
12
Convolutional Neural Network

In Chapter 11, we focused on a type of a neural network called feed-
forward neural networks. But different data has different structure
(e.g., image, text, audio, etc.) and we need better ways of exploiting
them. This can help reduce the number of parameters needed in the
network, which may allow easier or more data-efficient training. In
this chapter, we present a type of a neural network common in image
processing called Convolutional Neural Network (CNN); these models
use a mathematical technique called convolution in order to extract
important visual features from input images.

12.1 Introduction to Convolution

Roughly speaking, convolution refers to a mathematical operation
where two functions are “mixed” to output a new function. In ma-
chine learning, the main idea of convolution is to reuse the same set
of parameters on different portions of input. This is particularly effec-
tive at exploiting the structure of images. It was originally motivated
by studies of the structure of cortical cells in the V1 visual cortex of
the human brain (Hubel and Wiesel won the Nobel Prize in 1981 for
this breakthrough discovery). 1 Let’s first consider an example of a 1 Paper: https://www.jstor.org/

stable/24965293.1D convolution.

Figure 12.1: The effects of 1D convo-
lution on graph of COVID-19 positive
cases.

https://www.jstor.org/stable/24965293
https://www.jstor.org/stable/24965293

146 introduction to machine learning lecture notes for cos 324 at princeton university

Example 12.1.1. Consider the 3-day moving average of daily COVID-19
cases as shown in Figure 12.1. Let xt denote the number of daily cases on
day t. We can then take three consecutive values, compute their average and
create a new output sequence from averages: yt = 1

3 (xt−1 + xt + xt+1).
Then if we set w1 = w2 = w3 = 1

3 and denote w⃗ = (w1, w2, w3), we can
write: 2 2 If we set the weights to a different

value, we can find a weighted moving
average.yt = w1xt−1 + w2xt + w3xt+1 = w⃗ · (xt−1, xt, xt+1)

yt+1 = w1xt + w2xt+1 + w3xt+2 = w⃗ · (xt, xt+1, xt+2)

yt+2 = w1xt+1 + w2xt+2 + w3xt+3 = w⃗ · (xt+1, xt+2, xt+3)

Notice that we are reusing the same weights and applying them to multiple
different values of xt to calculate yt. It is almost like sliding a filter down the
array of xt’s and applying it to every set of 3 consecutive inputs. For this
reason, we call w⃗ the convolution filter weight of length 3.

Example 12.1.2. Consider an input sequence x⃗ = (2, 1, 1, 7,−1, 2, 3, 1) and
a convolution filter w⃗ = (3, 2,−1). The first two output values will be:

y1 = 2× 3 + 1× 2 + 1× (−1) = 7

y2 = 1× 3 + 1× 2 + 7× (−1) = −2

Following a similar calculation for the other values, we see that the full
output sequence is y⃗ = (7,−2, 18, 17,−2, 11). Note that the length of y⃗
should be |⃗x| − |w⃗|+ 1 = 8− 3 + 1 = 6.

Problem 12.1.3. If yt = 2xt−1 − xt+1, yt+1 = 2xt − xt+2, and yt+2 =

2xt+1 − xt+3, what is the convolution filter weight?

12.2 Convolution in Computer Vision

In this section, we now focus on the application of convolution in
computer vision. By the nature of image data, we will be primarily
dealing with 2D convolution. Generally, 2D convolution filters are
called kernels.

Figure 12.2: The effect of local smooth-
ing on a sample image. (The person
depicted here is Admiral Grace Murray
Hopper, a computing pioneer.)

Example 12.2.1 (Local Smoothing (Blurring)). An image can be blurred
by constructing a filter that replaces each pixel by the average of neighboring
pixels:

yi,j =
1
9 ∑

b1,b2∈{−1,0,1}
xi+b1,j+b2

convolutional neural network 147

An example is shown in Figure 12.2.

Figure 12.3: The effect of local sharpen-
ing on a sample image

Example 12.2.2 (Local Sharpening (Edge Detection)). The edge of objects
in an image can be detected by constructing a filter that replaces each pixel
by its difference with the average of neighboring pixels:

yi,j = xi,j −
1
9 ∑

b1,b2∈{−1,0,1}
xi+b1,j+b2

An example is shown in Figure 12.3.

