
S A N J E E V A R O R A , S I M O N PA R K , D E N N I S J A -

C O B , D A N Q I C H E N

I N T R O D U C T I O N T O
M A C H I N E L E A R N I N G

L E C T U R E N O T E S F O R C O S 3 2 4 AT P R I N C E T O N U N I V E R S I T Y

Copyright © 2024 Sanjeev Arora, Simon Park, Dennis Jacob, Danqi Chen

published by

tufte-latex.github.io/tufte-latex

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

September 8, 2024

Contents

I Supervised Learning 13

1 Linear Regression: An Introduction 15

1.1 A Warm-up Example 15

1.2 Using Linear Regression for Sentiment Prediction 18

1.3 Importance of Featurization 22

1.4 Linear Regression in Python Programming 24

2 Statistical Learning: What It Means to Learn 29

2.1 A Warm-up Example 29

2.2 Summary of Statistical Learning 31

2.3 Implications for Applications of Machine Learning 31

3 Optimization via Gradient Descent 33

3.1 Gradient Descent 33

3.2 Implications of the Linearity of a Gradient 37

3.3 Regularizers 38

3.4 Gradient Descent in Python Programming 42

4 Linear Classification 47

4.1 General Form of a Linear Model 47

4.2 Logistic Regression 48

4

4.3 Support Vector Machines 53

4.4 Multi-class Classification (Multinomial Regression) 55

4.5 Regularization with SVM 55

4.6 Linear Classification in Python Programming 56

5 Exploring “Data Science” via Linear Regression 59

5.1 Boston Housing: Machine Learning in Economics 59

5.2 fMRI Analysis: Machine Learning in Neuroscience 62

II Unsupervised Learning 67

6 Clustering 69

6.1 Unsupervised Learning 69

6.2 Clustering 69

6.3 k-Means Clustering 71

6.4 Clustering in Programming 76

7 Low-Dimensional Representation 81

7.1 Low-Dimensional Representation with Error 82

7.2 Application 1: Stylometry 84

7.3 Application 2: Eigenfaces 87

8 n-Gram Language Models 89

8.1 Probabilistic Model of Language 89

8.2 n-Gram Models 90

8.3 Start and Stop Tokens 94

8.4 Testing a Language Model 97

9 Matrix Factorization and Recommender Systems 105

9.1 Recommender Systems 105

9.2 Recommender Systems via Matrix Factorization 107

9.3 Implementation of Matrix Factorization 110

5

III Deep Learning 113

10 Introduction to Deep Learning 115

10.1 A Brief History 116

10.2 Anatomy of a Neural Network 116

10.3 Why Deep Learning? 119

10.4 Multi-class Classification 122

11 Feedforward Neural Network and Backpropagation 125

11.1 Forward Propagation: An Example 125

11.2 Forward Propagation: The General Case 130

11.3 Backpropagation: An Example 132

11.4 Backpropagation: The General Case 136

11.5 Feedforward Neural Network in Python Programming 142

12 Convolutional Neural Network 145

12.1 Introduction to Convolution 145

12.2 Convolution in Computer Vision 146

12.3 Backpropagation for Convolutional Nets 157

12.4 CNN in Python Programming 160

IV Reinforcement Learning 165

13 Introduction to Reinforcement Learning 167

13.1 Basic Elements of Reinforcement Learning 168

13.2 Useful Resource: MuJoCo-based RL Environments 172

13.3 Illustrative Example: Optimum Cake Eating 173

14 Markov Decision Process 175

14.1 Markov Decision Process (MDP) 175

14.2 Policy and Markov Reward Process 177

14.3 Optimal Policy 181

6

15 Reinforcement Learning in Unknown Environments 189

15.1 Model-Free Reinforcement Learning 190

15.2 Atari Pong (1972): A Case Study 191

15.3 Q-learning 195

15.4 Applications of Reinforcement Learning 199

15.5 Deep Reinforcement Learning 200

V Advanced Topics 205

16 Machine Learning and Ethics 207

16.1 Facebook’s Suicide Prevention 207

16.2 Racial Bias in Machine Learning 208

16.3 Conceptions of Fairness in Machine Learning 209

16.4 Limitations of the ML Paradigm 210

16.5 Final Thoughts 213

17 Deep Learning for Natural Language Processing 215

17.1 Word Embeddings 215

17.2 N-gram Model Revisited 219

VI Mathematics for Machine Learning 223

18 Probability and Statistics 225

18.1 Probability and Event 225

18.2 Random Variable 227

18.3 Central Limit Theorem and Confidence Intervals 234

18.4 Final Remarks 238

19 Calculus 239

19.1 Calculus in One Variable 239

19.2 Multivariable Calculus 241

7

20 Linear Algebra 245

20.1 Vectors 245

20.2 Matrices 249

20.3 Advanced: SVD/PCA Procedures 253

Preface

Introduction

These lecture notes accompany a junior-level machine learning course
(COS 324) at Princeton University. This course provides a broad
introduction to machine learning paradigms including supervised,
unsupervised, deep learning, and reinforcement learning as a foun-
dation for further study or independent work in ML, AI, and data
science. Topics include linear models for classification and regression,
clustering, low rank representations (PCA), n-gram language mod-
els, matrix factorization, feedforward neural nets and convolutional
neural nets, Markov decision process, and reinforcement learning.
Interesting applications are presented for all these models.

