridworld). Consider a 5× 5 grid. The set of states
is given as the cells of this grid. At each state except for A = (1, 2) and
B = (1, 4), there are four available actions: move left/right/up/down, each
with reward 0, except in the following setting: if the action will make you
move off the grid. then the reward is −1, and you are made to stay at the
same state instead.

At A, there is only one action: move to A′ = (5, 2) with reward 10 and
similarly at B, there is one action: move to B′ = (3, 4) with reward 5. 6 The 6 The outgoing transition from A and B

can be thought of as “wormholes.”discount factor is given as 0.9.

How can we compute the reward for a policy in the example
above? When beginners try to calculate the exact value using the
above definitions, they quickly get bogged down in keeping track of
too many variables, equations, and recurrences.

Instead, let’s try to think intuitively about what an optimal policy
should be trying to do. Since the wormholes are the only source of
rewards, an optimal policy should be trying to utilize the wormholes
as much as possible. Using this kind of intuition, we can design a

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

markov decision process 183

Figure 14.5: Visual representation of the
Gridworld.

policy that looks at least near-optimal, and use its value as a lower
bound for the optimal policy.

First, let v∗(s) denote the value vπ∗(s) of state s for an optimal
policy π∗. Since there is only one action to choose from at state A, we
know that

v∗(A) = 10 + γv∗(A′) (14.6)

Now, at the state A′, one possible trajectory you can follow is “go
up four steps” (each with reward 0) back to A. We know that the
optimal value has to be at least as great as this value. That is

v∗(A′) ≥ γ4v∗(A) (14.7)

Combining (14.6) and (14.7), we get

v∗(A) ≥ 10 + γ5v∗(A)

If we solve for v∗(A), we get

v∗(A) ≥ 10
1− γ5 ≈ 24.4

The value iteration method discussed below is based on this
intuition — we can provide a lower bound for the optimal policy
by suggesting some potential policy. If we repeat this process, the
lower bound for the optimal policy can only go up. At the end of
the section, we will prove that this process converges to the actual
optimal value.

14.3.2 Value Iteration Method

Value Iteration is a method guaranteed to find the optimal policy. At
each step of the iteration, we are given a lower bound on the optimal
values of each state s. Using the values of the immediate children
nodes in the tree, we can compute an improved lower bound on
v∗(s).

184 introduction to machine learning lecture notes for cos 324 at princeton university

Example 14.3.2. See Figure 14.6. Suppose there are two actions to take at
state s. The first action, labeled as blue, will lead to state s1 with reward −1
with probability 0.5 and s3 with reward −1 with probability 0.5. The second
action, labeled as red, will lead to state s2 with reward 2 with probability
1. The discount factor is given as 0.6. Now assume that someone tells us
that they know a way to get an expected reward of 12 starting from s1, 1
from s2, and 4 from s3, regardless of the choice of initial action at s. In
other words, the optimal values for these three states are lower bounded by:
v∗(s1) ≥ 12, v∗(s2) ≥ 1 and v∗(s3) ≥ 4. Using this fact, we consider two
strategies 7 — (1) first take action blue at state s and play optimally thereon 7 This is not necessarily a policy because

the second part of playing optimally
may require you to return to state s and
take an action that is inconsistent with
your initial choice of action.

based on the other person’s knowledge; (2) first take action red at state s and
play optimally thereon. The lower bound for the expected reward for each of
the two strategies can be computed as:

vblue(s) ≥ 0.5× (−1 + 0.6× 12) + 0.5× (−1 + 0.6× 4) = 3.8

vred(s) ≥ 1.0× (2 + 0.6× 1) = 2.6

The Bellman Optimality condition in (14.4) guarantees that the optimal
policy is at least as good as either of these strategies. Therefore v∗(s) has to
be larger than both vblue, vred; that is, v∗(s) ≥ 3.8.

Figure 14.6: There are two actions you
can take at state s, and you will end up
in one of the three states: s1, s2, s3.

