
11
Feedforward Neural Network and Backpropagation

Feedforward Neural Networks (FFNNs) are perhaps the simplest kind of
deep nets and are characterized by the following properties:

• There are nodes connected with no cycles.

• Nodes are partitioned into layers numbered 1 to k for some k. The
nodes in the first layer receive input of the model and output some
values. Then the nodes in layer i + 1 receive output of the nodes
in layer i as their input and output some values. The output of the
model can be computed with the output of the nodes in layer k.

• No outputs are passed back to lower layers.

Now, we only consider fully-connected layers — a special case of a
layer in feedforward neural networks.

Definition 11.0.1 (Fully-Connected Layer). A fully-connected layer
is a neural network layer in which all the nodes from one layer are fully
connected to every node of the next layer.

Note that not all layers of feedforward neural networks are nec-
essarily fully-connected (a typical case is a Convolutional Neural
Network, which we will explore in Chapter 12). However, feedfor-
ward neural networks with fully-connected layers are very common
and also easy to implement.

11.1 Forward Propagation: An Example

Forward propagation refers to how the network converts a specific
input to the output, specifically the calculation and storage of inter-
mediate variables from the input layer to the output layer. In this
section, we use concrete examples to motivate the topic. We will pro-
vide a more general formula in the next section. Readers who have a
stronger background in math may feel to skip this section altogether.

126 introduction to machine learning lecture notes for cos 324 at princeton university

11.1.1 One Output Node

We start with the network in Figure 11.1 as an example. The network
receives three inputs x1, x2, x3 and has a first hidden layer with two
nodes h(1)1 , h(1)2 , a second hidden layer with two nodes h(2)1 , h(2)2 , and
a final output layer with one node o. We assign the ReLU activa-
tion function to the hidden units, and define weights as shown in
Figure 11.1.

Figure 11.1: A sample feedforward
neural network with two hidden layers
and one output node.

The two hidden nodes in the first hidden layer are characterized
by the following equations:

h(1)1 = ReLU(2x1 − 3x2)

h(1)2 = ReLU(−x1 + x2 + 2x3)
(11.1)

and the two hidden nodes in the second hidden layer are character-
ized by the following equations:

h(2)1 = ReLU(h(1)1 + 2h(1)2)

h(2)2 = ReLU(2h(1)1 − 2h(1)2)
(11.2)

and the output node is characterized by the following equation:

o = −h(2)1 + 2h(2)2

Therefore, if we know the input values x1, x2, x3, we can first calcu-
late the values h(1)1 , h(1)2 , then using these values, calculate h(2)1 , h(2)2 ,
and finally using these values, we can calculate the output o of the
network.

Example 11.1.1. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1), we can calculate the first hidden layer as

h(1)1 = ReLU(2− 3) = 0

h(1)2 = ReLU(−1 + 1 + 2) = 2

feedforward neural network and backpropagation 127

and the second hidden layer as

h(2)1 = ReLU(0 + 2 · 2) = 4

h(2)2 = ReLU(0− 2 · 2) = 0

and the output as

o = −4 + 2 · 0 = −4

11.1.2 Multiple Output Nodes

Networks can have more than one output node. An example is the
network in Figure 11.2.

Figure 11.2: A sample feedforward
neural network with two hidden layers
and three output nodes.

The networks in Figure 11.1 and Figure 11.2 are the same except
for the output layer; the former has one output node, while the latter
has three output nodes. Now the output values of the network in
Figure 11.2 can be calculated as:

o1 = −h(2)1 + 2h(2)2

o2 = 2h(2)1 + h(2)2

o3 = h(2)1 + 2h(2)2

(11.3)

Recall from the previous Chapter 10 that a FFNN with multiple
output nodes is used for multi-class classfication. After the naive
output values are calculated, the output nodes will use the softmax
activation function to transform the values into the probabilities for
each of the three classes. That is, the probability for predicting each
class will be calculated as:

ô1 = so f tmax(o1, o2, o3)1

ô2 = so f tmax(o1, o2, o3)2

ô3 = so f tmax(o1, o2, o3)3

(11.4)

128 introduction to machine learning lecture notes for cos 324 at princeton university

Example 11.1.2. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1), we can calculate the output layer as

o1 = −4 + 0 = −4

o2 = 2 · 4 + 0 = 8

o3 = 4 + 0 = 4

and the probabilities of each class as

ô1 = so f tmax(−4, 8, 4)1 =
e−4

e−4 + e8 + e4 ≃ 0.00

ô2 = so f tmax(−4, 8, 4)2 =
e8

e−4 + e8 + e4 ≃ 0.98

ô3 = so f tmax(−4, 8, 4)3 =
e4

e−4 + e8 + e4 ≃ 0.02

11.1.3 Matrix Notation

Let w(1)
i,j be the weight between the i-th node h(1)i in the first hidden

layer and the j-th input xj. Then (11.1) can be rewritten as

h(1)1 = ReLU(w(1)
1,1 x1 + w(1)

