
1
Linear Regression: An Introduction

This chapter introduces least squares linear regression, one of the sim-
plest and most popular model in data science. Several of you may
have seen it in high school. In particular, we focus on understanding
linear regression in the context of machine learning. Using linear
regression as an example, we will introduce the terminologies and
ideas (some of them were mentioned in the Preface) that are widely
applicable to more complicated models in ML.

1.1 A Warm-up Example

Figure 1.1: A dataset of heights
and weights of some male adults.
The figure on the right shows
the least squares regression line
that fits the data. Data from
https://gist.github.com/nstokoe/

7d4717e96c21b8ad04ec91f361b000cb

Suppose we have a dataset of heights and weights of some male
individuals randomly chosen from the population. We wish to
determine a relationship between heights and weights. One simple
relationship would be a linear relationship; namely:

w = a0 + a1h (1.1)

where w is the weight, h is the height, and a0, a1 are constant coef-
ficients. We can think of this as a predictor that maps height h to a
predicted weight a0 + a1h, and we want this value to be similar to
the actual weight w. Obviously, a linear relationship won’t describe
the data exactly but we hope it is a reasonable fit to data. 1 In an ML 1 Similar linear models are used in

many disciplines. For instance, the
famous Philips model in economics
suggests a linear relationship between
inflation rate and unemployment rate,
at least when the inflation rate is high.

setting, this relationship between h and w is called a model — a linear
model to be more specific.

https://gist.github.com/nstokoe/7d4717e96c21b8ad04ec91f361b000cb
https://gist.github.com/nstokoe/7d4717e96c21b8ad04ec91f361b000cb

16 introduction to machine learning lecture notes for cos 324 at princeton university

Based on the values of a0 and a1, there are infinitely many dif-
ferent choices of this linear model. Therefore, it is natural that we
want to find the values of a0, a1 that yield the “best” model. In an ML
setting, finding these optimal values of a0, a1 is known as fitting the
model. One can posit different criteria for defining “goodness” of the
model.

Here we use classic least squares fit, invented by Gauss. Given a
dataset {(h1, w1), (h2, w2), . . . , (hn, wn)} of n pairs of heights and
weights, the “goodness” of the model in (1.1) is

1
n

n

∑
i=1

(wi − a0 − a1hi)
2 (1.2)

Notice that wi − a0 − a1hi is the difference between the actual weight
wi and the predicted weight a0 + a1hi. This difference is called the
residual for the data point (hi, wi), and the full term in (1.2) is called
the average squared residuals, or equivalently the mean squared error
(MSE), of the dataset. The smaller the MSE, the closer the model’s
predictions are to actual weights, and the more accurate the model
is. Therefore, the “best” model according to the least squares method
would be the one defined by the values of a0, a1 that minimize (1.2).
In an ML setting, a mathematical expression like (1.2) that captures
the “badness” of the model is called a loss function. In general, we
find the “best” model by minimizing the loss function.

Example 1.1.1. If the data points (h, w) are given as {(65, 130), (58, 120),
(73, 160)}, the least squares fit will find the values of a0, a1 that minimize

1
3
((130− a0 − 65a1)

2 + (120− a0 − 58a1)
2 + (160− a0 − 73a1)

2)

which are a0 = − 510
13 , a1 = 35

13 .

Problem 1.1.2. Between the two lines in Figure 1.2, which is more preferred
by the least squares regression method?

Figure 1.2: Two lines that describe the
relationship of the same dataset.

Problem 1.1.3. Using calculus, give an exact expression for a0, a1 that
minimize (1.2). (Hint: (1.2) is quadratic in both a0 and a1. Fix the value of

linear regression: an introduction 17

a1 and minimize for a0. Then minimize for a1. Completing the square may
be useful.) 2 2 A more general calculus based ap-

proach will be introduced in a later
chapter.

