
10
Introduction to Deep Learning

Deep learning is currently the most successful machine learning
approach, with notable successes in object recognition, speech and
language understanding, self-driving cars, automated Go playing,
etc. It is not easy to give a single definition to such a broad and
influential field; nevertheless here is a recent definition by Chris
Manning:1 1 Source: https://hai.stanford.

edu/sites/default/files/2020-09/

AI-Definitions-HAI.pdf.Deep Learning is the use of large multi-layer (artificial) neural networks
that compute with continuous (real number) representations, a little like the
hierarchically-organized neurons in human brains. It is currently the most
successful ML approach, usable for all types of ML, with better generalization
from small data and better scaling to big data and compute budgets.

Deep learning does not represent a specific model per se, but
rather categorizes a group of models called (artificial) neural net-
works (NNs) (or deep nets) which involve several computational
layers. Linear models studied in earlier chapters, such as logistic
regression in Section 4.2, can be seen as special sub-cases involving
only a single layer. The main difference, however, is that general deep
nets employ nonlinearity in between each layer, which allows a much
broader scale of expressivity. Also, the multiple layers in a neural net
can be viewed as computing “intermediate representations” of the
data, or “high level features” before arriving at its final answer. By
contrast, a linear model works only with the data representation it
was given.

Deep nets come in various types, including Feed-Forward NNs
(FFNNs), Convolutional NNs (CNNs), Recurrent NNs (RNNs), Resid-
ual Nets, and Transformers. 2 Training uses a variant of Gradient 2 Interestingly, a technique called Neural

Architecture Search uses deep learn-
ing to design custom deep learning
architectures for a given task.

Descent, and the gradient of the loss is computed using an algorithm
called backpropagation.

Due to the immense popularity of deep learning, a variety of
software environments such as Tensorflow and PyTorch allow quick
implementation of deep learning models. You will encounter them in
the homework.

https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf

116 introduction to machine learning lecture notes for cos 324 at princeton university

10.1 A Brief History

Neural networks are inspired by the biological processes present
within the brain. The concept of an artificial neuron was first outlined
by Warren MuCulloch and Walter Pitts in the 1940s. 3 The basic 3 Paper: https://www.cs.cmu.edu/

~./epxing/Class/10715/reading/

McCulloch.and.Pitts.pdf.
frameworks for CNNs and modern training soon followed in the
1980s. 4 Later in 1986, backpropagation was discovered as a new 4 Paper: https://link.springer.com/

article/10.1007/BF00344251.procedure to efficiently apply gradient-based training methods to
these models. 5 However, by the 21st century deep learning had gone 5 Paper: https://www.nature.com/

articles/323533a0.out of fashion. This changed in 2012, when Krizhevsky, Sutskever,
and Hinton leveraged deep learning techniques through their AlexNet
model and set new standards for performance on the ImageNet
dataset. 6 Deep learning has since begun a resurgence throughout 6 Paper: https:

//papers.nips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.

pdf.

the last decade, boosted by some key factors:

• Hardware, such as GPU and TPU (Tensor Processing Unit, specifi-
cally developed for neural network machine learning) technology
has made training faster.

• The development of novel neural network architecutres as well as
better algorithms for training neural networks.

• A vast amount of data collection, boosted by the spread of the
internet, has augmented the performance of NN models.

• Popular frameworks, such Tensorflow and PyTorch, have made it
easier to prototype and deploy NN architectures.

• Commercial payoff has caused tech corporations to invest more
financial resources.

Each of the reasons listed above has interfaced in a positively
reinforcing cycle, causing the acceleration of this technology into the
foreseeable future.

10.2 Anatomy of a Neural Network

10.2.1 Artificial Neuron

An artificial neuron, or a node, is the main component of a neural
network. Artificial neurons were inspired by early work on neurons
in animal brains, with the analogies in Table 10.1.