1,2 x2 + w(1)
1,3 x3)

h(1)2 = ReLU(w(1)
2,1 x1 + w(1)

2,2 x2 + w(1)
2,3 x3)

Notice that if we set x⃗ = (x1, x2, x3) ∈ R3 and h⃗(1) = (h(1)1 , h(1)2) ∈ R2

and define a matrix W(1) ∈ R2×3 where its (i, j) entry is w(1)
i,j , then we

can further rewrite (11.1) as 1 1 Here we interpret the vectors x⃗, h⃗(1) as
column vectors, or equivalently a 3× 1
matrix and a 2× 1 matrix respectively.
This will be a convention throughout
this chapter.

h⃗(1) = ReLU
(

W(1)x⃗
)

(11.5)

where the ReLU function is applied element-wise.
Similarly, if we let w(2)

i,j be the weight between the i-th node h(2)i

in the second hidden layer and the j-th node h(1)j in the first hidden
layer, (11.2) can be rewritten as

h(2)1 = ReLU(w(2)
1,1 h(1)1 + w(2)

1,2 h(1)2)

h(2)2 = ReLU(w(2)
2,1 h(1)1 + w(2)

2,2 h(1)2)

or in a matrix notation as

h⃗(2) = ReLU
(

W(2)h⃗(1)
)

(11.6)

where h⃗(2) = (h(2)1 , h(2)2) ∈ R2 and W(2) ∈ R2×2 is a matrix whose

(i, j) entry is w(2)
i,j .

feedforward neural network and backpropagation 129

Next, if we let w(o)
i,j be the weight between the i-th output node oi

(before softmax) and the j-th node h(2)j in the second hidden layer,
(11.3) can be rewritten as

o1 = w(o)
1,1 h(2)1 + w(o)

1,2 h(2)2

o2 = w(o)
2,1 h(2)1 + w(o)

2,2 h(2)2

o3 = w(o)
3,1 h(2)1 + w(o)

3,2 h(2)2

or in a matrix notation as

o⃗ = W(o)h⃗(2) (11.7)

where o⃗ = (o1, o2, o3) ∈ R3 and W(o) ∈ R3×2 is a matrix whose (i, j)
entry is w(o)

i,j .

Finally, if we let ⃗̂o = (ô1, ô2, ô3) ∈ R3, then (11.4) can be rewritten
as

⃗̂o = so f tmax(⃗o) (11.8)

We summarize the results above into the following matrix equations

h⃗(1) = ReLU
(

W(1)⃗x
)

h⃗(2) = ReLU
(

W(2)h⃗(1)
)

o⃗ = W(o)h⃗(2)

⃗̂o = so f tmax(⃗o)

(11.9)

Example 11.1.3. If the provided input vector to the neural network in
Figure 11.2 is x⃗ = (1, 1, 1), we can calculate the first hidden layer as

h⃗(1) = W(1)x⃗ = ReLU

[2 −3 0
−1 1 2

] 1
1
1


 =

[
0
2

]

and the second hidden layer as

h⃗(2) = W(2)h⃗(1) = ReLU

([
1 2
2 −2

] [
0
2

])
=

[
4
0

]

and the output layer o⃗ (before the softmax) as

o⃗ = W(o)h⃗(2) =

−1 2
2 1
1 2

 [4
0

]
=

−4
8
4


The probability distribution ⃗̂o of the three classes can then be calculated as

⃗̂o = so f tmax(⃗o) =
(

e−4

e−4 + e8 + e4 ,
e8

e−4 + e8 + e4 ,
e4

e−4 + e8 + e4

)

130 introduction to machine learning lecture notes for cos 324 at princeton university

11.2 Forward Propagation: The General Case

We now consider an arbitrary feedforward neural network with L ≥ 1
layers. Let x⃗ ∈ Rd0 be the vector of d0 inputs to the network. For
k = 1, 2, . . . , L, let h⃗(k) = (h(k)1 , h(k)2 , . . . , h(k)dk

) ∈ Rdk represent the dk

outputs (values of each of the nodes) of the k-th layer. The L-th layer
is also known as the output layer, and we alternatively denote d0 = din

and dL = dout to emphasize that they are respectively the number of
inputs and the number of output nodes. Each of the k-th layer where
1 ≤ k ≤ L− 1 is considered a hidden layer, but for convenience, we may
abuse notation and refer to the input/output layers as respectively
the 0-th and L-th hidden layers as well.

Additionally, we consider W(k) ∈ Rdk×dk−1 to represent the weights
for the k-th hidden layer. Its (i, j) entry is the weight between the
i-th node h(k)i of the k-th hidden layer and the j-th node h(k−1)

j of the

(k− 1)-th hidden layer. We also alternatively denote W(L) = W(o) to
emphasize that it represents the weights for the output layer.