12.2.1 Convolution Filters for Images

Computationally, we perform 2D convolution on an image by "slid-
ing" the filter around every possible location in the image and taking
the inner product:

yi,j = ∑
−k≤r,s≤k

wr,sxi+r,j+s (12.1)

The result is a new image and we can view each filter as a transfor-
mation which takes an image and returns an image. In the above
equation, the filter size is (2k + 1)× (2k + 1). For example, if k = 1, we
can consider the convolution weight filter to bew−1,−1 w−1,0 w−1,+1

w0,−1 w0,0 w0,+1

w+1,−1 w+1,0 w+1,+1


The filter can only be applied to an image of size m× n at a location
where the filter completely fits inside the image. Therefore, the
locations in the input image where the center of the filter can be
placed are k < i ≤ m− k, k < j ≤ n− k and the size of the output
image is (m− 2k)× (n− 2k).

Example 12.2.3. If the input and convolution filter are given as follows:

X =


1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

 and W =

1 0 1
0 1 0
1 0 1



148 introduction to machine learning lecture notes for cos 324 at princeton university

then the pixel at (1, 1) of the resulting image can be calculated by applying
the filter at the top left corner of the input image. That is, we take the inner
product of the following parts (in red) of the two matrices

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

 and

1 0 1
0 1 0
1 0 1



which is

1× 1+ 1× 0+ 1× 1+ 0× 0+ 1× 1+ 1× 0+ 0× 1+ 0× 0+ 1× 1 = 4

Therefore, the (1, 1) entry of the resulting image is 4. Similarly, the remain-
ing pixels of the resulting image can be calculated by moving around the
filter as in Figure 12.4. The output image is given as:

Y =

4 3 4
2 4 3
2 3 4


In this example, X ∈ R5×5, W ∈ R3×3, k = 1 and Y ∈ R3×3.

Figure 12.4: Visual representation of
applying a 3× 3 convolutional filter to a
5× 5 image.

Problem 12.2.4. Suppose we have a 10× 10 image and a 5× 5 filter. What
is the size of the output image?

Figure 12.5 shows some common filters used in image processing.
Note that all these filters are hand-crafted and require domain-
specific knowledge. However, in convolutional neural networks, we
don’t set these weights by hand and we learn all the filter weights
from the data!

12.2.2 Padding

In standard 2D convolution, the size of the output image is not equal
to the size of the input image because we only consider locations
where the filter fits completely in the image. However, sometimes
we may want their sizes to be the same. In such a case, we apply a

convolutional neural network 149

Figure 12.5: Some common filters
and corresponding weights used in
image processing. Source: https:
//en.wikipedia.org/wiki/Kernel_

(image_processing)

technique called padding. The idea is to pad pixels to all four edges
of the input image (left, right, up, and down) so that the number of
valid locations for the filter is the same as the number of pixels in the
original image. In particular, if the filter size is (2k + 1)× (2k + 1), we
need to pad k pixels on each side.

There are multiple ways to implement padding. Zero padding is
when the values at all padded pixels are set to 0. “Same” padding is
when the values at padded pixels are set to the value of the nearest
pixel at the edge of the input image. In practice, zero padding is a
more common form of padding (it is equivalent to adding a black
frame around the image).

12.2.3 Downsampling Input with Stride

Another common operation in convolutional neural networks is
called stride. Stride controls how the filter convolves around the
input image. Instead of moving the filter by 1 pixel every time, we
can also move the filter every 2 (or in general, s) pixels. Essentially,
we are applying each of the filter weights at fewer locations of the
image than before. This can be viewed as a downsampling strategy,
which gives a smaller output image while greatly preserving the
information from the original input.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

150 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 12.6: A visual comparison
between two common types of padding:
zero padding and “same” padding

Suppose we have an input image of size m× n and a filter of size
(2k + 1) × (2k + 1). If padding is applied to the image, the output
image size is ⌊(m + s− 1)/s⌋ × ⌊(n + s− 1)/s⌋. 3 If padding is not 3 As a sanity check, you can verify that

in the special case of s = 1 the output
image size will be the same as the input
image size

applied to the image, the output image size is ⌊(m + s− 2k− 1)/s⌋ ×
⌊(n + s− 2k− 1)/s⌋; this is because convolution with stride is per-
formed directly on the input image itself, making the effective input
image size (m− 2k)× (n− 2k).