Formally, a node is a computational unit which receives m scalar
inputs and outputs 1 scalar. This scalar output can be used as an
input for a different neuron.

Consider the vector x⃗ = (x1, x2, . . . , xm) of m inputs. A neuron
internally maintains a trainable weight vector w⃗ = (w1, w2, . . . , wm)

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

introduction to deep learning 117

Biological neuron Artificial neuron
Dendrites Input

Cell Nucleus / Soma Node
Axon Output

Synapse Interconnections

Table 10.1: A comparison between
biological neurons in the brain and
artificial neurons in neural networks

Figure 10.1: A comparison between a
brain neuron and an artificial neuron.

x1

x2

x3

x4

x5

w⃗ · x⃗ f (w⃗ · x⃗)

w1
w2
w3
w4
w5

f

Figure 10.2: A sample artificial neuron.

and optionally a nonlinear activation function f : R→ R and outputs
the following value: 7 7 If no activation function is chosen,

we can assume that f is an identity
function f (z) = z.

y = f (w⃗ · x⃗) (10.1)

We can also add a scalar bias b before applying the activation func-
tion f (z) in which case the output will look like the following: 8 8 If we introduce a dummy variable for

the constant bias term as in Chapter 1

we can absorb the bias term into the
equation in (10.1).

y = f (w⃗ · x⃗ + b)

10.2.2 Activation Functions

An artificial neuron can choose its nonlinear activation function f (z)
from a variety of options. One such choice is the sigmoid function

σ(z) =
1

1 + e−z (10.2)

118 introduction to machine learning lecture notes for cos 324 at princeton university

Note that in this case, the neuron represents a logistic regression
unit. 9 Another popular activation function is the hyperbolic tangent, 9 However, in this context the output

is not considered to be a subjective
probability as in the case of standard
logistic regression.

which is similar to the sigmoid function:

tanh(z) =
ez − e−z

ez + e−z (10.3)

In fact, we can rewrite the hyperbolic tangent in terms of sigmoid:

tanh(z) = 2σ(2z)− 1 (10.3 revisited)

According to this expression, tanh function can be viewed as a
rescaled sigmoid function. The key difference is: the range of σ(z) is
(0, 1) and the range of tanh(z) is (−1, 1).

Arguably the most commonly used activation function is the
Rectified Linear Unit, or ReLU:

ReLU(z) = [z]+ = max{z, 0} (10.4)

There are several benefits to the ReLU activation function. It is far
cheaper to compute than the previous two alternatives and avoids
the “vanishing gradient” problem. 10 With sigmoid and hyperbolic 10 The vanishing gradient problem refers

to a situation where the derivative of
a certain step is too close to 0, which
can stall the gradient-based learning
techniques common in deep learning.

tangent activation functions, the vanishing gradient problem happens
when z = x⃗ · w⃗ has high absolute values, but ReLU avoids this
problem because the derivative is exactly 1 even for high values of z.

Example 10.2.1. Consider a vector x⃗ = (−2,−1, 0, 1, 2) of inputs and a
neuron with the weights w⃗ = (1, 1, 1, 1, 1). If the activation function of this
neuron is the sigmoid, then the output will be:

y = σ(w⃗ · x⃗) = σ(0) =
1
2

If the activation is ReLU, it will output:

[w⃗ · x⃗]+ = [0]+ = 0

Problem 10.2.2. Consider a neuron with the weights w⃗ = (1, 1, 5, 1, 1) and
the ReLU activation function. What will the outputs y1 and y2 be for the
inputs x⃗1 = (−2,−2, 0, 1, 2) and x⃗2 = (2,−1, 0, 1, 2) respectively?