Finally, let f (k) be the nonlinear activation function for layer k.
For instance, consider the output layer. If dout = 1 (i. e., there is one
output node), we can assume that f (L) is the identity function. On
the other hand, if dout > 1 (i. e., there are multiple output nodes), we
can assume that f (L) is the softmax function. It is also possible to use
different activation functions for each layer.

With all these new notations in mind, we can express the nodes of
layer k as:

h⃗(k) = f (k)(W(k)h⃗(k−1))

for each k = 1, 2, . . . , L.
If dout = 1, we let o = W(L)h⃗L−1 denote the final output of the

model. If dout > 1, we let o⃗ = W(L)h⃗L−1 denote the output layer
before the softmax and ⃗̂o = f (L) (⃗o) denote the output layer after the
softmax.

11.2.1 Number of Weights

We now briefly consider the number of weights in a feedforward
network. There are din · d1 weights (or variables) for the first hidden
layer. Similarly, there are d1 · d2 weights for the second hidden layer. In

total, the number of weights is
L−1
∑

i=0
di · di+1.

Example 11.2.1. The number of weights in the model in Figure 11.2 can be
calculated as

3× 2 + 2× 2 + 2× 3 = 16

feedforward neural network and backpropagation 131

11.2.2 What If We Remove Nonlinearity?

If we removed the nonlinear activation function ReLU in our model
from (11.9), we would have the following forward propagation equa-
tions:

h⃗(1) = W(1)⃗x
h⃗(2) = W(2)h⃗(1)

o⃗ = W(o)h⃗(2)

⃗̂o = so f tmax(⃗o)

Notice that if we set W′ = W(o)W(2)W(1) ∈ R3×3, then

⃗̂o = so f tmax(W′⃗x)

We have thus reduced our neural net to a standard multi-classification
logistic regression model! As we have discussed the limitation of lin-
ear models earlier, this indicates the importance of having nonlinear
activation functions between layers.

11.2.3 Training Loss

Just like we have defined a loss function for ML models so far, we
also define an appropriate loss function for neural networks, where
the objective of the network becomes finding a set of weights that
minimize the loss. While there are many different definitions of loss
functions, here we present two — one that is more appropriate when
there is a single output node, and another that is more appropriate
for multi-class classification.

When there is only one scalar node in the output layer (i. e., dout =

1), we can use a squared error loss, similar to the least squares loss
from (1.4):

∑
(⃗x,y)∈D

(y− o)2 (Squared Error Loss)

where x⃗ ∈ Rdin is the input vector, y is its gold value (i. e., actual value
in the training data), and o = W(o)h⃗(L−1) is the final output (i. e.,
prediction) of the neural network.

Example 11.2.2. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1) and the training output is y = 0, we can
calculate the squared error loss as

(y− o)2 = (0− (−4))2 = 16

When there are multiple nodes in the output layer (e.g., for multi-
class classification), we can use a loss function that is similar to the
logistic loss. Recall that in logistic regression, we defined the logistic

132 introduction to machine learning lecture notes for cos 324 at princeton university

loss as a sum of log loss over a set of data points:

∑
(⃗x,y)∈D

− log Pr[label y on input x⃗] (4.5 revisited)

where y ∈ {−1, 1} denotes the gold label. For neural networks, we
can analogously define the cross-entropy loss:

∑
(⃗x,y)∈D

− log ôy (Cross-Entropy Loss)

where y ∈ {1, . . . , dout} denotes the gold label, and ôy denotes the
probability that the model assigns to class y — that is, the y-th coordi-
nate of the output vector ⃗̂o = so f tmax(⃗o) after applying the softmax
function.

Example 11.2.3. If the provided input vector to the neural network in
Figure 11.2 is x⃗ = (1, 1, 1) and the training output is y = 2, we can
calculate the cross-entropy loss for this data point as

− log ôy = − log
e4

e−4 + e8 + e4 ≃ 4.02

11.3 Backpropagation: An Example

Just like in previous ML models we have learned, the process of
training a neural network model involves three steps:

1. Defining an an appropriate loss function.

2. Calculating the gradient of the loss with respect to the training
data and the model parameters.

3. Iteratively updating the parameters via the gradient descent
algorithm.

But once a neural network grows in size, the second step of cal-
culating the gradients starts to become a problem. Naively trying to
calculate each of the gradients separately becomes inefficient. Instead,
Backpropagation 2 is an efficient way to calculate the gradients with 2 Reference: https://www.nature.com/

articles/323533a0respect to the network parameters such that the number of steps for
the computation is linear in the size of the neural network.

The key idea is to perform the computation in a very specific
sequence — from the output layer to the input layer. By the Chain
Rule, we can use the already computed gradient value of a node in a
higher layer in the computation of the gradient of a node in a lower
layer. This way, the gradient values propagate back from the top layer
to the bottom layer.

https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

feedforward neural network and backpropagation 133

11.3.1 The Delta Method: Reasoning from First Principles

The main goal of backpropagation is to compute the partial deriva-
tive ∂ f /∂w where f is the loss and w is the weight of an edge. This
will allow us to apply the gradient descent algorithm and appro-
priately update the weight w. Students often find backpropagation
a confusing idea, but it is actually just a simple application of the
Chain Rule in multivariate calculus.