The course design was shaped by some constraints that may not
exist at other universities.

Background assumed: The formal prerequisites are the following
courses, which all our majors have taken through sophomore year:
An introduction to computer science course (COS 126), Data Struc-
tures and Algorithms (COS 226), Single-variable Calculus (MAT 103,
104) and Linear Algebra (MAT 202/204/217). While many majors
also take multi-variable calculus and a probability course, not
all do. Hence we do not include them in the list of prerequisites,
although we do assume some exposure to elementary probability
at high-school level. All our majors take a course on proof-based
reasoning (COS 240) but many don’t take it before junior year.
Hence that course is not a prerequisite and our course doesn’t rely
on formal proofs per se.

A side benefit of assuming minimal math and programming pre-
requisites is that this also makes our course accessible to hundreds
of non-majors, many of whom only take introductory CS courses.

Should provide a broad introduction to today’s AI and machine learning:
Since AI and Machine Learning has been transformed by deep
learning and related methods in the past decade, we wanted
to provide a reasonable competence in deep learning as well as

10

reinforcement learning. Thus students who don’t take another
AI/ML course still leave with a skill set appropriate for applying
ML techniques in their careers. Of course, devoting the second
half of our course to these “advanced” topics required leaving
out several topics that are classically taught in introductory ML.
Essentially, the classical topics are condensed into the first half of
the term.

Provide a taste of today’s programming environments: Students can start
with zero Python background, and slowly graduate to comfort in
Python as well as dipping their toes into deep learning on Google
CoLab and RL on OpenAI gym.

Taste of interesting applications + discussion of broader issues of societal interest:
An introductory course needs to introduce students to these issues,
given machine learning’s ubiquitous role in research across dis-
ciplines, as well as throughout our economy and our society.
Sometimes we invite guest lecturers to provide such perspectives.

Finally, note that all the above material has to fit in Princeton’s
12-week term. We do not have 13-15 weeks as at other universities.

Structure of the Notes

These notes are divided into six main parts.

Part I introduces supervised learning. Topics include linear regres-
sion, linear classification, and gradient descent.

Part II is about unsupervised learning. Topics include clustering,
dimensionality reduction, n-gram language models, and matrix
factorization.

Part III covers the basics of deep learning. Topics include feedfor-
ward neural networks and convolutional neural networks.

Part IV presents reinforcement learning. Topics include Markov
decision process and Q-learning.

Part V introduces some advanced applications of machine learning.
Topics include ethics of machine learning and deep learning for
natural language processing.

Part VI provides some mathematical background that is useful for
machine learning. Topics include probability, calculus, and linear
algebra.

11

Basic Ingredients of Machine Learning

Machine learning is the discipline of creating decision-making pro-
grams that improve themselves automatically, based on data or
repeated experience. The entire setup consists of the following ele-
ments.

Data: We have a set of data to learn from. The data may have an ad-
ditional field called a label. If the data is labeled, the goal of the
learning is to predict the label of newly seen data. Such learning
is called supervised learning; examples include regression (Chapter
1, Chapter 5) or classification (Chapter 4). If the data is unlabeled,
the goal of the learning is to extract the structure of the current
data. Such learning is called unsupervised learning; examples in-
clude clustering (Chapter 6) or dimensionality reduction (Chapter
7).

Model: We have a model that we want to learn. A model is a mapping
from a data point to a desired answer or output. For supervised
learning, the answer will be the label of the data; for unsupervised
learning, the output will be the structure of the data.

Model parameters: Each model is defined by a number of adjustable
values, or internal parameters. The goal of the learning is to find
the values of these parameters that yield the best model. Through-
out the training process, the values of the parameters will be
updated or reset.

Model fitting: The process of finding the best (or good enough) values
of model parameters, based on the provided data, is called fitting
the model. There are many different ways to assess how “good”
a model is. In many cases, a loss function is defined to measure
how far the predictions of the model are from the actual output.
In Chapter 4, we see how different loss functions are defined for
different models.

Testing: In many cases, especially in supervised learning, we want
to predict how “good” the model will be for a newly seen data.
This process is called testing the model. For this purpose, it is
customary to use only a fraction (e.g., 80%) of the data to fit the
model, and use the rest (e.g., 20%) to test the model. The portion
of the data that is used for testing and not for fitting the model is
called the held-out data and is assumed to be a good sample of the
population data.

Part I

Supervised Learning

1
Linear Regression: An Introduction

This chapter introduces least squares linear regression, one of the sim-
plest and most popular model in data science. Several of you may
have seen it in high school. In particular, we focus on understanding
linear regression in the context of machine learning. Using linear
regression as an example, we will introduce the terminologies and
ideas (some of them were mentioned in the Preface) that are widely
applicable to more complicated models in ML.