1.1.1 Multivariate Linear Regression

One can generalize the above example to multi-variable settings. In
general, we have k predictor variables and one effect variable. 3 The 3 In the above example k = 1. The

predictor variable was height and effect
variable was weight.

data points consist of k + 1 coordinates, where the last coordinate is
the value y of the effect variable and the first k coordinates contain
values of the predictor variables x1, x2, . . . , xk. Then the relationship
we are trying to fit has the form

y = a0 + a1x1 + a2x2 + · · ·+ akxk (1.3)

and the least squares fit method will find the values of a0, a1, · · · , ak

that minimize

1
n

n

∑
i=1

(yi − a0 − a1xi
1 − a2xi

2 − · · · − akxi
k)

2 (1.4)

where (xi
1, xi

2, . . . xi
k, yi) is the i-th data point.

We can simplify the notation by rewriting everything above in
a vectorized notation. If we set x⃗ = (1, x1, x2, · · · , xk)

4 and a⃗ = 4 The 1 in the first coordinate is a
dummy variable to naturally include
the constant term into the vectorized
notation.

(a0, a1, · · · , ak), then the relationship we are trying to fit has the form

y = a⃗ · x⃗ (1.5)

and the least squares fit method will find a⃗ ∈ Rk+1 that minimize

1
n

n

∑
i=1

(yi − a⃗ · x⃗i)2 (1.6)

where (⃗xi, yi) is the i-th data point. We discuss how to find the best
values of a0, a1, . . . , ak later in Chapter 3; for now just assume that the
solution can be found.

1.1.2 Testing a model (Held-out Data)

A crucial step in machine learning is to test the trained/fitted model
on newly seen data, or held-out data, that was not used during training.
If we were to test the model in the above example, we would hold
out a portion of the data points (say 20%) — i. e., not use them during
training — and check the average squared residual of the model on
the held-out data points.

We can think of the average squared residual of the held-out data
as an estimate of the average squared residual of the fitted model on
the entire population of male adults. 5 The reason is that if the train- 5 If later in life you ever write up the

results of a regression study, be sure
to report the RMSE error, which is
the square root of the average square
residual on held-out data. Also report
the R2 value, which is closely related.

ing data points were a random sample of the adult male population,

18 introduction to machine learning lecture notes for cos 324 at princeton university

then so is the set of held-out data points. This is quite analogous to
opinion polls, where the opinions of a few thousand randomly sam-
pled individuals can be a reasonable estimate for the average opinion
across the US. The math for such sampling estimates is covered in
Chapter 18.

1.1.3 More about Linear Regression

In the above example, we used the least squares method, which uses
the average squared residual to assess the model. The least squares
fit is very common but other notions of fit may also be used. For
instance, instead of taking the sum of squares of residuals, one could
consider the sum of absolute values, or expressions using logarithms,
etc. We see some of these examples in Chapter 4.

It is important to note that the relationship learnt via regression —
and machine learning in general — is (a) approximate and (b) only
holds for the population that the data was drawn from. Therefore,
we cannot use the relationship to predict the output of a data that is
not from the same distribution. Additionally, if the distribution of
the data is shifted, the relationship no longer holds. We will discuss
more about this in depth in Chapter 2.

1.2 Using Linear Regression for Sentiment Prediction

1.2.1 Introduction

While you might have seen linear regression as early as in high
school, you probably did not see this cool application. In sentiment
classification, we are given a piece of text and have to label it with +1
if it expresses positive sentiment and −1 otherwise.

Example 1.2.1. Consider the following dataset, collected by showing snippets
of text to humans and asking them to label them as positive (+1) or negative
(−1)

The film’s performances are thrilling. +1
It’s not a great monster movie. −1

It is definitely worth seeing. +1
Unflinchingly bleak and desperate. −1

Table 1.1: Data from Stanford Sentiment
Treebank (SST). https://nlp.stanford.
edu/sentiment/treebank.html

How can we train a model to label text snippets with the correct
sentiment value, given a dataset of training examples? Here is an
idea to try to solve it using a linear regression model. We first enu-
merate all English words and assign a real-valued score to each word,
where the score for the i-th word is denoted by wi. These scores will

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html

linear regression: an introduction 19

be the parameters of the model. The output of the model, given a
training example, is defined as ∑j∈S wj where S is the multiset of
indices of words in the text. 6 Then the least squares method needs 6 Unlike in a set, an element can appear

multiple times in a multiset. For
example, if the word good appears twice
in a text, then S contains two copies of
good.

to solve the following optimization problem for a dataset of (text,
sentiment) pairs

minimize ∑
i

yi − ∑
j∈Si

wj

2

(1.7)

where Si is the multiset of words in the i-th piece of text. Each of the

values

(
yi − ∑

j∈Si
wj

)2

is called a least squares error or more generally

the loss for that particular training example. The full summation is
called a training loss of the dataset.