In general, the value iteration algorithm looks like:

1. Initialize some values v0(s) for each state s such that we are guar-
anteed v0(s) ≤ v∗(s)

2. For each time step k = 1, 2, . . ., and for each state s, use the values
vk(s′) of the immediate children s′ to compute an updated value
vk+1(s) such that vk+1(s) ≤ v∗(s). 8 8 These values vk(s) maintained by the

algorithm is not necessarily associated
with a specific policy. They are just a
lower bound for the optimal value v∗(s)
that will be improved over time.

3. When k→ ∞, each vk(s) will converge to the optimal value v∗(s).

Recall from (14.1) that if all transition rewards are within [−R, R],
then the expected rewards at any state for any policy lies in

[
− R

1−γ , R
1−γ

]
.

markov decision process 185

Therefore, we can set the initial value v0(s) = − R
1−γ to be the lower

bound for each state s. 9 9 Our proof assumes this special
initialization where all v0(s) = − R

1−γ
for all states s. It turns out the value
iteration method converges to the
optimal value for arbitrary initialization,
but the proof is more complicated.

After the k-th iteration of the algorithm, we will maintain a value
vk(s) for state s, where the condition vk(s) ≤ v∗(s) is maintained as
an invariant. Now at the (k + 1)-th iteration, the algorithm will update
the values at each state s as the following:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
(14.8)

This is just the Bellman equation evaluated with the values vk(s′) of
each children node.

Example 14.3.3 (Example 14.3.1 revisited). Say we start the value
iteration on the gridworld with all values equal to zero. Now let us compute
v1(A), the value of A after the first iteration. Recall that A has only one
action to choose from: moving to A′. Denote this action by a. Therefore,

v1(A) = p(A′ | A, a) ·
(
r(a | A, A′) + γv0(A′)

)
= 1.0 · (10 + 0.9 · 0) = 10

Problem 14.3.4 (Example 14.3.1 revisited). Start value iteration with
all values equal to zero. What is v2((1, 3)), the value of (1, 3) after second
iteration?

14.3.3 Why Does Value Iteration Find an Optimum Policy?

Assume γ < 1. We prove that the values vk(s) maintained by the
value iteration method converge to the optimal values vπ(s). We
break this proof down into two parts. We first prove that the invari-
ant vk(s) ≤ v∗(s) holds throughout the algorithm. Then we prove
that in general, vk+1(s) is a tighter lower bound for v∗(s) than vk(s).

Proposition 14.3.5. For each time step k = 1, 2, . . ., and for each state s, the
invariant vk(s) ≤ v∗(s) holds.

Proof. Proof by mathematical induction. As discussed earlier, our
choice of initial values v0(s) = − R

1−γ satisfies the invariant. Now
assume that the invariant holds for some k. Now consider the update
rule of the value iteration algorithm:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
Notice that for any specific policy π and for any next state s′, we
have

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤p(s′ | s, π(s)) ·

(
r(π(s) | s, s′) + γv∗(s′)

)

186 introduction to machine learning lecture notes for cos 324 at princeton university

because of the inductive hypothesis that vk(s′) ≤ v∗(s′). Therefore, if
we sum over all state s′, we have

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤∑

s′
p(s′ | s, π(s)) ·

(
r(π(s) | s, s′) + γv∗(s′)

)
Since this inequality holds for every policy π, we have the following:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤ max

π
∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γv∗(s′)

)
= v∗(s)

where we apply the Bellman Optimality condition (14.4) in the last
equality. This concludes the inductive step, and it suffices for the
proof.

Now to prove that these values vk(s) eventually converge to v∗(s),
we introduce the following definition:

Definition 14.3.6. The residual at s at the k-th iteration is defined as
δs,k = v∗(s)− vk(s) ≥ 0.

Notice that as long as the residuals at the k-th iteration converge
to 0, the values vk(s) also converge to v∗(s). Since the residuals take
finite values when the algorithm is initiated, it suffices to prove that
the residuals decrease non-trivially in every iteration. 10 10 Our exposition of Value Iteration with

our particular initialization is new. The
usual textbook description requires a
slightly more complicated argument.

