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Introduction to Reinforcement Learning

This part of the course concerns Reinforcement Learning (RL), the
conceptual underpinning of several modern technologies such as
self-driving technologies in new cars. It is the third major category of
machine learning, in addition to the two previously seen categories
of supervised and unsupervised learning. In class we saw a video of
robots (made by Boston Dynamics) doing parkour, dancing, and over-
all doing a pretty good job of imitating the peak human physique.
That is also achieved via RL.

The basic idea of RL involves the concept of an agent learning to
make a sequence of actions in a dynamic environment. At each discrete
time step, the agent is able to take one of a menu of actions. Each
choice of action leads to changes in the state of the world (i. e., the
agent and its surroundings). The agent has an internal representation
of the current and potential states of the world (e.g., using vision
or other sensing modules). Under this setting, the agent takes a
sequence of actions towards a certain goal.

The world contains uncertainty due to a variety of factors. For
instance, there may be other agents in the environment that also
take actions to their own benefit, or the sensing modules may be
imperfect. Thus taking the same action from the same state of the
world may lead to different evolution of state in the future — that is,
RL is non-deterministic.

In this chapter, we introduce the basic elements of RL using real-
world examples, and what it means for the agent to act optimally.
Chapter 14 focuses on the setting where the underlying environ-
ment (e.g., the number of states, the current state, the probability
distribution) is completely known to the agent. 1 In Chapter 15, we 1 Think of playing a game where you

know the complete set of rules.will present the case where the environment is not fully available
to the agent, and the agent learns about the environment while also
learning to act in it. 2 2 Think of playing a Role-playing Game

(RPG) where you need to unlock parts
of the map by advancing the story.
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13.1 Basic Elements of Reinforcement Learning

Now we formalize several of the basic elements of reinforcement
learning that were sketched above.

13.1.1 States and Actions

There is a finite set S of states, and the entire system agent + envi-
ronment exists in one of these states at any time. At each state s ∈ S,
the agent makes an action a ∈ As, where As is the set of allowed
actions at state s. We denote A =

⋃
s∈S

As to be the set of all possible

actions in the whole RL environment.

Example 13.1.1. Consider a game of chess. Each state s can be represented
as a pair (C, p) where C denotes the current configuration of pieces and p
denotes the player to play next. For example, “white king at e1, black king
at e8, and it is white turn to move” would be a possible state s of the game.
An action a is a valid movement of a piece, given a state of the game. For
example, “white king to e2” (i.e., Ke2) would be a possible action of the
agent playing white in state s.

Example 13.1.2. Self-driving cars, like those built by Tesla, are becoming
increasingly popular. Let’s imagine how we could construct a state diagram
for the task of driving autonomously. Each state can be represented by the
current configuration of a number of factors (e.g., the car speed, distance
from lane boundaries, distance to nearest vehicle, etc.) Possible actions
include increasing/decreasing speed, changing gear, changing direction,
changing lane, etc.

13.1.2 Modeling Uncertainty via Transition Probabilities

As mentioned, the agent has many sources of uncertainty in its
knowledge about the environment, and we can use concepts from
probability to model uncertainty.

Suppose S = {s1, s2, . . . , sn} contains n states. When the agent
takes action a while in state s, it will transition into another (poten-
tially the same) state s′. The catch is: the agent does not know exactly
which state it will end up in. Instead, there is a probability pi of end-
ing up in state si for each si ∈ S. Here ∑i pi = 1, meaning each (state,
action) pair is associated with a probability distribution over the next
state that the agent will enter. Formally, we define it as follows:

Definition 13.1.3 (Transition Probabilities). Given a state s ∈ S and an
action a ∈ As, there is an associated transition probability p(∗ | s, a)
distributed over S such that state s′ ∈ S happens with probability p(s′ | s, a)
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when action a is taken at state s and ∑
s′∈S

p(s′ | s, a) = 1. If p(s′ | s, a) > 0,

we say that the state s′ is reachable from s when action a is taken.

In general, not all states are reachable, given a state s and an action
a. That is, some transition probability p(s′ | s, a) is zero. For these
states, it is conventional to leave out the corresponding transitions
when representing the RL environment as a state diagram as in
Figure 13.1 or Figure 13.2.

Example 13.1.4. Consider the state diagram shown in Figure 13.1. This is
a special case where there is only one action a in the set A. In other words,
the agent is not making any choices; instead, it is just following probabilistic
transition over time steps. To calculate the probability of reaching state s3

from s0, we note there are two different paths. The first path is s0 − s1 − s3

and the second path is s0 − s2 − s3. We thus calculate the probabilities of each
of these paths and note that the overall probability of reaching s3 will be the
sum of both: 0.2 · 0.7 + 0.8 · 0.4 = 0.46.