Example 1.2.2. Assume we are training a sentiment prediction model on
a dataset. Table 1.1 shows some of the model parameter values. Then the
output of the model on the sentence “I like this movie” from the training
data will be 0.15 + 0.55 + 0.03− 0.07 = 0.66. The output for “I dislike this
movie” from the training data will be 0.15− 0.74 + 0.03− 0.07 = −0.63

i word wi

1 I 0.15
2 like 0.55
3 dislike −0.74
4 this 0.03
5 movie −0.07
6 a 0

Table 1.2: Some of the parameter values
of a sentiment prediction model.

We can also cast this in the standard formulation of linear regres-
sion as follows. The bag of words (BoW) representation of a piece of
text is a vector in RN where N is the number of dictionary words.
The i-th coordinate is the number of times the i-th word appears in
the piece of text. This represents the text as a very long vector, one
coordinate per one English word in the dictionary. The vector usually
contains a lot of zeros, since most words probably do not appear in
this piece of text. If we denote the BoW vector as x⃗, the output of the
model is seen to be

∑
j∈S

wj = ∑
i

wixi

which shows that the linear model we have proposed for sentiment
prediction is just a subcase of linear regression (see (1.5)).

Example 1.2.3. Consider the same model in Example 1.2.2. The BoW repre-
sentation for the sentence “I like this movie” is (1, 1, 0, 1, 1, 0 · · ·). The BoW
representation for the sentence “I dislike this movie” is (1, 0, 1, 1, 1, 0 · · ·).

20 introduction to machine learning lecture notes for cos 324 at princeton university

1.2.2 Testing the Model

Here we use the model from Example 1.2.2 to illustrate the training
and testing process of a model. Assume that the following four
sentences were a part of the training dataset.

I like this movie. +1
I dislike this movie. −1

I like this. +1
I dislike this. −1

Table 1.3: A portion of the training data
for a sentiment prediction model.

Assuming that the model parameters are the same as reported in
Table 1.2, we can calculate the training loss of the sentence “I like this
movie” as (+1− 0.66)2 ≃ 0.12. Similarly, the squared residual for each
of the four training sentences in Table 1.3 can be calculated as

I like this movie. 0.12
I dislike this movie. 0.14

I like this. 0.07
I dislike this. 0.19

Table 1.4: The squared residual for four
training examples.

Now it is time to test the model. Assume that the sentence “I like
a movie” is provided to the model as a test data. The test loss can be
calculated in a way similar to the training loss as (+1− 0.63)2 ≃ 0.14.
But to actually test if the model produces the correct sentiment label
for this newly seen data, we now wish the model to output either +1
or −1, the only two labels that exist in the population. An easy fix
is to change the output of the model at test time to be sign(∑j∈S wj).
For this test data, the model will output sign(0.63) = +1.

On the Stanford Sentiment Treebank, this approach of training a
least squares model yields a success rate of 78% 7. By contrast, the 7 To be more exact, this result is from

a model called ridge regression model,
which is linear regression model
augmented by an ℓ2 regularizer, which
will be explained in Chapter 3

state-of-the-art deep learning methods yield success rates exceeding
96%!

One thing to note is that while the training loss is calculated and
explicitly used in the training process, the test loss is only a statistic
that is generated after the training is over. It is a metric to assess if
the model fitted on the training data also performs well for a more
general data.

1.2.3 Test Loss, Generalization, and Test accuracy

As mentioned already, the goal of training a model is that it should
make good predictions on new, previously-unseen data. Most models
will exhibit a low training loss, but not all of them show a low test
loss. This observation motivates the following definition:

Generalization Error = |training loss− test loss|

linear regression: an introduction 21

A trained model is said to generalize well if the generalization error
is small. In our case, the loss is the average squared residual. Thus
good generalization means that the average squared residual on test
data points is similar to that on the training data.