10.2.3 Neural Network

A neural network consists of nodes connected with directed edges,
where each edge has a trainable parameter called its “weight” and
each node has an activation function as well as associated parame-
ter(s). There are designated input nodes and output nodes. The input
nodes are given some input values, and the rest of the network then
computes as follows: each node produces its output by taking the

introduction to deep learning 119

Figure 10.3: A sample neural network
design. Each circle represents one
artificial neuron. Two nodes being
connected by an edge means that the
output of the node on the left is being
used as one of the inputs for the node
on the right.

values produced by all nodes that have a directed edge to it. If the
directed graph of connections is acyclic — which is the case in most
popular architectures — this process of producing the values takes
finite time and we end up with a unique value at each of the output
nodes. 11 The term hidden nodes is used for nodes that are not input 11 We will not study Recurrent Neural

Nets (RNNs), where the graph contains
cycles. These used to be popular until
a few years ago, and present special
difficulties due to the presence of
directed loops. For instance, can you
come up with instances where the
output is not well-defined?

or output nodes.

10.3 Why Deep Learning?

Now that we are aware of the basic building blocks of neural net-
works, let’s consider why we prefer these models over techniques
explored in previous chapters. The key understanding is that the
models previously discussed are fundamentally linear in nature. For
instance, if we do binary classification, where the data point x⃗ is
mapped to a label based on sign(w⃗ · x⃗), then this corresponds to sep-
arating the points with label +1 from the points with label −1 via a
linear hyperplane w⃗ · x⃗ = 0. But such models are not a good choice for
datasets which are not linearly separable. Deep learning is inherently
nonlinear and is able to do classification in many settings where linear
classification cannot work.

Figure 10.4: Some examples of datasets
that are not linearly separable.

120 introduction to machine learning lecture notes for cos 324 at princeton university

10.3.1 The XOR Problem

Consider the boolean function XOR with the truth table in Table 10.2.

x1 x2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

Table 10.2: The truth table for the XOR
Boolean function.

Let us first attempt to represent the XOR function with a single
linear neuron. That is, consider a neuron that takes two inputs x1, x2

with weights w1, w2, a bias term b, and the following Heaviside step
activation function: 12 12 This neuron is called a linear per-

ceptron. It uses a nonlinear activation
function, but the nonlinearity is strictly
for the binary classification in the final
step. The boundary of the classification
is still linear.

g(z) =

0 if z ≤ 0

1 if z > 0
(10.5)

Proposition 10.3.1. There are no values of w1, w2, b such that the linear
neuron defined by the values represent the XOR function.

Proof. Assume to the contrary that there are such values. Let x⃗1 =

(0, 0), x⃗2 = (0, 1), x⃗3 = (1, 0), x⃗4 = (1, 1). Then we know that

g(w⃗ · x⃗1 + b) = g(w⃗ · x⃗4 + b) = 0

g(w⃗ · x⃗2 + b) = g(w⃗ · x⃗3 + b) = 1

which implies that

w⃗ · x⃗1 + b ≤ 0, w⃗ · x⃗4 + b ≤ 0

w⃗ · x⃗2 + b > 0, w⃗ · x⃗3 + b > 0

Now let x⃗ =
(

1
2 , 1

2

)
. Since we have x⃗ = 1

2 x⃗1 +
1
2 x⃗4, we should have

w⃗ · x⃗ + b =
1
2
· ((w⃗ · x⃗1 + b) + (w⃗ · x⃗4 + b)) ≤ 0

since we are taking the average of two non-positive numbers. But at
the same time, since x⃗ = 1

2 x⃗2 +
1
2 x⃗3, we should have

w⃗ · x⃗ + b =
1
2
· ((w⃗ · x⃗2 + b) + (w⃗ · x⃗3 + b)) > 0

since we are taking the average of two positive numbers. This leads
to a contradiction.

Problem 10.3.2. Verify that the AND, OR Boolean functions can be
represented by a single linear node.

introduction to deep learning 121

Figure 10.5 visualizes the truth table for XOR in the 2D plane. The
two axes represent the two inputs x1 and x2; blue circles denote that
y = 1; and white circles denote that y = 0. A single linear neuron can
be understood as drawing a red line that can separate white points
from blue points. Notice that it is possible to draw such a line for
AND and OR functions, but the data points that characterize the
XOR function are not linearly separable.