Proposition 14.3.7. If the largest residual at iteration k is denoted as
δk = maxs δs,k, then the largest residual δk+1 at iteration k + 1 satisfies
δk+1 ≤ γδk

Proof. Let a∗ be the action at s under the optimum policy π∗. Then
by (14.2),

v∗(s) = ∑
s′

p(s′ | s, a∗)(r(a∗ | s, s′) + γv∗(s′)) (14.9)

Note that taking the action a∗ is always an option at the (k + 1)-
th iteration, so vk+1(s), the maximum value across all policies (in
particular, across all actions available at s), has to be greater than or
equal to the value computed with the action a∗; that is,

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γvk(s′))

≥∑
s′

p(s′ | s, a∗)(r(a∗ | s, s′) + γvk(s′)) (14.10)

markov decision process 187

Subtracting (14.10) from (14.9), we get

v∗(s)− vk+1(s) ≤ γ

(
∑
s′

p(s′ | s, a∗)(v∗(s′)− vk(s′))

)
By the definition of δk, each of v∗(s′)− vk(s′) = δs′ ,k ≤ δk. Therefore,

δs,k+1 = v∗(s)− vk+1(s) ≤ γδk∑
s′

p(s′ | s, a∗) = γδk

where the last equality uses the fact that ∑
s′

p(s′ | s, a∗) = 1 because p

is a probability distribution. Since this inequality holds for any state
s, we conclude that

δk+1 = max
s

δs,k+1 ≤ γδk

Theorem 14.3.8. For each s ∈ S, vk(s) converges to v∗(s) when k→ ∞.

Proof. By Proposition 14.3.5 and Proposition 14.3.7,

|v∗(s)− vk(s)| = v∗(s)− vk(s) ≤ δk ≤ γkδ0

which converges to 0 when k goes to infinity.

Theoretically, the value iteration method may not converge in a
finite number of steps, and the values maintained by the algorithm
vk(s) may only asymptotically approach the optimal values v∗(s).
However, in practice, the value iteration method will always termi-
nate, albeit sometimes not at convergence. The current design of
computers uses a discrete set of floating point numbers to approx-
imate the set of real numbers R. Once the theoretical difference
between vk(s) and vk+1(s) becomes smaller than what the computers
can process as different, no changes will be made to the values, and
the algorithm is guaranteed to terminate. However, the values when
the algorithm terminates may be slightly off from the optimal values.

14.3.4 Retrieving Optimal Policy from the v∗’s

One important thing to note is that the value iteration method finds
the optimal value of each state, not the optimal policy. So we need an
extra step to retrieve the optimal policy from the output of the value
iteration algorithm. This can be done by considering the Bellman
Optimality condition. For each state s, define π∗(s) = a∗ such that

a∗ = arg max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.5 revisited)

where v∗(s) is the value that the value iteration algorithm converges
to. If there are multiple actions a that satisfy the equation above,
arbitrarily choose an action.

188 introduction to machine learning lecture notes for cos 324 at princeton university

Example 14.3.9 (Example 14.3.1 revisited). Say we ran the value iteration
algorithm on the Gridworld. The output of the algorithm (the optimal values
of each state) is given in Table 14.1.

22.0 24.4 22.0 19.4 17.5
19.8 22.0 19.8 17.8 16.0
17.8 19.8 17.8 16.0 14.4
16.0 17.8 16.0 14.4 13.0
14.4 16.0 14.4 13.0 11.7

Table 14.1: Optimal values v∗(s) of the
Gridworld.

Consider the state A′ = (5, 2). There are four actions to take: left-
/right/up/down. Each action would yield the following values when evaluat-
ing the Bellman equation:

vle f t(A′) = 0 + 0.9× 14.4 = 13.0

vright(A′) = 0 + 0.9× 14.4 = 13.0

vup(A′) = 0 + 0.9× 17.8 = 16.0

vdown(A′) = −1 + 0.9× 16.0 = 13.4

The only action that maximizes the value is the action “go up.” Therefore,
we can conclude that the optimal policy π∗ will adopt the action “go up” for
the state A′.

Problem 14.3.10 (Example 14.3.1 revisited). Verify that an optimal policy
can assign either the action “go up” or the action “go left” for the state
(5, 3).