Let us see what happens on our sentiment model when it is fitted
and tested on the SST dataset.

Train MSE 0.0727
Test MSE 0.7523

Training accuracy 99.55%
Test accuracy 78.09%

Table 1.5: Accuracy refers to the classi-
fication accuracy when we make the
model to output only ±1 labels.

Example 1.2.4. The generalization error above is the difference between
MSE on test points and the MSE on training points, namely 0.75− 0.07 =

0.68.

Let’s try to understand the relationship between low test loss (the
squared residual) and high test accuracy (for what fraction of test
data points the sentiment was correct). Heuristically, the test loss
(average squared residual) being 0.75 means that the the absolute
value of the residual on a typical point is

√
0.75 ≈ 0.87. This means

that for a data point with an actual positive sentiment (i. e., label +1),
the output of the model is roughly expected to lie in the interval
[1 − 0.87, 1 + 0.87], and similarly, for a data point with an actual
negative sentiment (i. e., label −1), the output of the model is roughly
expected to lie in the interval [−1− 0.87,−1 + 0.87]. Once we take
the sign sign(∑j∈S wj) of the output of the model, the output is thus
likely to be rounded off to the correct label. We also note that the
training accuracy is almost 100%. This usually happens in settings
where the number of parameters (i. e., number of predictor variables)
exceeds the number of training data points (or is close to it). The
following problem explores this.

Problem 1.2.5. An expert on TV claims to have a formula to predict
the outcome of presidential elections. It uses 31 measurements of various
economic and societal quantities (inflation, divorce rate, etc). The formula
correctly predicts the winner of all elections 1928-2020. Should you believe
the formula’s prediction for the 2024 election? (Hint: Under fairly general
conditions, T + 1 completely nonsense variables — i.e., having nothing
to do with presidential politics — can be used to perfectly fit (via linear
regression) the outcomes for T past presidential elections. 8) 8 If a model does not generalize well,

then it is said to overfit the training
data.

1.2.4 Interpreting the Model

In many settings (e.g., medicine), an important purpose of regres-
sion modeling is to understand the data or the phenomenon a bit

22 introduction to machine learning lecture notes for cos 324 at princeton university

better. In this case, the phenomenon is “sentiment” and we are natu-
rally curious about what positive or negative sentiment amounts to.
Specifically, what caused the model’s output to be +1 or −1 given a
specific sentence?

Figure 1.3 shows a histogram of the values of wi, the parameters
of a sentiment prediction model that was trained on the Stanford
Sentiment Treebank. Positive values of wi imply that the words
carry a positive sentiment, while negative values of wi imply that the
words carry a negative sentiment. Also, the greater the absolute value
of wi is, the stronger the sentiment. Notice that most words have a
value of wi close to zero, meaning the model views most words as
neutral. The model “pays attention” to only a tiny set of words.

Words with high positive wi values (i. e., positive words) include
enjoyable, fun, and remarkable. Words with high negative values (i. e.,
negative words) include suffers, dull, and worst. Words with wi values
close to 0 (i. e., neutral words) include duty and desire.

Figure 1.3: A histogram of the learned
parameters wi of a sentiment predic-
tion model trained on the Stanford
Sentiment Treebank.

1.3 Importance of Featurization

In the sentiment model, we chose a particular method to represent
a piece of text with a vector. The coordinates of this vector are often
referred to as features and this process of converting data into vectors
is called featurization. One can conceive of other choices for featuriz-
ing text. For example, bigram featurization consists of the following:
the coordinates of the vector correspond to pairs of words and the
coordinate contains the number of times this pair of words appeared
consecutively in the piece of text. In contrast, the choice of featuriza-
tion from the earlier example matches each coordinate with a single
word, and is called a unigram featuraization.

linear regression: an introduction 23

Bigram features allow the model to access information about
phrases that were present in the text. For instance, in isolation
“pretty” is a positive word and “bad” is a negative word. If they
both occur in text one would imagine that they cancel each other out
as far as overall sentiment is concerned. But the phrase “pretty bad”
is more negative than “bad.” Thus bigram features can improve the
model’s ability to capture sentiment.