In this subsection, we motivate the topic with the Delta Method,
which is an intuitive way to compute ∂ f /∂w. We perturb a weight w
by a small amount ∆ and measure how much the output changes. In
doing so, we also measure how the rest of the network changes. As
we will see later, the process of computing the partial derivative of
the form ∂ f /∂w requires us to also compute the partial derivative of
the form ∂ f /∂h where h is the value at a node.

Readers who are familiar with the Chain Rule can quickly browse
through the rest of this subsection.

Example 11.3.1. Consider the model from Figure 11.2 but now with the
inputs x⃗ = (3, 1, 2). We use the same notation for the nodes and the weights
that we used throughout Section 11.1. The goal of this simple example is to
illustrate what the derivatives mean.

Figure 11.3: The model from Figure 11.2
with inputs x⃗ = (3, 1, 2).

Suppose we want to take the partial derivative of first output node o1

with respect to the weight w(1)
2,2 (i.e., the weight on the edge between the

second input x2 and the second node h(1)2 of first hidden layer). This is

denoted as ∂o1/∂w(1)
2,2 . Its definition involves considering how changing

w(1)
2,2 by an infinitesimal amount ∆ changes o1, whose current value is −3.

Adding ∆ to w(1)
2,2 will change the values of the first hidden layer to

h(1)1 = ReLU(2 · 3 + (−3) · 1 + 0 · 2) = 3

h(1)2 = ReLU((−1) · 3 + (1 + ∆) · 1 + 2 · 2) = 2 + ∆

Letting ∆→ 0, we see that the rate of change of h(1)1 and h(1)2 with respect to

134 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 11.4: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2 is

changed by a small number ∆, the first
hidden layer is also affected.

change of w(1)
2,2 is 0 and 1 respectively. In more formal terms, ∂h(1)1 /∂w(1)

2,2 =

0 and ∂h(1)2 /∂w(1)
2,2 = 1.

Figure 11.5: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2

is changed by a small number ∆, the
second hidden layer is also affected.

Using the updated values of the first hidden layer, the second hidden layer
will be calculated as

h(2)1 = ReLU(1 · 3 + 2 · (2 + ∆)) = 7 + 2∆

h(2)2 = ReLU(2 · 3 + (−2) · (2 + ∆)) = 2− 2∆

This shows that the rate of change of h(2)1 and h(2)2 with respect to change of

w(1)
2,2 is 2 and −2 respectively.
Finally the output layer can now be calculated as

o1 = (−1) · (7 + 2∆) + 2 · (2− 2∆) = −3− 6∆

o2 = 2 · (7 + 2∆) + 1 · (2− 2∆) = 16 + 2∆

o3 = 1 · (7 + 2∆) + 2 · (2− 2∆) = 11− 2∆

This shows that the rate of change of o1 with respect to change of w(1)
2,2 is −6.

Example 11.3.2. Now we consider the meaning of ∂o1/∂h(2)1 : how changing

the value of h(2)1 by an infinitesimal ∆ affects o1. Note that this is a thought

feedforward neural network and backpropagation 135

Figure 11.6: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2

is changed by a small number ∆, the
output layer is also affected.

experiment that does not correspond to a change that is possible if the net
were a physical object constructed of nodes and wires — the value of h(2)1 is
completely decided by the previous layers and cannot be changed in isolation
without touching the previous layers. However, treating these values as
variables, it is possible to put on a calculus hat and and think about the rate
of change of one with respect to the other.

If only the value of h(2)1 is changed from 7 to 7 + ∆ in Figure 11.3, then o1

can be calculated as

o1 = (−1) · (7 + ∆) + 2 · 2 = −3− ∆

which shows that ∂o1/∂h(2)1 = −1.

Problem 11.3.3. Following the calculations in Example 11.3.1 and Ex-
ample 11.3.2, calculate ∂o1/∂h(2)2 , ∂h(2)1 /∂w(1)

2,2 , and ∂h(2)2 /∂w(1)
2,2 . Verify

that
∂o1

∂w(1)
2,2

=
∂o1

∂h(2)1

·
∂h(2)1

∂w(1)
2,2

+
∂o1

∂h(2)2

·
∂h(2)2

∂w(1)
2,2

Problem 11.3.4. Following the calculations in Example 11.3.1 and Exam-
ple 11.3.2, calculate ∂h(2)1 /∂h(1)2 , ∂h(2)2 /∂h(1)2 , and ∂h(1)2 /∂w(1)

2,2 . Verify that

∂o1

∂w(1)
2,2

=
∂o1

∂h(2)1

·
∂h(2)1

∂h(1)2

·
∂h(1)2

∂w(1)
2,2

+
∂o1

∂h(2)2

·
∂h(2)2

∂h(1)2

·
∂h(1)2

∂w(1)
2,2

(11.10)

Some readers may notice that (11.10) is just the result of the Chain
Rule in multivariable calculus. It shows that the effect of w(1)

2,2 on o1 is
the sum of its effect through all possible paths that the values prop-
agate through the network, and the amount of effect for each path
can be calculated by multiplying the appropriate partial derivative
between each layer.