Figure 10.5: The data points that
characterize the XOR function are not
linearly separable.

Instead, we will leverage neural networks to solve this problem.
Let us design an architecture with inputs x1, x2, a hidden layer with
two nodes h1, h2, and a final output layer with one node y1. We
assign the ReLU activation function to the hidden nodes and define
weights and biases as shown in Figure 10.6.

x1

x2

b

h1

h2

b

y

1

1

1

1

0 −1

1

−2

0

Figure 10.6: A sample neural network
which computes the XOR of its inputs
x1 and x2. The weights for inputs are
shown by black arrows, while bias
terms are shown by grey arrows.

To be more explicit, the neural network is defined by the following
three neurons:

h1 = ReLU(x1 + x2)

h2 = ReLU(x1 + x2 − 1)

y1 = ReLU(h1 − 2h2)

Problem 10.3.3. Verify that the model in Figure 10.6 represents the XOR
function by constructing a truth table.

The main difference between the single linear neuron approach
and the neural network for the XOR function is that the network now

122 introduction to machine learning lecture notes for cos 324 at princeton university

has two layers of neurons. If we only focus on the final layer of the
neural network, we expect the boundary of the binary classification
to be linear in the values of h1, h2. However, the values of h1, h2 are
not linear in the input values x1, x2 because the hidden nodes utilize a
nonlinear activation function. Hence the boundary of the classification
is also not linear in the input values x1, x2. The nonlinear activation
function transforms the input space into a space where the XOR
operation is linearly separable. As shown in Figure 10.7, the h space is
quite clearly linearly separable in contrast to the original x space.

Figure 10.7: Unlike the x space, after
applying the nonlinear ReLU activation
function, the mapped h space is linearly
separable.

10.4 Multi-class Classification

Neural networks, like multi-class regression in Chapter 4, can be
used for classification tasks where the number of possible labels is
larger than 2. Real-life scenarios include hand-written digit recog-
nition on the MNIST dataset, where the model designer could use
ten different classes to correspond to each possible digit. Another
possible example is a speech recognition language model, where the
model is trained to distinguish between sounds of |V| vocabularies.

It turns out that such functionality can be added by simply includ-
ing the same number of output neurons as the desired number of
classes in the output layer. Then, the values of the output neurons
will be converted into a probability distribution Pr[y = k] over the
number of classes.

10.4.1 Softmax Function

Just as in Chapter 4, we use the softmax function for the purpose of
the multi-class classification. See Chapter 19 for the definition of the
softmax function.

Example 10.4.1. Say o⃗ = (3, 0, 1) are the values of the output neurons
of a neural network before applying the activation function. If we decide to

introduction to deep learning 123

apply the softmax function as the activation function, the final outputs of the
network will be so f tmax(⃗o) ≃ (0.84, 0.04, 0.11). If the network was trying
to solve a multi-class classification task, we can understand that the given
input is most likely to be of class 1, with probability 0.84 according to the
model.

One notable property of the softmax function is that the output
of the function is the same if all coordinates of the input vector is
shifted by the same amount; that is so f tmax(⃗z) = so f tmax(⃗z + c · 1⃗)
for any c ∈ R, where 1⃗ = (1, 1, . . . , 1) is a vector of all ones.

Example 10.4.2. Consider two vectors z⃗1 = (5, 2, 3) and z⃗2 = (3, 0, 1).
Then so f tmax(⃗z1) = so f tmax(⃗z2) because z⃗2 = z⃗1 − (2, 2, 2).

Problem 10.4.3. Prove the property that so f tmax(⃗z) = so f tmax(⃗z + c · 1⃗)
for any c ∈ R. (Hint: multiply both the numerator and the denominator of
so f tmax(⃗z)k by exp(c).)