The required number of dimension for bigram representations can
get rather large. If the number of words is N, then the number of
coordinates is N2. Realize that the number of model parameters in
linear regressions is the same as the number of coordinates. Thus if
N is 30, 000 then the number of coordinates in bigram feature vector
(and hence the number of model parameters) is close to a billion,
which is a rather large number. In practice one might throw away
information for all pairs except say the 10, 000 most common ones
in the dataset. Usually models that incorporate bigram features do
better than unigram-only models.

If one is trying to do studies of medical treatment with regression,
there can be many potential featurizations of patient data. Doctors’
annotations, test results, X-ray scans, etc. all have to be converted
somehow into real-valued features, and the experimenter uses their
prior knowledge and intuitions while featurizing the data.

Example 1.3.1. Patients’ raw data might include height and weight.
If we use linear regression, the effect variable can only depend upon a
linear combination of height and weight. But it is known that several
health outcomes are better modeled using Body Mass Index, defined as
weight/(height2). Thus the experimenter may include a separate coordinate
for BMI, even though it duplicates information already present in the other
coordinates.

Example 1.3.2. In Example 1.3.1, the weight in pounds may span a range
of [90, 350], whereas cholesterol ratio may span a range of [1, 10]. It is often
a good idea to normalize the coordinate, which means to replace x with
(x− µ)/σ where µ is the mean of the coordinate values in the dataset and σ

is the standard deviation.

Thus the same raw dataset can have multiple featurizations, with
different number of coordinates. Problem 1.2.5 may make us wary
of using featurizations with too many coordinates. We will learn a
technique called regularization in Chapter 3, which helps mitigate the
issue identified in Problem 1.2.5.

24 introduction to machine learning lecture notes for cos 324 at princeton university

1.4 Linear Regression in Python Programming

In this section, we briefly discuss how to write the Python code to
perform linear regression (e.g., sentiment prediction). Python is often
the language of choice for many machine learning applications due
to its relative ease of use and the large variety of external packages
available to automate the process. Here, we introduce a few of these
packages:

• numpy: This package is ubiquitous throughout the machine learn-
ing community. It provides access to specialized array data struc-
tures which are implemented in highly optimized C code. Linear
algebra computations and array restructuring operations are signif-
icantly faster with numpy compared to using Python directly. 9 9 Documentation is available at https:

//numpy.org/

• matplotlib: This package enables Python programmers to create
high quality plots and graphs. Visualizations are highly config-
urable and interoperable with several other Python packages. 10 10 Documentation is available at https:

//matplotlib.org/

• sklearn: This package provides a potpourri of machine learning
and data science models through an easy to use object-oriented
API. In addition to linear regression, sklearn makes it possible to
implement SVMs, clustering, neural networks, and much more;
you will learn about a some of these models later in the course. 11 11 Documentation is available at https:

//scikit-learn.org/stable/index.

htmlThroughout this course, you will be asked to make use of func-
tions defined in some of these external packages. You may not always
be familiar with the usage of these functions. It is important to check
the official documentation to learn about the usage and the signature
of the functions.

The code snippet below uses the three aforementioned packages to
perform linear regression on any given dataset.

import necessary packages

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error as mse

import matplotlib.pyplot as plt

prepare train, test data

X = ...

y = ...

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

perform linear regression on train data

linreg = LinearRegression().fit(X_train, y_train)

pred_train = linreg.predict(X_train)

pred_test = linreg.predict(X_test)

print train results

print(’Train MSE: ’, ’{0:.4f}’.format(mse(y_train, pred_train)))

https://numpy.org/
https://numpy.org/
https://matplotlib.org/
https://matplotlib.org/
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html

linear regression: an introduction 25

print(’Test MSE: ’, ’{0:.4f}’.format(mse(y_test, pred_test)))

print(’Train Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_train)==y_train).

mean()))

print(’Test Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_test)==y_test).mean()

))

plot gold (actual) vs predicted value

plt.scatter(y_test, pred_test, c="red")

plt.xlabel("actual y value (y)")

plt.ylabel("predicted y value (y hat)")

plt.title("y vs y hat")