In this section, we calculated by hand one partial derivative
∂o1/∂w(1)

2,2 . But in general, to compute the loss gradient, we see below
that we want to calculate the partial derivative of each output node

136 introduction to machine learning lecture notes for cos 324 at princeton university

oi with respect to each weight in the network. Manually applying the
Chain Rule for each partial derivative as in (11.10) is too inefficient.3 3 Putting on your COS 226 hat, you can

check that the computational cost of
this naive method scales quadratically
in the size of the network.

Instead, in the next section, we will learn how to utilize matrix opera-
tions to combine the computation for multiple partial derivatives into
one process.4 4 This efficiency holds even without

taking into account the fact that today’s
GPUs are optimized for fast matrix
operations.11.4 Backpropagation: The General Case

11.4.1 Jacobian Matrix

Suppose some vector y⃗ = (y1, y2, . . . , ym) ∈ Rm is a function of
x⃗ = (x1, x2, . . . , xn) ∈ Rn — that is, there is a mapping f : Rn → Rm

such that y⃗ = f (⃗x), or equivalently, there are m functions fi : Rn → R

for each i = 1, 2, . . . , m such that yi = fi (⃗x).
Then the Jacobian matrix of y⃗ with respect to x⃗, denoted as J(⃗y, x⃗),

is an m× n matrix whose (i, j) entry is the partial derivative ∂yi/∂xj.
Note that each entry of this matrix is itself a function of x⃗. A bit
confusingly, a Jacobian matrix is also often denoted as ∂⃗y/∂⃗x when it
is clear from the context that x⃗, y⃗ are vectors and hence this object is
not a partial derivative or gradient. 5 5 Note that the i-th row of the Jacobian

matrix contains the gradient of yi , i. e.
the gradient of the i-th coordinate of y⃗.

The mathematical interpretation of the Jacobian matrix is that if
we change x⃗ such that each coordinate xi is updated to xi + δi for an
infinitesimal value δi, then the output y⃗ changes to y⃗ + J(⃗y, x⃗)⃗δ.

Example 11.4.1. Suppose y⃗ is a linear function of x⃗ — that is, there exists
a matrix A ∈ Rm×n such that y⃗ = A⃗x. Then notice that yi, the i-th
coordinate of y⃗, can be expressed as

yi = Ai,∗⃗x = Ai,1x1 + Ai,2x2 + . . . + Ai,nxn

Notice that the partial derivative ∂yi/∂xj is equal to Aij. This means that
the (i, j) entry of the Jacobian matrix is the (i, j) entry of the matrix A, and
hence J(⃗y, x⃗) = A.

Problem 11.4.2. If y⃗ ∈ R2 is a function of x⃗ ∈ R3 such that

y1 = 2x1 − x2 + 3x3

y2 = −x1 + 2x3

then what is the Jacobian matrix J(⃗y, x⃗)?

Example 11.4.3. If x⃗ ∈ Rn and y⃗ = ReLU(⃗x) ∈ Rn, then notice that

∂yi
∂xi

=

1 xi > 0

0 otherwise

We can also denote this with an indicator function 1(xi > 0). Also for any
j ̸= i, we see that ∂yi/∂xj = 0. Therefore, the Jacobian matrix J(⃗y, x⃗) is a

feedforward neural network and backpropagation 137

diagonal matrix whose entry down the diagonal is 1(xi > 0); that is

J(⃗y, x⃗) = diag(1(⃗x > 0))

where we take the indicator function element-wise to the vector x⃗.

Definition 11.4.4 (Jacobian Chain Rule). Suppose vector z⃗ ∈ Rk is a
function of y⃗ ∈ Rm and y⃗ is a function of x⃗ ∈ Rn, then by the Chain Rule,
the Jacobian matrix J(⃗z, x⃗) ∈ Rk×n is represented as the matrix product:

J(⃗z, x⃗) = J(⃗z, y⃗)J(⃗y, x⃗) (11.11)

In context of the feedforward neural network, each hidden layer is
a function of the previous layer. Specifically, vector of activations of a
hidden layer is a function of the vector of activations of the previous
layer as well as of the trainable weights within the layer.

Example 11.4.5 (Gradient calculation for a single layer with ReLU’s).
If x⃗ ∈ Rn, A ∈ Rm×n, y⃗ = A⃗x ∈ Rm and z⃗ = ReLU(⃗y) ∈ Rm, then the
Jacobian matrix J(⃗z, x⃗) can be calculated as

J(⃗z, x⃗) = J(⃗z, y⃗)J(⃗y, x⃗) = diag(1(A⃗x > 0))A

11.4.2 Backpropagation — Efficiency Using Jacobian Viewpoint

Now we return to backpropagation, and show how the Jacobian
viewpoint allows computing the gradient of the loss (with respect to
network parameters) with a number of mathematical operations (i.
e., additions and multiplications) proportional to the size of the fully
connected net.