Example 12.2.5. Suppose we have an input image of size 5× 5 and a filter of
size 3× 3. If we apply padding and take stride size s = 2, then output size is
3× 3.

Figure 12.7: Visual representation of
applying a 3× 3 convolutional filter to
a 5× 5 image with padding and stride
size 2.

12.2.4 Nonlinear Convolution

For each location in the image (original or padded) and a single
convolution filter, we can apply a nonlinear activation function after
the convolution

yi,j = g

(
∑

−k≤r,s≤k
wr,sxi+r,j+s

)
(12.2)

where g is some function like ReLU, sigmoid, tanh. The intuition is
similar to what we had earlier in feedforward neural networks — if
we don’t add non-linear activation functions, a multi-layered convolu-
tional neural network can be easily reduced to a linear model!

convolutional neural network 151

12.2.5 Channels

In general, we do not only use one convolution filter. We construct
a network of multiple layers, and for each of the layers, we apply
multiple convolutional filters. Different filters will be able to detect
different features of the image (e.g., one filter detects edges and one
filter detects dots), and we want to apply different filters indepen-
dently on the input image. The result of applying a given filter on a
single input image is called a channel. We can stack the channels to
create a 3D structure, as shown in Figure 12.8.

Figure 12.8: Each filter creates one
channel. The output of a convolutional
layer has multiple output channels.

Next, let’s imagine that we want to build a deep neural network
with multiple convolutional layers (state-of-the-art CNNs have 100 or
even 1000 layers!). A typical convolutional layer in the middle of the
network will have several input channels (equivalent to the number
of output channels from the previous layer) and multiple output
channels. How can we determine the number of filters needed?

Figure 12.9: A convolutional layer
which has multiple input and multiple
output channels.

In this case, we want to define a filter for every possible pair of
input and output channels. The output image of a particular output
channel will be the summation of the output images from each of
the input channels, after applying the corresponding filter. We can
also add a nonlinear activation function g after taking the summation
of the output images. That is, (12.2) can be rewritten for the output

152 introduction to machine learning lecture notes for cos 324 at princeton university

image in the v-th output channel as:

y(v)i,j = g

(
nin

∑
u=1

∑
−k≤r,s≤k

w(u,v)
r,s x(u)i+r,j+s

)
(12.3)

where nin is the number of input channels, X(u) is the image at the
u-th input channel, Y(v) is the image at the v-th output channel, and
W(u,v) is the filter between the u-th input channel and the v-th output
channel.

Example 12.2.6. Assume there are 6 input channels and 3 output channels,
and the filter size is 5× 5. Then for every 6× 3 pair of input and output
channel, we have a kernel of weights of size 5× 5, so there are a total of
6× 3× 5× 5 = 450 weights.

12.2.6 Pooling

Pooling is another popular way to reduce the size of the output of a
convolutional layer. In contrast to stride, which applies convolution
operation every s pixels, pooling partitions each image (channel) to
patches of size ∆ × ∆ and performs a reduction operation on each
patch. You can think of this as similar to what happens when you
lower the resolution of an image. The reduction operation can either
involve taking the max of all the values in the patch (“max-pooling”):

yi,j = max
1≤r,s≤∆

X(i−1)·∆+r,(j−1)·∆+s

or taking the average of all the values in the patch (“mean-pooling”):

yi,j =
1

∆2

∆

∑
r,s=1

X(i−1)·∆+r,(j−1)·∆+s

The pooling operation can reduce the image size by a factor of ∆2.
If the input image is of size m × n, the size of the image after

pooling will be ⌊m/∆⌋ × ⌊n/∆⌋.

Example 12.2.7. If the size of an input image to a pooling layer is 6× 6 and
∆ = 2, then the output is of size 3× 3.

12.2.7 A Full Convolutional Neural Network

Let’s put everything together and consider a full convolutional neural
network. Figure 12.11 shows a typical example of a convolutional
neural network. A convolutional neural network typically begins
by stacking multiple convolutional layers and pooling layers. Each
convolutional layer has its own kernel size and number of output
channels; similarly, each pooling layer has its own kernel size. This is

convolutional neural network 153

Figure 12.10: Max-pooling vs mean-
pooling.