1.1 A Warm-up Example

Figure 1.1: A dataset of heights
and weights of some male adults.
The figure on the right shows
the least squares regression line
that fits the data. Data from
https://gist.github.com/nstokoe/

7d4717e96c21b8ad04ec91f361b000cb

Suppose we have a dataset of heights and weights of some male
individuals randomly chosen from the population. We wish to
determine a relationship between heights and weights. One simple
relationship would be a linear relationship; namely:

w = a0 + a1h (1.1)

where w is the weight, h is the height, and a0, a1 are constant coef-
ficients. We can think of this as a predictor that maps height h to a
predicted weight a0 + a1h, and we want this value to be similar to
the actual weight w. Obviously, a linear relationship won’t describe
the data exactly but we hope it is a reasonable fit to data. 1 In an ML 1 Similar linear models are used in

many disciplines. For instance, the
famous Philips model in economics
suggests a linear relationship between
inflation rate and unemployment rate,
at least when the inflation rate is high.

setting, this relationship between h and w is called a model — a linear
model to be more specific.

https://gist.github.com/nstokoe/7d4717e96c21b8ad04ec91f361b000cb
https://gist.github.com/nstokoe/7d4717e96c21b8ad04ec91f361b000cb

16 introduction to machine learning lecture notes for cos 324 at princeton university

Based on the values of a0 and a1, there are infinitely many dif-
ferent choices of this linear model. Therefore, it is natural that we
want to find the values of a0, a1 that yield the “best” model. In an ML
setting, finding these optimal values of a0, a1 is known as fitting the
model. One can posit different criteria for defining “goodness” of the
model.

Here we use classic least squares fit, invented by Gauss. Given a
dataset {(h1, w1), (h2, w2), . . . , (hn, wn)} of n pairs of heights and
weights, the “goodness” of the model in (1.1) is

1
n

n

∑
i=1

(wi − a0 − a1hi)
2 (1.2)

Notice that wi − a0 − a1hi is the difference between the actual weight
wi and the predicted weight a0 + a1hi. This difference is called the
residual for the data point (hi, wi), and the full term in (1.2) is called
the average squared residuals, or equivalently the mean squared error
(MSE), of the dataset. The smaller the MSE, the closer the model’s
predictions are to actual weights, and the more accurate the model
is. Therefore, the “best” model according to the least squares method
would be the one defined by the values of a0, a1 that minimize (1.2).
In an ML setting, a mathematical expression like (1.2) that captures
the “badness” of the model is called a loss function. In general, we
find the “best” model by minimizing the loss function.

Example 1.1.1. If the data points (h, w) are given as {(65, 130), (58, 120),
(73, 160)}, the least squares fit will find the values of a0, a1 that minimize

1
3
((130− a0 − 65a1)

2 + (120− a0 − 58a1)
2 + (160− a0 − 73a1)

2)

which are a0 = − 510
13 , a1 = 35

13 .

Problem 1.1.2. Between the two lines in Figure 1.2, which is more preferred
by the least squares regression method?

Figure 1.2: Two lines that describe the
relationship of the same dataset.

Problem 1.1.3. Using calculus, give an exact expression for a0, a1 that
minimize (1.2). (Hint: (1.2) is quadratic in both a0 and a1. Fix the value of

linear regression: an introduction 17

a1 and minimize for a0. Then minimize for a1. Completing the square may
be useful.) 2 2 A more general calculus based ap-

proach will be introduced in a later
chapter.

1.1.1 Multivariate Linear Regression

One can generalize the above example to multi-variable settings. In
general, we have k predictor variables and one effect variable. 3 The 3 In the above example k = 1. The

predictor variable was height and effect
variable was weight.

data points consist of k + 1 coordinates, where the last coordinate is
the value y of the effect variable and the first k coordinates contain
values of the predictor variables x1, x2, . . . , xk. Then the relationship
we are trying to fit has the form

y = a0 + a1x1 + a2x2 + · · ·+ akxk (1.3)

and the least squares fit method will find the values of a0, a1, · · · , ak

that minimize

1
n

n

∑
i=1

(yi − a0 − a1xi
1 − a2xi

2 − · · · − akxi
k)

2 (1.4)

where (xi
1, xi

2, . . . xi
k, yi) is the i-th data point.

We can simplify the notation by rewriting everything above in
a vectorized notation. If we set x⃗ = (1, x1, x2, · · · , xk)

4 and a⃗ = 4 The 1 in the first coordinate is a
dummy variable to naturally include
the constant term into the vectorized
notation.

(a0, a1, · · · , ak), then the relationship we are trying to fit has the form

y = a⃗ · x⃗ (1.5)

and the least squares fit method will find a⃗ ∈ Rk+1 that minimize

1
n

n

∑
i=1

(yi − a⃗ · x⃗i)2 (1.6)

where (⃗xi, yi) is the i-th data point. We discuss how to find the best
values of a0, a1, . . . , ak later in Chapter 3; for now just assume that the
solution can be found.

1.1.2 Testing a model (Held-out Data)

A crucial step in machine learning is to test the trained/fitted model
on newly seen data, or held-out data, that was not used during training.
If we were to test the model in the above example, we would hold
out a portion of the data points (say 20%) — i. e., not use them during
training — and check the average squared residual of the model on
the held-out data points.