Recall that we want to find the weights W(1), W(2), . . . , W(o) that
minimize the cross-entropy loss ℓ. To apply the standard/stochastic
gradient descent algorithm, we need to find the partial derivative

∂ℓ

∂W(k)
i,j

of the loss function with respect to each weight W(k)
i,j of each

layer k.
To simplify notations, we introduce a new matrix ∂ℓ

∂W(k) which has

the same dimensions as W(k) (e.g., ∂ℓ
∂W(1) ∈ R2×3 in Figure 11.2) and

the (i, j) entry of the matrix is:(
∂ℓ

∂W(k)

)
i,j
=

∂ℓ

∂W(k)
i,j

(11.12)

for any layer k. The matrix ∂ℓ
∂W(k) will be called the gradient with

respect to the weights of the k-th layer. 6 Now the update rule for the 6 Alternatively, you can think of flat-
tening W(k) into a single vector, then
finding the Jacobian matrix ∂ℓ/∂W(k),
and later converting it back to a matrix
form.

gradient descent algorithm can be written as the following:

W(k) → W(k) − η · ∂ℓ

∂W(k)
(11.13)

138 introduction to machine learning lecture notes for cos 324 at princeton university

where η is the learning rate. Now the question remains as how to
calculate these gradients. As the name “backpropagation” suggests,
we will first compute the gradient of the loss ℓ with respect to the
output nodes; we then inductively compute the gradient for the
previous layers, until we reach the input layer.

1. Output Layer: First recall that the cross-entropy loss due to one
data point is

ℓ = − log

 eoy

dout
∑

i=1
eoi


= − log(eoy) + log

(
dout

∑
i=1

eoi

)

= −oy + log

(
dout

∑
i=1

eoi

)

where y ∈ {1, 2, . . . , dout} is the ground truth value. Therefore, the
gradient with respect to the output layer is

∂ℓ

∂oi 1≤i≤dout

=

−1 + ôi y = i

ôi y ̸= i

To simplify notations, we introduce a one-hot encoding vector e⃗y, which
has 1 only at the y-th coordinate and 0 everywhere else. Then, we can
rewrite the equation above as: 7 7 Note that ∂ℓ/∂⃗o, the term on the

left hand side, is a Jacobian matrix in
R1×dout . But ⃗̂o and e⃗y, the terms on
the right hand side, are both column
vectors, or equivalently a dout × 1 matrix.
We resolve the problem by taking the
transpose.

∂ℓ

∂⃗o
=
(⃗

ô− e⃗y

)⊺
∈ R1×dout (11.14)

This is the Jacobian matrix of the loss ℓ with respect to the output
layer o⃗.

2. Jacobian With Respect To Hidden Layer: We first compute ∂ℓ/∂⃗h(L−1),
the Jacobian matrix with respect to the last hidden layer before the
output layer. Since o⃗ = W(o)h⃗(L−1), we can apply the result from
Example 11.4.1 and get

∂ℓ

∂⃗h(L−1)
=

∂ℓ

∂⃗o
J(⃗o, h⃗(L−1))

=
∂ℓ

∂⃗o
W(o) (11.15)

Now as an inductive hypothesis, assume that we have already com-
puted the gradient (or Jacobian matrix) ∂ℓ/∂⃗h(k+1). We now compute

feedforward neural network and backpropagation 139

∂ℓ/∂⃗h(k) using the result from Example 11.4.5.

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
J(⃗h(k+1), h⃗(k))

=
∂ℓ

∂⃗h(k+1)
diag(1(W(k+1)h⃗(k) > 0))W(k+1) (11.16)

3. Gradient With Respect to Weights: We first compute ∂ℓ/∂W(o), the
gradients with respect to the weights of the output layer. Notice that
a particular weight w(o)

i,j is only used in computing oi out of all output
nodes:

oi = w(o)
i,1 h(L−1)

1 + . . . + w(o)
i,j h(L−1)

j + . . . + w(o)
i,dL−1

h(L−1)
dL−1

Therefore, the gradient with respect to w(o)
i,j can be calculated as

∂ℓ

∂w(o)
i,j

=
∂ℓ

∂oi
· ∂oi

∂w(o)
i,j

=
∂ℓ

∂oi
· h(L−1)

j

We can combine these results into the following matrix form

∂ℓ

∂W(o)
=

(
∂ℓ

∂⃗o

)⊺ (
h⃗(L−1)

)⊺
(11.17)

Now as an inductive hypothesis, assume that we have already
computed the gradient (or Jacobian) ∂ℓ/∂⃗h(k). We now compute
∂ℓ/∂W(k).