Figure 12.11: A illustration of a full
convolutional neural network.

followed by several fully-connected layers at the end. Since the out-
put images of convolutional layers are 2-dimensional, it is customary
to “flatten” the images into a 1D vector (i. e., append one row after an-
other) before applying the fully connected layers. Intuitively, we can
think of the convolutional and pooling layers as learning interesting
image features (e.g., stripes or dots) while the fully-connected layers
map these features to output classes (e.g., zebras have a lot of stripes).

All the weights in a convolutional neural network (including
weights in kernels, fully-connected layers) can be learned via the
backpropagation algorithm in Chapter 11. Again, modern deep
learning libraries (e.g., PyTorch, TensorFlow) have all the convolu-
tional and pooling layers implemented and can compute gradients

154 introduction to machine learning lecture notes for cos 324 at princeton university

automatically!
Finally, the above convolutional neural network is still a simple

network, compared to modern convolutional neural networks. Inter-
ested students can look up architectures such as AlexNet, Inception,
VGG, ResNet and DenseNet.

12.2.8 Designing a Convolutional Network

While we described convolutional nets above, we did not give a
good explanation of why they are well-suited to solve vision tasks.
Working through the next few examples will help you understand
their power. The idea is that convolution is a parameter-efficient 4 4 Which usually goes with sample-

efficiency!architecture that can “search for patterns” anywhere in the image.
For example, suppose the net has to decide if the input image has
a triangle anywhere in it. If the net were fully connected, it would
have to learn how to detect triangles centered at every possible pixel
location (i, j). By contrast, if a simple convolutional filter can detect
a triangle, we can just replicate this filter in all patches to detect a
triangle anywhere in the image.

Now consider the CNN architecture in Figure 12.12. The architec-
ture has two convolutional layers, the first with a ReLU activation
function, and the second with a sigmoid activation function. 5 We 5 In both Example 12.2.8 and Exam-

ple 12.2.9, the second convolutional
layer can be considered a fully con-
nected layer if we flatten image Y

will choose an appropriate convolutional weight and bias such that
the architecture can detect a particular simple visual pattern.

Input X Image Y Output o Output ôConv 1
ReLU

Conv 2 σ

Figure 12.12: A sample CNN archi-
tecture that can be used to detect the
patterns as aligned in Example 12.2.8
and Example 12.2.9.

Example 12.2.8. The input to the network is a gray-scale image of size
8× 8 (1 channel), and each pixel takes an integer value between 0 and 255,
inclusive. If at least one pixel of the image has value exactly 255, the output
of the CNN should have a value close to 1 and otherwise the output should
have a value close to 0.

We will now solve Example 12.2.8 by individually configuring
the parameters for each convolutional layer in Figure 12.12. The first

convolutional neural network 155

convolutional layer will have a 1× 1 filter of weight 1, a bias of −254,
and a ReLU activation function. The convolution will be applied with
no padding, and with stride 1. That is, the (i, j)-th entry of the output
image of the first convolutional layer will be

yi,j = ReLU(xi,j − 254) 1 ≤ i, j ≤ 8

where xi,j is the (i, j)-th entry of the input image. Notice that this
value is zero everywhere, except if xi,j = 255, in which case yi,j takes
the value 1. That is,

yi,j =

1 xi,j = 255

0 otherwise

See Figure 12.13 to see the effect of this choice of convolutional layer
on a sample image. We see that we have now successfully identified
the pixels in the input image that take the value 255.

 0 100 200
50 150 250
55 155 255

 Conv 1−→

−254 −154 −54
−204 −104 −4
−199 −99 1

 ReLU−→

0 0 0
0 0 0
0 0 1


Figure 12.13: The effect of the choice
of the first convoluational layer for
Example 12.2.8 on a sample image.
Only a portion of the image is shown.