Figure 13.1: An example diagram
where |A| = 1. The agent simply
follows probabilistic transitions.

Now we consider an example where there is more than one action
to make. In this case, each action induces a different probability
distribution on the set of states, so we need to draw a diagram for
each option.

Example 13.1.5. We can model a baby learning to walk through RL. As
shown in Figure 13.2, we can define the state s0 = standing but feeling
unsteady, s1 = standing and feeling secure, and s2 = on ground. The
baby has two actions to take: a = not grab onto nearest support and
a′ = grab onto nearest support. The state diagram on the top represents
the transition probabilities when the baby takes the action a. See that the
baby has a high chance of entering state s2 — falling to the ground. On
the other hand, the state diagram on the bottom represents the transition
probabilities when the baby takes the action a′. The baby now has a high
chance of entering state s1 — standing securely on the ground. The two
actions have different probability distributions associated with the relevant
transitions.

Example 13.1.6. Mechanical ventilators are used to stabilize breathing for
patients. Suppose we wished to construct a state diagram. We could define
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Figure 13.2: An example diagram
showing how an action determines the
probability of outgoing transitions.

states that consider the pressure and CO2 level in the patient’s level for the
past k seconds. Actions might include adjusting the flow rate of oxygen
via valve settings as needed. Possible transitions might include the typical
mechanical response of the lungs, or unexpected spasms. Finally, we can
define the goal to be maintaining steady pressure in the patient without

“overshooting” and causing damage.

13.1.3 Agent’s Motivation/Goals

In general, an agent is a participant in RL models driven by the
need to maximize “rewards.” In a probabilistic setting, the agent
wishes to maximize their expected rewards. In a natural setting, the
“rewards” could be innate satisfaction, such as getting to eat food,
being entertained, etc. But in the usual artificial settings such as
robots and self-driving cars, rewards are sprinkled by the system
designer into the framework. Some examples appear later.3 3 While reward/punishment as a way

to shape human or animal behavior is a
very old idea, mathematical modeling
of agents as reward-maximisers appears
in several disciplines that flowered
around the middle of the 20th century
(e. g., behaviorism in psychology, profit-
maximisation in economics, and of
course RL).

At each step, the agent takes an action, and is given a reward
(which could be negative, i. e., is a punishment) based on the action,
current state, and next state.

Definition 13.1.7 (Reward). For each valid 3-tuple (a, s, s′) where s′ ∈ S
is a state reachable from state s ∈ S by taking action a ∈ As, we define a
corresponding reward r(a | s1, s2) ∈ R.

Example 13.1.8 (Example 13.1.5 revisited). When the baby stands and
feels secure after grabbing onto something, the parents applaud the baby,
and the baby receives a positive reward: r(a′ | s0, s1) = 5. When the baby
feels secure without grabbing onto the nearest support, the parents feel even
prouder and the baby gets a more positive reward: r(a | s0, s1) = 10. When
the baby falls to the ground, the baby feels pain and receives negative reward:
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r(a | s0, s2) = r(a′ | s0, s2) = −5.

Typically, the designer of a RL model gets to define the rewards
throughout the framework based on the designer’s judgment. For
instance, in Example 13.1.2, we might design an RL model such that
if the car drifts into an adjacent lane, we assign a negative reward.
If another vehicle is in the lane, we might assign an even larger
negative reward. This will induce a RL model to “learn” the proper
way to driving — staying in lane.

13.1.4 Comparison with NFA

Recall the Non-deterministic Finite Automata (NFA) you learned in
COS 126. In an NFA, there is a finite number of states, and for each
state, we know the set of next possible states, based on the next input
character.

Figure 13.3: A sample Non-
deterministic Finite Automata. Source:
Introduction to the Theory of Computation
by Michael Sipser.

We can consider the following analogy between RL and NFA —
there is someone behind an NFA, who can observe its current state
and type in the next input character. This person will be called an
agent, and the choice of input character that is typed in will be called
an action. Each action can lead to a finite set of next possible states,
but because of some uncertainty in the world, the agent cannot
specify which particular state will be the next one. This is similar to
an NFA in the sense that the actions are non-deterministic. Also, just
like in an NFA, the change in the current state is also referred to as a
transition. One major difference between RL and NFA is that while an
NFA only cares about the final state of the automata (i. e., whether it
is an accept state or a reject state), in RL, the agent is given a reward
after each transition. The goal of the agent will be to take a sequence
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of actions so as to maximize the sum of the reward throughout the
sequence of actions.

13.2 Useful Resource: MuJoCo-based RL Environments

Real-life robots with precise and reliable hardware can get very
expensive to buy, let alone train. An easier playground for students
(especially those trying to work with a single GPU on CoLab) is
doing RL in a virtual environment.