We can think of the average squared residual of the held-out data
as an estimate of the average squared residual of the fitted model on
the entire population of male adults. 5 The reason is that if the train- 5 If later in life you ever write up the

results of a regression study, be sure
to report the RMSE error, which is
the square root of the average square
residual on held-out data. Also report
the R2 value, which is closely related.

ing data points were a random sample of the adult male population,

18 introduction to machine learning lecture notes for cos 324 at princeton university

then so is the set of held-out data points. This is quite analogous to
opinion polls, where the opinions of a few thousand randomly sam-
pled individuals can be a reasonable estimate for the average opinion
across the US. The math for such sampling estimates is covered in
Chapter 18.

1.1.3 More about Linear Regression

In the above example, we used the least squares method, which uses
the average squared residual to assess the model. The least squares
fit is very common but other notions of fit may also be used. For
instance, instead of taking the sum of squares of residuals, one could
consider the sum of absolute values, or expressions using logarithms,
etc. We see some of these examples in Chapter 4.

It is important to note that the relationship learnt via regression —
and machine learning in general — is (a) approximate and (b) only
holds for the population that the data was drawn from. Therefore,
we cannot use the relationship to predict the output of a data that is
not from the same distribution. Additionally, if the distribution of
the data is shifted, the relationship no longer holds. We will discuss
more about this in depth in Chapter 2.

1.2 Using Linear Regression for Sentiment Prediction

1.2.1 Introduction

While you might have seen linear regression as early as in high
school, you probably did not see this cool application. In sentiment
classification, we are given a piece of text and have to label it with +1
if it expresses positive sentiment and −1 otherwise.

Example 1.2.1. Consider the following dataset, collected by showing snippets
of text to humans and asking them to label them as positive (+1) or negative
(−1)

The film’s performances are thrilling. +1
It’s not a great monster movie. −1

It is definitely worth seeing. +1
Unflinchingly bleak and desperate. −1

Table 1.1: Data from Stanford Sentiment
Treebank (SST). https://nlp.stanford.
edu/sentiment/treebank.html

How can we train a model to label text snippets with the correct
sentiment value, given a dataset of training examples? Here is an
idea to try to solve it using a linear regression model. We first enu-
merate all English words and assign a real-valued score to each word,
where the score for the i-th word is denoted by wi. These scores will

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html

linear regression: an introduction 19

be the parameters of the model. The output of the model, given a
training example, is defined as ∑j∈S wj where S is the multiset of
indices of words in the text. 6 Then the least squares method needs 6 Unlike in a set, an element can appear

multiple times in a multiset. For
example, if the word good appears twice
in a text, then S contains two copies of
good.

to solve the following optimization problem for a dataset of (text,
sentiment) pairs

minimize ∑
i

yi − ∑
j∈Si

wj

2

(1.7)

where Si is the multiset of words in the i-th piece of text. Each of the

values

(
yi − ∑

j∈Si
wj

)2

is called a least squares error or more generally

the loss for that particular training example. The full summation is
called a training loss of the dataset.

Example 1.2.2. Assume we are training a sentiment prediction model on
a dataset. Table 1.1 shows some of the model parameter values. Then the
output of the model on the sentence “I like this movie” from the training
data will be 0.15 + 0.55 + 0.03− 0.07 = 0.66. The output for “I dislike this
movie” from the training data will be 0.15− 0.74 + 0.03− 0.07 = −0.63

i word wi

1 I 0.15
2 like 0.55
3 dislike −0.74
4 this 0.03
5 movie −0.07
6 a 0

Table 1.2: Some of the parameter values
of a sentiment prediction model.

We can also cast this in the standard formulation of linear regres-
sion as follows. The bag of words (BoW) representation of a piece of
text is a vector in RN where N is the number of dictionary words.
The i-th coordinate is the number of times the i-th word appears in
the piece of text. This represents the text as a very long vector, one
coordinate per one English word in the dictionary. The vector usually
contains a lot of zeros, since most words probably do not appear in
this piece of text. If we denote the BoW vector as x⃗, the output of the
model is seen to be

∑
j∈S

wj = ∑
i

wixi

which shows that the linear model we have proposed for sentiment
prediction is just a subcase of linear regression (see (1.5)).

Example 1.2.3. Consider the same model in Example 1.2.2. The BoW repre-
sentation for the sentence “I like this movie” is (1, 1, 0, 1, 1, 0 · · ·). The BoW
representation for the sentence “I dislike this movie” is (1, 0, 1, 1, 1, 0 · · ·).

20 introduction to machine learning lecture notes for cos 324 at princeton university

1.2.2 Testing the Model

Here we use the model from Example 1.2.2 to illustrate the training
and testing process of a model. Assume that the following four
sentences were a part of the training dataset.

I like this movie. +1
I dislike this movie. −1

I like this. +1
I dislike this. −1

Table 1.3: A portion of the training data
for a sentiment prediction model.

Assuming that the model parameters are the same as reported in
Table 1.2, we can calculate the training loss of the sentence “I like this
movie” as (+1− 0.66)2 ≃ 0.12. Similarly, the squared residual for each
of the four training sentences in Table 1.3 can be calculated as

I like this movie. 0.12
I dislike this movie. 0.14

I like this. 0.07
I dislike this. 0.19

Table 1.4: The squared residual for four
training examples.