Next, consider the second convolutional layer with a 8× 8 filter
of all weights equal to 10, a bias of −5, and a sigmoid activation
function. The convolution will be applied with no padding, and with
stride 1. 6 The output, before the sigmoid, will be 6 Once the output image of the first

convolutional layer is flattened to a
vector of length 64, this can also be
thought of as a fully-connected layer
with input size 64 and output size 1.

o =

(
8

∑
i,j=1

10yi,j

)
− 5

Notice that this value is −5 if and only if there is no pixel such that
yi,j = 1 (i. e., xi,j = 255). If there is one such pixel, the output is 5; if
there are two, the output is 15. The important thing is, the output is
at least 5 if there is at least one pixel in the input image whose value
is 255, and otherwise the output is ≤ 0. That is

o =

≥ 5 ∃(i, j) : xi,j = 255

−5 otherwise

Finally, when we apply the sigmoid function, the final output of the
model will be

ô = σ(o) =

≥ 0.99 ∃(i, j) : xi,j = 255

0.01 otherwise

This is exactly what we wanted in Example 12.2.8.

156 introduction to machine learning lecture notes for cos 324 at princeton university

Example 12.2.9. The input to the network is a gray-scale image of size
8× 8 (1 channel), and each pixel takes an integer value between 0 and 255,
inclusive. If any part of the input image contains the following pattern: ∗ 255 ∗

255 255 255
∗ 255 ∗

 (12.4)

the output of the CNN should have a value close to 1 and otherwise the
output should have a value close to 0.

We use the same architecture as in Figure 12.12, but now with a
different choice of parameters for the convolutional layers. The first
convolutional layer will have a 3× 3 filter with the following weights:0 1 0

1 1 1
0 1 0


a bias of −1274, and a ReLU activation function. The convolution will
be applied with no padding, and with stride 1. That is, the (i, j)-th
entry of the output image of the first convolutional layer will be

yi,j = ReLU
(
xi−1,j + xi,j−1 + xi,j + xi,j+1 + xi+1,j − 1274

)
2 ≤ i, j ≤ 7

where xi,j is the (i, j)-th entry of the input image. 7 Notice that this 7 Since there is no padding, the values
y1,1, y1,8, y8,1, y8,8 are not defined.value is zero everywhere, except if xi,j + xi−1,j + xi,j−1 + xi,j+1 +

xi+1,j = 1275, in which case yi,j takes the value 1. This can only
happen if xi−1,j = xi,j−1 = xi,j = xi,j+1 = xi+1,j = 255. That is, if the
input image has the pattern in (12.4) centered around (i, j).

yi,j =

1 Pattern in (12.4) exists at (i, j)

0 otherwise

See Figure 12.14 to see the effect of this choice of convolutional layer
on two sample images.

 0 255 0
255 250 255

0 255 0

 Conv 1−→

∗ ∗ ∗
∗ −4 ∗
∗ ∗ ∗

 ReLU−→

∗ ∗ ∗∗ 0 ∗
∗ ∗ ∗


 0 255 0

255 255 255
0 255 0

 Conv 1−→

∗ ∗ ∗
∗ +1 ∗
∗ ∗ ∗

 ReLU−→

∗ ∗ ∗∗ 1 ∗
∗ ∗ ∗



Figure 12.14: The effect of the choice
of first convoluational layer for Exam-
ple 12.2.9 on two sample images. Only
a portion of the images is shown.

convolutional neural network 157

Next, consider the second convolutional layer with a 6× 6 filter
of all weights equal to 10, a bias of −5, and a sigmoid activation
function. The convolution will be applied with no padding, and with
stride 1. The output, before the sigmoid, will be

o =

(
7

∑
i,j=2

10yi,j

)
− 5

Notice that this value is −5 if and only if there is no pixel such that
yi,j = 1 (i. e., the pattern exists at (i, j)). If there is one such pixel, the
output is 5; if there are two, the output is 15. The important thing
is, the output is at least 5 if there is at least one copy of the given
pattern, and otherwise the output is ≤ 0. That is

o =

≥ 5 ∃(i, j) : Pattern in (12.4) exists at (i, j)

−5 otherwise

Finally, when we apply the sigmoid function, the final output of the
model will be

ô = σ(o) =

≥ 0.99 ∃(i, j) : Pattern in (12.4) exists at (i, j)

0.01 otherwise

This is exactly what we wanted in Example 12.2.9.

12.3 Backpropagation for Convolutional Nets

A convolutional neural network is a special case of a feedforward
neural network where we use convolutional layers, instead of fully-
connected layers as in Chapter 11. Therefore, we can apply the
same basic idea of backpropagation so that we can run the gradient
descent algorithm, although the details of the calculation are slightly
different.