For readers who are not familiar with Python, we discuss some
key details. In the first section of the code, we import the relevant
packages

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error as mse

import matplotlib.pyplot as plt

As seen in this example, there are two ways to load a package. The
first option is to import the full package with the import keyword

import numpy as np

Notice that the we can assign the imported package a customized
name with the as keyword. In this case, we decided refer to the
package numpy with the name np throughout the rest of the code.
This is indeed the case when we call

np.sign()

Here we refer to the method sign() of the numpy package with the
customized name np. Alternatively, we can selectively import particu-
lar methods or classes with the from keyword

from sklearn.model_selection import train_test_split

The next part of the code is preparing the train, test data.

X = ...

y = ...

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

X will have to be an array of arrays, and y will have to be an array
of values, with the same length as X. These arrays can be defined di-
rectly by specifying each of their entries, or they could be read from
some external data (most commonly a csv file). Here, we present an
example dataset where x⃗ ∈ R2:

X = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]

y = [1, 1, 1, -1, -1]

Then we call the train_test_split() method to split the dataset into
data for model training and testing. Alternatively, we can split the

26 introduction to machine learning lecture notes for cos 324 at princeton university

dataset by manually slicing the data arrays. 12 In general, slicing 12 In Python, the term slicing refers to
the process of creating a subarray of an
array.

a Python array involves the : operator along with start and end
indices. For instance, consider an arbitrary array a. Then, the output
of a[i:j] will be a subarray of a from the index i (inclusive) to the
index j (exclusive). In the following code sample, we slice the data by
specifying the number of training data points

train_size = ...

X_train = X[:train_size]

X_test = X[train_size:]

y_train = y[:train_size]

y_test = y[train_size:]

Note that we have omitted some of the bounding indices. If the start
index is omitted, Python assumes it to be 0 (so that the subarray is
from the start of the array); for example, X[:train_size] is the first
train_size entries of X. If the end index is omitted, Python assumes it
to be n, the length of the array (so that the subarray ends at the end
of the array); for instance, X[train_size:] is the remaining entries of X,
once we remove the first train_size entries. Another way to slice the
arrays is by specifying the number of test data points

test_size = ...

X_train = X[:-test_size]

X_test = X[-test_size:]

y_train = y[:-test_size]

y_test = y[-test_size:]

Here, notice that the index -test_size is a negative number. In this case,
Python interprets this as n - test_size, where n is the size of the array.
In other words, it is the index of the test_size-th element from the
back of the array.

The third part of the code is fitting the linear regression model.

linreg = LinearRegression().fit(X_train, y_train)

pred_train = linreg.predict(X_train)

pred_test = linreg.predict(X_test)

The first line will generate the least squares fit model based on the
train data. Then we can have the model make predictions on the
train, test data.

Next, we print out the mean squared loss and the accuracy for the
train, test data.

print(’Train MSE: ’, ’{0:.4f}’.format(mse(y_train, pred_train)))

print(’Test MSE: ’, ’{0:.4f}’.format(mse(y_test, pred_test)))

print(’Train Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_train)==y_train).

mean()))

print(’Test Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_test)==y_test).mean()

))

Notice that we use the mse() method that we imported from the
sklearn package. Also notice that when computing the accuracy, we

linear regression: an introduction 27

changed the output of the model to be the sign of the predicted
values, so that we can compare them with the gold values. In many
cases, there are packages that perform these elementary operations
for machine learning.

Finally, we plot the actual and predicted values using the matplotlib
package.

plt.scatter(y_test, pred_test, c="red")

plt.xlabel("actual y value (y)")

plt.ylabel("predicted y value (y hat)")

plt.title("y vs y hat")

The first line draws a scatter plot with the y_test in the x-axis and
pred_test in the y-axis. Notice that you can specify the color of the
data points by specifying the value of the parameter c. In general,
parameters are optional values you can provide to Python functions.
If the values to parameters are omitted, the functions will use their
default values. The second and third lines specify the labels that will
be written next to the axes. The final line specifies the title of the
plot.