MuJoCo is a famous physics engine that allows creating virtual
objects with somewhat realistic “joints” that can be commanded to
move similar to real-life robots. OpenAI and DeepMind have open-
source environments that allow experimentation in the MuJoCo
environment. The official website gives a pretty good overview of the
software: 4 4 Source: https://mujoco.org.

Figure 13.4: An example of a MuJoCo
Walker.

MuJoCo is a physics engine that aims to facilitate research and development in
robotics, biomechanics, graphics and animation, and other areas where fast and
accurate simulation is needed. MuJoCo offers a unique combination of speed,
accuracy and modeling power, yet it is not merely a better simulator. Instead it
is the first full-featured simulator designed from the ground up for the purpose
of model-based optimization, and in particular optimization through contacts.

One aspect of MuJoCo simulation involves a representation of a
humanoid figure (i. e., the agent) learning how to navigate an obstacle
course (i. e., the environment). Training videos are readily available
online and show how the agent learns over time (sometimes, to
comedic effect).

Example 13.2.1. Let’s analyze the example of an agent navigating an
obstacle course through a RL framework. The states can be considered to be
the set of coordinates, velocity, and acceleration for each limb, the velocity

https://mujoco.org
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and acceleration for the motors in each joint, and the environment itself
straight ahead. The actions can include the agent increasing or decreasing
motor speed in their joints. Finally, the final goal is to stay upright, run
forward at a reasonable pace, and avoid obstacles.

13.3 Illustrative Example: Optimum Cake Eating

Let’s consider an extended example which ties together the elements
of RL discussed previously. Suppose you buy a small cake with three
slices. The reward of eating one slice at one sitting is 1, but eating
two or three slices at one sitting is 1.5 and 1.8 respectively. 5 5 This sense of diminishing rewards is

known as the satiation effect.
Problem 13.3.1. Suppose you plan to eat the cake over a period of three days.
What eating schedule will maximize the internal reward?

Now let’s introduce your roommate, who is oblivious to basic
understandings of ownership and adheres to the “finders keepers”
faith. We define the probability Pr[sneakily eats a slice overnight] =
1
2 . To account for this uncertainty, we can create a look-ahead tree for
different initial actions. We first consider the action where you decide
to eat two out of the three slices on the first night. Successive states
and associated probabilities are shown in the Figure 13.5.

Figure 13.5: The diagram (look-ahead
tree) of the cake problem where you
decide to eat two slices on the first
night. Each state represents the number
of slices remaining, and each action
represents the number of slices eaten on
one night.

Even though you only eat only two out of the three slices during
the first night, there is a 1

2 chance that your roommate eats the re-
maining slice overnight. Therefore, the action of “eating 2 slices” can
lead to two possible states — “1 slice left” or “0 slice left” — each
with probability 1

2 .

Example 13.3.2. We can calculate the expected reward associated with eating
two slices on the first night by analyzing the Figure 13.5. You first gain
reward of 1.5 by eating the two slices on the first night. Then with proba-
bility 1

2 (where the roommate does not eat the remaining slice overnight),
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you get to eat the last slice on the second night and gain additional re-
ward of 1. With probability of 1

2 (where the roommate eats the remaining
slice), you cannot gain anymore reward. That is, the expected reward is
1.5 + 0.5 · 1 + 0.5 · 0 = 2.

Problem 13.3.3. Consider the result of Example 13.3.2. Would you prefer to
take two slices on the first night or three slices?

We next consider the action where you decide to eat one out of
the three slices on the first night. Successive states and associated
probabilities are shown in the Figure 13.6.

Figure 13.6: The diagram (look-ahead
tree) of the cake problem where you
decide to eat one slice on the first night.

The difficulty in this example in contrast to the Figure 13.5 is that
if the roommate does not eat a slice after the first night, you have two
slices at your disposal on the second night. You have two actions you
can take in this “2 slices left” state — “eat 1 slice” (and hope the third
slice is still there on the third night) or “eat 2 slices” — and it is not
immediately obvious which one is more optimal. It turns out that
the expected reward you can get from the remaining 2 slices is 1.5 for
both options.

Problem 13.3.4. Verify the previous claim that both options on the second
night have the same expected reward.

Example 13.3.5. Given the previous analysis and the look-ahead tree in the
Figure 13.6, we note that the total expected reward is 1 + 0.5 · 1 + 0.5 · 1.5 =

2.25. You first receive a reward of 1 by eating 1 slice on the first night. Then
with probability 1

2 , the roommate eats one slice over night, and you gain
reward of 1 by eating the last slice on the second night. With the remaining
probability 1

2 , the roommate does not eat a slice, and you are expected to gain
reward of 1.5 from the remaining 2 slices, regardless of the action you choose
to take on the second night.

Problem 13.3.6. Consider the result of Example 13.3.5. Would you prefer to
take two slices on the first night or one slice?