The biggest difference is that in a fully-connected layer, each
weight is used exactly once, while in a convolutional layer, each
weight is applied multiple times throughout the input image. 8 This 8 This phenomenon is also known as

weight sharing.makes the computation for the gradient slightly more convoluted.
But the basic idea is the same — identify all paths through which the
corresponding weight affects the output of the model and add up the
amount of effect for each path.

Figure 12.15 shows a portion of a sample neural network where
weight sharing occurs. That is, the same weight w is used between
the following four pairs of nodes: (x1, y1), (x2, y2), (x2, y3), (x3, y4).
If we wanted to find the gradient ∂o/∂w, we need to consider the
four paths that the weight w affects the output: w → yi → o where
1 ≤ i ≤ 4.

158 introduction to machine learning lecture notes for cos 324 at princeton university

x1

x2

x3

y1

y2

y3

y4

· · ·

· · ·

· · ·

· · ·

o

w(1)

w(2)

w(3)

w(4)

Figure 12.15: A sample neural net-
work where weight sharing occurs.
w(1), w(2), w(3), w(4) are the copies of the
same weight w.

What we will do is consider the four copies of the weight w as
separate weights that will be denoted as w(i) where 1 ≤ i ≤ 4. Since
these weights are only used in one place in the layer, we are already
familiar with computing the gradients ∂o/∂w(i). Then we will add
(or pool) these values to get the gradient ∂o/∂w. This works because
we can think of each w(i) as a function of w where w(i) = w. Then by
Chain Rule, we have

∂o
∂w

=
4

∑
i=1

∂o
∂w(i)

· ∂w(i)

∂w
=

4

∑
i=1

∂o
∂w(i)

12.3.1 Deriving Backpropagation Formula for Convolutional Layers

In this subsection, we derive the backpropagation formula for a
convolutional layer. (As in many other places, if your instructor did
not teach it in COS 324, consider this to be advanced reading.)

Recall that in a fully-connected layer (without an activation func-
tion), which computes h⃗k = W(k)h⃗(k−1), the gradient with respect to a
particular weight w(k)

i,j can be simply computed as

∂ℓ

∂w(k)
i,j

=
∂ℓ

∂h(k)i

·
∂h(k)i

∂w(k)
i,j

=
∂ℓ

∂h(k)i

· h(k−1)
j

This is because the weight w(k)
i,j is only used to compute h(k)i out

of all nodes in the next hidden layer. In comparison, consider a
convolutional layer, which computes an output image Y ∈ Rn×n from
an input image X ∈ Rm×m and filter W ∈ R(2k+1)×(2k+1). Notice
that the weight wi,j is used to compute all of the pixels in the output
image. Therefore, we just need to add (or pool) the gradient flow from
each of these paths. The gradient with respect to a particular weight

convolutional neural network 159

wi,j will be

∂ℓ

∂wi,j
=

(
∂ℓ

∂y1,1
· ∂y1,1

∂wi,j
+

∂ℓ

∂y1,2
· ∂y1,2

∂wi,j
+ . . . +

∂ℓ

∂y1,n
· ∂y1,n

∂wi,j

)

+

(
∂ℓ

∂y2,1
· ∂y2,1

∂wi,j
+

∂ℓ

∂y2,2
· ∂y2,2

∂wi,j
+ . . . +

∂ℓ

∂y2,n
· ∂y2,n

∂wi,j

)
+ . . .

+

(
∂ℓ

∂yn,1
· ∂yn,1

∂wi,j
+

∂ℓ

∂yn,2
· ∂yn,2

∂wi,j
+ . . . +

∂ℓ

∂yn,n
· ∂yn,n

∂wi,j

)

Assuming there is zero padding, this can be calculated as

∂ℓ

∂wi,j
=

(
∂ℓ

∂y1,1
· xi+1,j+1 +

∂ℓ

∂y1,2
· xi+1,j+2 + . . . +

∂ℓ

∂y1,n
· xi+1,j+n

)
+

(
∂ℓ

∂y2,1
· xi+2,j+1 +

∂ℓ

∂y2,2
· xi+2,j+2 + . . . +

∂ℓ

∂y2,n
· xi+2,j+n

)
+ . . .