Now it is time to test the model. Assume that the sentence “I like
a movie” is provided to the model as a test data. The test loss can be
calculated in a way similar to the training loss as (+1− 0.63)2 ≃ 0.14.
But to actually test if the model produces the correct sentiment label
for this newly seen data, we now wish the model to output either +1
or −1, the only two labels that exist in the population. An easy fix
is to change the output of the model at test time to be sign(∑j∈S wj).
For this test data, the model will output sign(0.63) = +1.

On the Stanford Sentiment Treebank, this approach of training a
least squares model yields a success rate of 78% 7. By contrast, the 7 To be more exact, this result is from

a model called ridge regression model,
which is linear regression model
augmented by an ℓ2 regularizer, which
will be explained in Chapter 3

state-of-the-art deep learning methods yield success rates exceeding
96%!

One thing to note is that while the training loss is calculated and
explicitly used in the training process, the test loss is only a statistic
that is generated after the training is over. It is a metric to assess if
the model fitted on the training data also performs well for a more
general data.

1.2.3 Test Loss, Generalization, and Test accuracy

As mentioned already, the goal of training a model is that it should
make good predictions on new, previously-unseen data. Most models
will exhibit a low training loss, but not all of them show a low test
loss. This observation motivates the following definition:

Generalization Error = |training loss− test loss|

linear regression: an introduction 21

A trained model is said to generalize well if the generalization error
is small. In our case, the loss is the average squared residual. Thus
good generalization means that the average squared residual on test
data points is similar to that on the training data.

Let us see what happens on our sentiment model when it is fitted
and tested on the SST dataset.

Train MSE 0.0727
Test MSE 0.7523

Training accuracy 99.55%
Test accuracy 78.09%

Table 1.5: Accuracy refers to the classi-
fication accuracy when we make the
model to output only ±1 labels.

Example 1.2.4. The generalization error above is the difference between
MSE on test points and the MSE on training points, namely 0.75− 0.07 =

0.68.

Let’s try to understand the relationship between low test loss (the
squared residual) and high test accuracy (for what fraction of test
data points the sentiment was correct). Heuristically, the test loss
(average squared residual) being 0.75 means that the the absolute
value of the residual on a typical point is

√
0.75 ≈ 0.87. This means

that for a data point with an actual positive sentiment (i. e., label +1),
the output of the model is roughly expected to lie in the interval
[1 − 0.87, 1 + 0.87], and similarly, for a data point with an actual
negative sentiment (i. e., label −1), the output of the model is roughly
expected to lie in the interval [−1− 0.87,−1 + 0.87]. Once we take
the sign sign(∑j∈S wj) of the output of the model, the output is thus
likely to be rounded off to the correct label. We also note that the
training accuracy is almost 100%. This usually happens in settings
where the number of parameters (i. e., number of predictor variables)
exceeds the number of training data points (or is close to it). The
following problem explores this.

Problem 1.2.5. An expert on TV claims to have a formula to predict
the outcome of presidential elections. It uses 31 measurements of various
economic and societal quantities (inflation, divorce rate, etc). The formula
correctly predicts the winner of all elections 1928-2020. Should you believe
the formula’s prediction for the 2024 election? (Hint: Under fairly general
conditions, T + 1 completely nonsense variables — i.e., having nothing
to do with presidential politics — can be used to perfectly fit (via linear
regression) the outcomes for T past presidential elections. 8) 8 If a model does not generalize well,

then it is said to overfit the training
data.

1.2.4 Interpreting the Model

In many settings (e.g., medicine), an important purpose of regres-
sion modeling is to understand the data or the phenomenon a bit

22 introduction to machine learning lecture notes for cos 324 at princeton university

better. In this case, the phenomenon is “sentiment” and we are natu-
rally curious about what positive or negative sentiment amounts to.
Specifically, what caused the model’s output to be +1 or −1 given a
specific sentence?

Figure 1.3 shows a histogram of the values of wi, the parameters
of a sentiment prediction model that was trained on the Stanford
Sentiment Treebank. Positive values of wi imply that the words
carry a positive sentiment, while negative values of wi imply that the
words carry a negative sentiment. Also, the greater the absolute value
of wi is, the stronger the sentiment. Notice that most words have a
value of wi close to zero, meaning the model views most words as
neutral. The model “pays attention” to only a tiny set of words.

Words with high positive wi values (i. e., positive words) include
enjoyable, fun, and remarkable. Words with high negative values (i. e.,
negative words) include suffers, dull, and worst. Words with wi values
close to 0 (i. e., neutral words) include duty and desire.

Figure 1.3: A histogram of the learned
parameters wi of a sentiment predic-
tion model trained on the Stanford
Sentiment Treebank.

1.3 Importance of Featurization

In the sentiment model, we chose a particular method to represent
a piece of text with a vector. The coordinates of this vector are often
referred to as features and this process of converting data into vectors
is called featurization. One can conceive of other choices for featuriz-
ing text. For example, bigram featurization consists of the following:
the coordinates of the vector correspond to pairs of words and the
coordinate contains the number of times this pair of words appeared
consecutively in the piece of text. In contrast, the choice of featuriza-
tion from the earlier example matches each coordinate with a single
word, and is called a unigram featuraization.

linear regression: an introduction 23

Bigram features allow the model to access information about
phrases that were present in the text. For instance, in isolation
“pretty” is a positive word and “bad” is a negative word. If they
both occur in text one would imagine that they cancel each other out
as far as overall sentiment is concerned. But the phrase “pretty bad”
is more negative than “bad.” Thus bigram features can improve the
model’s ability to capture sentiment.