To do this, we introduce an intermediate variable z⃗(k) = W(k)h⃗(k−1)

such that h⃗(k) = ReLU(⃗z(k)). Then the gradient with respect to a par-
ticular weight w(k)

i,j can be calculated as

∂ℓ

∂w(k)
i,j

=
∂ℓ

∂z(k)i

·
∂z(k)i

∂w(k)
i,j

=
∂ℓ

∂z(k)i

· h(k−1)
j

We can combine these results into the following matrix form

∂ℓ

∂W(k)
=

(
∂ℓ

∂⃗z(k)

)⊺ (
h⃗(k−1)

)⊺
=

(
∂ℓ

∂⃗h(k)
J(⃗h(k), z⃗(k))

)⊺ (
h⃗(k−1)

)⊺
=
(

J(⃗h(k), z⃗(k))
)⊺ (∂ℓ

∂⃗h(k)

)⊺ (
h⃗(k−1)

)⊺
= diag(1(W(k)h⃗(k−1) > 0))

(
∂ℓ

∂⃗h(k)

)⊺ (
h⃗(k−1)

)⊺
(11.18)

4. Full Backpropagation Process We summarize the results above into
the following four steps:

140 introduction to machine learning lecture notes for cos 324 at princeton university

1. Compute the Jacobian matrix with respect to the output layer,
∂ℓ
∂⃗o ∈ R1×dout :

∂ℓ

∂⃗o
=
(⃗

ô− e⃗y

)⊺
((11.14) revisited)

2. Compute the Jacobian matrix with respect to the last hidden layer,
∂ℓ

∂⃗h(L−1) ∈ R1×dL−1 :

∂ℓ

∂⃗h(L−1)
=

∂ℓ

∂⃗o
W(o) ((11.15) revisited)

Then, compute the gradient with respect to the output weights,
∂ℓ

∂W(o) ∈ Rdout×dL−1 :

∂ℓ

∂W(o)
=

(
∂ℓ

∂⃗o

)⊺ (
h⃗(L−1)

)⊺
((11.17) revisited)

3. For each successive layer k, calculate the Jacobian matrix with
respect to the k-th hidden layer ∂ℓ

∂⃗h(k) ∈ R1×dk :

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
diag(1(W(k+1)h⃗(k) > 0))W(k+1) ((11.16) revisited)

Next, compute the gradient with respect to the (k + 1)-th hidden
layer weights ∂ℓ

∂W(k+1) ∈ Rdk+1×dk :

∂ℓ

∂W(k+1)
= diag(1(W(k+1)h⃗(k) > 0))

(
∂ℓ

∂⃗h(k+1)

)⊺ (
h⃗(k)

)⊺
((11.18) revisited)

4. Repeat Step 3 until we reach the input layer.

Note that these instructions are based on a model that adopts the
cross-entropy loss and the ReLU activation function. Using alterna-
tive losses and/or activation functions would result in a similar form,
although the actual derivatives may be slightly different.

Problem 11.4.6. (i) Show that if A is an m× n matrix and h⃗ ∈ Rn then
computing Ah⃗ requires mn multiplications and m vector additions. (ii)
Using the previous part, argue that the number of arithmetic operations
(additions or multiplications) in backpropagation algorithm on a fully
connected net with ReLU activations is proportional to the number of
parameters in the net.

While the above calculation is in line with your basic algorithmic
training, it doesn’t exactly describe running time in modern ML
environments with GPUs, since certain operations are parallelized,
and compilers are optimized to run backpropagation as fast as
possible.

feedforward neural network and backpropagation 141

11.4.3 Using a Different Activation Function

We briefly consider what happens if we choose a different activation
function for the hidden layers. Consider the sigmoid activation
function σ(z) = 1

1+e−z . Its derivative is given by:

σ′(z) =
(

1
1 + e−z

)′
=

e−z

(1 + e−z)2

= σ(z) ·
(

e−z

1 + e−z

)
= σ(z) · (1− σ(z))

(11.19)

There is also the hyperbolic tangent function tanh(z) = e2z−1
e2z+1 .

Problem 11.4.7. Compute f ′(z) for f (z) = tanh(z); show how f ′(z) can
be written in terms of f (z).

Problem 11.4.8. Say a neural network uses an activation function f (z) at
layer k + 1 such that f ′(z) is a function of f (z). That is, f ′(z) = g(f (z))
for some function g. Then verify that (11.16, 11.18) can be rewritten as:

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
diag(g(W(k+1)h⃗(k)))W(k+1)

∂ℓ

∂W(k+1)
= diag(g(W(k+1)h⃗(k)))

(
∂ℓ

∂⃗h(k+1)

)⊺ (
h⃗(k)

)⊺

11.4.4 Final Remark

Directly following the steps of backpropagation is complicated and
involves a lot of calculations. But remember that backpropagation
is simply computing gradients by the Chain Rule. At a high level, we
can think of the loss as a function of inputs and all the weights and
note that backpropagation simply entails calculating derivatives
with respect to each variable. The good news is that modern deep
learning software does all the gradient calculations for users. All
the model designer needs to do is to determine the neural network
architecture (e.g., choose number of layers, number of hidden units,
and the activation functions).