+

(
∂ℓ

∂yn,1
· xi+n,j+1 +

∂ℓ

∂yn,2
· xi+n,j+2 + . . . +

∂ℓ

∂yn,n
· xi+n,j+n

)

Notice that the equation above can be rewritten as

∂ℓ

∂wi,j
= ∑

1≤r,s≤n

∂ℓ

∂yr,s
· xi+r,j+s (12.5)

That is, the Jacobian matrix ∂ℓ/∂W is the output when applying a
convolution filter ∂ℓ/∂Y to the input matrix X.

Similarly, we can try to calculate the Jacobian matrix with respect
to the input matrix X. Each input pixel xi,j is used to calculate the
output pixels yi+r,j+s where −k ≤ r, s ≤ k. The gradient with respect
to a particular input pixel will be

∂ℓ

∂xi,j
=

(
∂ℓ

∂yi−k,j−k
·

∂yi−k,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi−k,j+k
·

∂yi−k,j+k

∂xi,j

)

+

(
∂ℓ

∂yi−k+1,j−k
·

∂yi−k+1,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi−k+1,j+k
·

∂yi−k+1,j+k

∂xi,j

)
+ . . .

+

(
∂ℓ

∂yi+k,j−k
·

∂yi+k,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi+k,j+k
·

∂yi+k,j+k

∂xi,j

)

160 introduction to machine learning lecture notes for cos 324 at princeton university

Assuming zero padding, this is calculated as

∂ℓ

∂xi,j
=

(
∂ℓ

∂yi−k,j−k
· wk,k + . . . +

∂ℓ

∂yi−k,j+k
· wk,−k

)

+

(
∂ℓ

∂yi−k+1,j−k
· wk−1,k + . . . +

∂ℓ

∂yi−k+1,j+k
· wk−1,−k

)
+ . . .

+

(
∂ℓ

∂yi+k,j−k
· w−k,k + . . . +

∂ℓ

∂yi+k,j+k
· w−k,−k

)

which can be rewritten as

∂ℓ

∂xi,j
= ∑
−k≤r,s≤k

∂ℓ

∂yi+r,j+s
· w−r,−s (12.6)

That is, the Jacobian matrix ∂ℓ/∂X is the output when applying the
horizontally and vertically inverted image of W as the convolutional
filter to the input matrix ∂ℓ/∂Y.

12.4 CNN in Python Programming

In this section, we discuss how to write Python code to implement
Convolutional Neural Networks (CNN). As usual, we use the numpy
package to speed up computation and the torch package to easily
design and train the neural network. We also introduce the torchvision
package:

• torchvision: This package focuses on computer vision applications
and is integrated with the broader PyTorch framework. It provides
access to pre-built models, popular datasets, and a variety of
image transform capabilities. 9 9 Documentation is available at https:

//pytorch.org/vision/stable/index.

htmlThe following code sample implements a CNN and trains it on a
single image.

import necessary packages

import random

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

set random seeds to ensure reproducibility

torch.manual_seed(0)

np.random.seed(0)

random.seed(0)

https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html

convolutional neural network 161

load CIFAR10 data

transform = transforms.Compose(

[transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_data = torchvision.datasets.CIFAR10(root=’./data’, train=True,

download=True, transform=transform)

test_data = torchvision.datasets.CIFAR10(root=’./data’, train=False,

transform=transform)

helps iterate through the train/test data in batches

train_loader = DataLoader(dataset=train_data, batch_size=8, shuffle=True,

num_workers=0)

test_loader = DataLoader(dataset=test_data, batch_size=8, shuffle=False,

num_workers=0)

define the CNN architecture

class ConvNet(nn.Module):

def __init__(self):

super(ConvNet, self).__init__()

Conv2d takes # input channels, # output channels, kernel size

self.conv1 = nn.Conv2d(3, 3, 5)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(3, 16, 5)

self.pool2 = nn.AvgPool2d(2, 2)

self.fc1 = nn.Linear(16*5*5, 120)

self.fc2 = nn.Linear(120, 10)

def forward(self, x):

x = F.relu(self.conv1(x))

x = self.pool1(x)

x = F.relu(self.conv2(x))

x = self.pool2(x)

x = x.view(-1, 16*5*5)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

extract one image from the dataset

images, labels = next(iter(train_loader))

image = images[0].unsqueeze(0)

forward propagation

net = ConvNet()

output = net(image)

choose the optimization technique to invoke

optimizer = torch.optim.SGD(net.parameters(), lr=0.01)

backpropagation

loss = torch.norm(output - torch.ones(output.shape[1]))**2

loss.backward()

optimizer.step()

optimizer.zero_grad()