The required number of dimension for bigram representations can
get rather large. If the number of words is N, then the number of
coordinates is N2. Realize that the number of model parameters in
linear regressions is the same as the number of coordinates. Thus if
N is 30, 000 then the number of coordinates in bigram feature vector
(and hence the number of model parameters) is close to a billion,
which is a rather large number. In practice one might throw away
information for all pairs except say the 10, 000 most common ones
in the dataset. Usually models that incorporate bigram features do
better than unigram-only models.

If one is trying to do studies of medical treatment with regression,
there can be many potential featurizations of patient data. Doctors’
annotations, test results, X-ray scans, etc. all have to be converted
somehow into real-valued features, and the experimenter uses their
prior knowledge and intuitions while featurizing the data.

Example 1.3.1. Patients’ raw data might include height and weight.
If we use linear regression, the effect variable can only depend upon a
linear combination of height and weight. But it is known that several
health outcomes are better modeled using Body Mass Index, defined as
weight/(height2). Thus the experimenter may include a separate coordinate
for BMI, even though it duplicates information already present in the other
coordinates.

Example 1.3.2. In Example 1.3.1, the weight in pounds may span a range
of [90, 350], whereas cholesterol ratio may span a range of [1, 10]. It is often
a good idea to normalize the coordinate, which means to replace x with
(x− µ)/σ where µ is the mean of the coordinate values in the dataset and σ

is the standard deviation.

Thus the same raw dataset can have multiple featurizations, with
different number of coordinates. Problem 1.2.5 may make us wary
of using featurizations with too many coordinates. We will learn a
technique called regularization in Chapter 3, which helps mitigate the
issue identified in Problem 1.2.5.

24 introduction to machine learning lecture notes for cos 324 at princeton university

1.4 Linear Regression in Python Programming

In this section, we briefly discuss how to write the Python code to
perform linear regression (e.g., sentiment prediction). Python is often
the language of choice for many machine learning applications due
to its relative ease of use and the large variety of external packages
available to automate the process. Here, we introduce a few of these
packages:

• numpy: This package is ubiquitous throughout the machine learn-
ing community. It provides access to specialized array data struc-
tures which are implemented in highly optimized C code. Linear
algebra computations and array restructuring operations are signif-
icantly faster with numpy compared to using Python directly. 9 9 Documentation is available at https:

//numpy.org/

• matplotlib: This package enables Python programmers to create
high quality plots and graphs. Visualizations are highly config-
urable and interoperable with several other Python packages. 10 10 Documentation is available at https:

//matplotlib.org/

• sklearn: This package provides a potpourri of machine learning
and data science models through an easy to use object-oriented
API. In addition to linear regression, sklearn makes it possible to
implement SVMs, clustering, neural networks, and much more;
you will learn about a some of these models later in the course. 11 11 Documentation is available at https:

//scikit-learn.org/stable/index.

htmlThroughout this course, you will be asked to make use of func-
tions defined in some of these external packages. You may not always
be familiar with the usage of these functions. It is important to check
the official documentation to learn about the usage and the signature
of the functions.

The code snippet below uses the three aforementioned packages to
perform linear regression on any given dataset.

import necessary packages

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error as mse

import matplotlib.pyplot as plt

prepare train, test data

X = ...

y = ...

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

perform linear regression on train data

linreg = LinearRegression().fit(X_train, y_train)

pred_train = linreg.predict(X_train)

pred_test = linreg.predict(X_test)

print train results

print(’Train MSE: ’, ’{0:.4f}’.format(mse(y_train, pred_train)))

https://numpy.org/
https://numpy.org/
https://matplotlib.org/
https://matplotlib.org/
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html

linear regression: an introduction 25

print(’Test MSE: ’, ’{0:.4f}’.format(mse(y_test, pred_test)))

print(’Train Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_train)==y_train).

mean()))

print(’Test Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_test)==y_test).mean()

))

plot gold (actual) vs predicted value

plt.scatter(y_test, pred_test, c="red")

plt.xlabel("actual y value (y)")

plt.ylabel("predicted y value (y hat)")

plt.title("y vs y hat")

For readers who are not familiar with Python, we discuss some
key details. In the first section of the code, we import the relevant
packages

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error as mse

import matplotlib.pyplot as plt

As seen in this example, there are two ways to load a package. The
first option is to import the full package with the import keyword

import numpy as np

Notice that the we can assign the imported package a customized
name with the as keyword. In this case, we decided refer to the
package numpy with the name np throughout the rest of the code.
This is indeed the case when we call

np.sign()

Here we refer to the method sign() of the numpy package with the
customized name np. Alternatively, we can selectively import particu-
lar methods or classes with the from keyword

from sklearn.model_selection import train_test_split

The next part of the code is preparing the train, test data.

X = ...

y = ...