One note of caution is that the loss function for deep neural nets
is highly non-convex with respect to the parameters of the network.
Just as we discussed in Chapter 3, the gradient descent algorithm is
not guaranteed to find the actual minimizer in such situation, and the
choice of the initial values of the parameters matter a lot.

142 introduction to machine learning lecture notes for cos 324 at princeton university

11.5 Feedforward Neural Network in Python Programming

In this section, we discuss how to write Python code to build neural
network models and perform forward propagation and backpropaga-
tion. As usual, we use the numpy package to speed up computation.
Additionally, we use the torch package to easily design and train the
neural network.

import necessary packages

import numpy as np

import torch

import torch.nn as nn

define the neural network

class Net(nn.Module):

def __init__(self, input_size=2, hidden_dim1=2, hidden_dim2=3,

hidden_dim3=2):

super(Net, self).__init__()

self.hidden1 = nn.Linear(input_size, hidden_dim1, bias=False)

self.hidden1.weight = nn.Parameter(torch.tensor([[-2., 1.], [3., -1.

]]))

self.hidden2 = nn.Linear(hidden_dim1, hidden_dim2, bias=False)

self.hidden2.weight = nn.Parameter(torch.tensor([[0., 1.], [2., -1.]

, [1., 2.]]))

self.hidden3 = nn.Linear(hidden_dim2, hidden_dim3, bias=False)

self.hidden3.weight = nn.Parameter(torch.tensor([[-1., 2., 1.], [3.,

0., 0.]]))

self.activation = nn.ReLU()

single step of forward propagation

def forward(self, x):

h1 = self.hidden1(x)

h1 = self.activation(h1)

h2 = self.hidden2(h1)

h2 = self.activation(h2)

h3 = self.hidden3(h2)

return h3

net = Net()

forward propagation with sample input

x = torch.tensor([3., 1.])

y_pred = net.forward(x)

print(’Predicted value:’, y_pred)

backpropagation with sample input

loss = nn.functional.cross_entropy(y_pred.unsqueeze(0), torch.LongTensor([1]

))

loss.backward()

print(loss)

print(net.hidden1.weight.grad)

We start the code by importing all necessary packages.

import numpy as np

import torch

feedforward neural network and backpropagation 143

import torch.nn as nn

With PyTorch, we can design the architecture of any neural net-
work by defining the corresponding class.

class Net(nn.Module):

def __init__(self, input_size=2, hidden_dim1=2, hidden_dim2=3,

hidden_dim3=2):

super(Net, self).__init__()

self.hidden1 = nn.Linear(input_size, hidden_dim1, bias=False)

self.hidden1.weight = nn.Parameter(torch.tensor([[-2., 1.], [3., -1.

]]))

self.hidden2 = nn.Linear(hidden_dim1, hidden_dim2, bias=False)

self.hidden2.weight = nn.Parameter(torch.tensor([[0., 1.], [2., -1.]

, [1., 2.]]))

self.hidden3 = nn.Linear(hidden_dim2, hidden_dim3, bias=False)

self.hidden3.weight = nn.Parameter(torch.tensor([[-1., 2., 1.], [3.,

0., 0.]]))

self.activation = nn.ReLU()

def forward(self, x):

h1 = self.hidden1(x)

h1 = self.activation(h1)

h2 = self.hidden2(h1)

h2 = self.activation(h2)

h3 = self.hidden3(h2)

return h3

In the constructor, we define all the layers and activation functions
we are going to use in the network. In particular, we specify that we
need fully-connected layers by making instances of the nn.Linear class
and that we need ReLU activation function by making an instance of
the nn.Relu class. Then in the forward() function, we specify the order
in which to apply the layers and activations. See Figure 11.7 for a
visualization of this neural network architecture.

Figure 11.7: A sample feedforward
neural network with two hidden layers
and two output nodes.

We can simulate one step of forward propagation by calling the
forward() function of the class Net we defined.

x = torch.tensor([3., 1.])

y_pred = net.forward(x)

print(’Predicted value:’, y_pred)

144 introduction to machine learning lecture notes for cos 324 at princeton university

Similarly, we can implement backpropagation by specifying which
loss function we want to use, and calling its backward() function.

loss = nn.functional.cross_entropy(y_pred.unsqueeze(0), torch.LongTensor([1]

))

loss.backward()

print(loss)

Each function call of backward() will evaluate the gradients of loss
with respect to every parameter in the network. Gradients can be
manually accessed through the following code.

print(net.hidden1.weight.grad)

Note that calling backward() multiple times will cause gradients to
accumulate. While we do not update model weights in this code
sample, it is important to periodically clear the gradient buffer when
doing so to prevent unintended training. 8 We will discuss how to do 8 For more information, see https://

pytorch.org/docs/stable/generated/

torch.Tensor.backward.html
this in the next chapter.

https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html