As usual, we start by importing packages.

import random

import numpy as np

import torch

import torch.nn as nn

162 introduction to machine learning lecture notes for cos 324 at princeton university

import torch.nn.functional as F

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

The DataLoader class helps iterate through a dataset in batches.
Next, we fix all random seeds to ensure reproducibility.

torch.manual_seed(0)

np.random.seed(0)

random.seed(0)

Recall that programming languages on a classical computer can only
implement pseudorandom methods, which always produce the same
result for a given seed.

Then we load the CIFAR-10 dataset.

transform = transforms.Compose(

[transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_data = torchvision.datasets.CIFAR10(root=’./data’, train=True,

download=True, transform=transform)

test_data = torchvision.datasets.CIFAR10(root=’./data’, train=False,

transform=transform)

The CIFAR-10 dataset contains simple images of a single object, and
the images are labeled with the category of the objects they contain.
Note that we normalize the dataset with a mean of 0.5 and standard
deviation of 0.5 per color channel. Figure 12.16 shows a sampling of
images from the dataset after the normalization.

Figure 12.16: Sample images from the
CIFAR10 dataset.

Next we create DataLoader objects to help iterate through the
dataset in batches. Each batch will consist of 8 images and 8 labels.

train_loader = DataLoader(dataset=train_data, batch_size=8, shuffle=True,

num_workers=0)

test_loader = DataLoader(dataset=test_data, batch_size=8, shuffle=False,

num_workers=0)

Then we define our CNN architecture in the ConvNet class.

class ConvNet(nn.Module):

def __init__(self):

super(ConvNet, self).__init__()

conv2d takes # input channels, # output channels, kernel size

self.conv1 = nn.Conv2d(3, 3, 5)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(3, 16, 5)

self.pool2 = nn.AvgPool2d(2, 2)

convolutional neural network 163

self.fc1 = nn.Linear(16*5*5, 120)

self.fc2 = nn.Linear(120, 10)

def forward(self, x):

x = F.relu(self.conv1(x))

x = self.pool1(x)

x = F.relu(self.conv2(x))

x = self.pool2(x)

x = x.view(-1, 16*5*5)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

Just like the FFNN code from the previous chapter, we define all the
layers and activations we are going to use in the constructor. Note
that in addition to instances of the nn.Linear class and the nn.ReLU
class, we also make use of classes like nn.Conv2d and nn.MaxPool2d
which are specifically designed for CNNs.

We extract one training image with the following code.

images, labels = next(iter(train_loader))

image = images[0].unsqueeze(0)

The unsqueeze() function adds one dimension to the training data.
This is called a batch dimension. Normally, we would run the training
in batches, and the size of the data along the batch dimension will be
equal to the number of images in each batch. Here, we only use one
image for the sake of exposition.

We can now run forward propagation on a sample image with the
code below.

net = ConvNet()

output = net(image)

We then implement the squared error loss. Alternatively, we could
have chosen the cross-entropy loss or any other valid loss function.

loss = torch.norm(output - torch.ones(output.shape[1]))**2

Next, we calculate the gradients of the loss with the following line of
code

loss.backward()

and update each of the parameters according to the Gradient Descent
algorithm with the following line.

optimizer.step()

Finally, we reset the values of the gradients to zero with the following
code.

optimizer.zero_grad()

164 introduction to machine learning lecture notes for cos 324 at princeton university

Recall as discussed in the previous chapter that failing to do so
will cause unintended training during subsequent iterations of
backpropagation. Here, we called the zero_grad() function at the end
of one iteration of backpropagation, but it may be a good idea to
call this function right before calling backward(), just in case there
are already gradients in the buffer before program execution (e.g., if
someone was working with the model beforehand in the interpreter).

In this section, we only showed how to run forward propagation
and backpropagation on a single data point. In general, we train the
model on the entire dataset multiple times. A single pass over the
entire dataset is called an epoch.