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

X will have to be an array of arrays, and y will have to be an array
of values, with the same length as X. These arrays can be defined di-
rectly by specifying each of their entries, or they could be read from
some external data (most commonly a csv file). Here, we present an
example dataset where x⃗ ∈ R2:

X = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]

y = [1, 1, 1, -1, -1]

Then we call the train_test_split() method to split the dataset into
data for model training and testing. Alternatively, we can split the

26 introduction to machine learning lecture notes for cos 324 at princeton university

dataset by manually slicing the data arrays. 12 In general, slicing 12 In Python, the term slicing refers to
the process of creating a subarray of an
array.

a Python array involves the : operator along with start and end
indices. For instance, consider an arbitrary array a. Then, the output
of a[i:j] will be a subarray of a from the index i (inclusive) to the
index j (exclusive). In the following code sample, we slice the data by
specifying the number of training data points

train_size = ...

X_train = X[:train_size]

X_test = X[train_size:]

y_train = y[:train_size]

y_test = y[train_size:]

Note that we have omitted some of the bounding indices. If the start
index is omitted, Python assumes it to be 0 (so that the subarray is
from the start of the array); for example, X[:train_size] is the first
train_size entries of X. If the end index is omitted, Python assumes it
to be n, the length of the array (so that the subarray ends at the end
of the array); for instance, X[train_size:] is the remaining entries of X,
once we remove the first train_size entries. Another way to slice the
arrays is by specifying the number of test data points

test_size = ...

X_train = X[:-test_size]

X_test = X[-test_size:]

y_train = y[:-test_size]

y_test = y[-test_size:]

Here, notice that the index -test_size is a negative number. In this case,
Python interprets this as n - test_size, where n is the size of the array.
In other words, it is the index of the test_size-th element from the
back of the array.

The third part of the code is fitting the linear regression model.

linreg = LinearRegression().fit(X_train, y_train)

pred_train = linreg.predict(X_train)

pred_test = linreg.predict(X_test)

The first line will generate the least squares fit model based on the
train data. Then we can have the model make predictions on the
train, test data.

Next, we print out the mean squared loss and the accuracy for the
train, test data.

print(’Train MSE: ’, ’{0:.4f}’.format(mse(y_train, pred_train)))

print(’Test MSE: ’, ’{0:.4f}’.format(mse(y_test, pred_test)))

print(’Train Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_train)==y_train).

mean()))

print(’Test Acc: ’, ’{0:.2f}’.format(100*(np.sign(pred_test)==y_test).mean()

))

Notice that we use the mse() method that we imported from the
sklearn package. Also notice that when computing the accuracy, we

linear regression: an introduction 27

changed the output of the model to be the sign of the predicted
values, so that we can compare them with the gold values. In many
cases, there are packages that perform these elementary operations
for machine learning.

Finally, we plot the actual and predicted values using the matplotlib
package.

plt.scatter(y_test, pred_test, c="red")

plt.xlabel("actual y value (y)")

plt.ylabel("predicted y value (y hat)")

plt.title("y vs y hat")

The first line draws a scatter plot with the y_test in the x-axis and
pred_test in the y-axis. Notice that you can specify the color of the
data points by specifying the value of the parameter c. In general,
parameters are optional values you can provide to Python functions.
If the values to parameters are omitted, the functions will use their
default values. The second and third lines specify the labels that will
be written next to the axes. The final line specifies the title of the
plot.

2
Statistical Learning: What It Means to Learn

Students often get confused about the meaning and significance of
a relationship learnt via fitting a model to data. Some of them think
such relationships are analogous to, say, a law of nature like F = ma,
which applies every time force is applied to a mass anywhere in the
universe. The main goal of this chapter is to explain the statistical
nature of machine learning — models are fitted on a particular dis-
tribution of data points, and its predictions are valid only for data
points from the same distribution. (See Chapter 18.)

2.1 A Warm-up Example

We work through a concrete example 1 before enunciating the gen- 1 This example is purely hypothetical,
and all numbers in this section are
made up.

eral properties of statistical learning. Suppose we are studying the
relationship between the following quantities for the population of
Princeton: height (H), number of exercise hours per week (E), amount of
calories consumed per week (C), and weight (W). After collecting infor-
mation from 200 randomly sampled residents, and using a 80/20
train/test split, we perform a linear regression on the training dataset
to come up with the following relationship:

W = 50 + H + 0.1C− 4E (2.1)

Let’s also say that the average squared residual on train and test
data were both 100. This means that the relationship (2.1) holds with
an error of 10 lbs on a typical test data point. 2 2 Also, the trained model exhibits perfect

generalization: test loss is the same as
training loss!Question 2.1.1. Alice was one of the Princeton residents in the study, but

the prediction of the model is very off from her actual value (squared residual
is 300). Does this prove the model wrong?

The answer is no. The least squares linear regression finds the
model that minimizes the average squared residual across all training
data points. The residual could be large for a particular individual.

30 introduction to machine learning lecture notes for cos 324 at princeton university

Question 2.1.2. There was a follow-up research for every Princeton resident
who is taller than 7 feet. All of them reported squared residual of 500. Does
this prove the model wrong?

The answer is still no. People who are taller than 7 feet make up
a tiny fraction of the entire population. Their residuals have a very
small effect on the average squared residual. The residual could be
large for a small subset of the population.

Question 2.1.3. There was a follow-up survey that tested the model on every
single Princeton resident. Is it possible that the average squared residual is
200 for the entire population?

The answer is yes, although it is unlikely. Consider the distribution
of 4-tuples (H, E, C, W) over the entire Princeton population. This is
some distribution over a finite set of 4-dimensional vectors. 3 The 200 3 31, 000 vectors to be more exact. The

population of Princeton is 31, 000.residents we surveyed were randomly drawn from this distribution.
Out of these 200 data points, 40 were randomly chosen to be held-
out as test data, while the remaining 160 were used as training data.
We can also say that these 40 data points were chosen at random
from the distribution over the entire population of Princeton. Thus
when we test the model in (2.1) on held-out data, we’re testing this
relationship over a random sample of 40 data points drawn from
the population. 40 is a large enough number to give us some con-
fidence that the average squared residual of the test data is a good
estimate of the squared residual in the population, but just as polling
errors happen during elections, there is some chance that this esti-
mate is off. In this case, we would say that the 40 test samples were
unrepresentative of the full population.

It is important to remember that the training and test data are
sampled from the same distribution as the population. Therefore,
the average squared residual of the training and test data are only a
good estimate of the squared residual of the distribution they were
sampled from. This also means that the relationship found from
the training data only holds (with small residue) for that particular
distribution. If the population is different, or if the distribution shifts
within the same population, the relationship is not guaranteed to
hold. For example, the relationship in (2.1) is not expected to hold for
people from Timbuktu, Mali (a different population), or for residents
of Princeton who are taller than 7 feet (a tiny subpopulation that
is likely unrepresentative of the population). Now consider the
following situation:

Question 2.1.4. It becomes fashionable in Princeton to try to gain weight.
Based on the relationship in (2.1), everyone decides to increase their value
of C and reduce their value of E. Does the model predict that many of them
will gain weight?

statistical learning: what it means to learn 31

The answer is no. The model was fitted to and tested on the distri-
bution obtained before everyone tried to gain weight. It has not been
fitted on the distribution of data points from people who changed
their values of C and E. In particular, note that if everyone reduces
their E and increases their C, then the distribution has definitely
changed — the average value of the E coordinate in this distribution
has decreased, whereas the average value of the C coordinate has
increased.

In general, a relationship learned from a fitted model illustrates
correlation and need not imply causation. The values of H, C, E in (2.1)
do not cause W to take a specific value. The equation only shows that
the values are connected via this linear relationship on average (with
some bounded square residuals).

2.2 Summary of Statistical Learning

The above discussion leads us to summarize properties of Statisti-
cal Learning. Note that these apply to most methods of machine
learning, not just linear regression.

Training/test data points are sampled from some distribution D: In the
above example, 200 residents were randomly sampled from the
entire population of Princeton residents.

The learnt relationship holds only for the distribution D that the data was sampled from.
The performance of the model on test data is an estimate of the
performance of the model on the full distribution D.

There is a small probability that the estimate using test data is off. This is
analogous to polling errors in opinion polls. The computation of
“confidence bounds” is discussed in Chapter 18.

2.3 Implications for Applications of Machine Learning

The above framework and its limitations have real-life implications.

1. Results of medical studies may not apply to minority populations. This
can happen if the minority population is genetically distinct and
constitutes only a small fraction of the population. Then test
error could be large on the minority population even if it is small
on average. In fact, there have been classic studies about heart
disease in the 1960s whose conclusions and recommendations
fail to apply well to even a group that is half of the population:
females! In those days heart disease was thought to largely strike
males (which subsequently turned out to be quite false) and so

32 introduction to machine learning lecture notes for cos 324 at princeton university

the studies were done primarily on males. It turns out that heart
diseases in female patients behave differently. Many practices
that came out of those studies turned out to be harmful to female
patients. 4 4 See https://www.theatlantic.

com/health/archive/2015/10/

heart-disease-women/412495/.2. Classifiers released by tech companies in the recent past were found to
have high error rates on certain minority populations. It was quickly
recognized that relying on test error alone can lead to adverse
outcomes on subpopulations. 5 5 See https://time.com/5520558/

artificial-intelligence-racial-gender-bias/.
3. Creating interactive agents is difficult. In an interactive setting (e.

g., an online game), a decision-making program is often called
an agent. When an agent has to enter an extended number of
interactions 6 with a human (or another agent designed by a 6 Later in the book we encounter

Reinforcement Learning, which deals
with such settings.

different group of researchers, as happens in Robocup soccer
7), then statistical learning requires that the agent to have been

7 See https://www.robocup.org/.
exposed to similar situations/interactions during training (i. e.,
from a fixed distribution). It is quite unclear if this is true.

https://www.theatlantic.com/health/archive/2015/10/heart-disease-women/412495/
https://www.theatlantic.com/health/archive/2015/10/heart-disease-women/412495/
https://www.theatlantic.com/health/archive/2015/10/heart-disease-women/412495/
https://time.com/5520558/artificial-intelligence-racial-gender-bias/
https://time.com/5520558/artificial-intelligence-racial-gender-bias/
https://www.robocup.org/

3
Optimization via Gradient Descent

This chapter discusses how to train model parameters through op-
timization techniques that help find the best (or fairly good) model
that has low training loss. We assume that you have seen simple
root-finding techniques in high school or in calculus. Optimization
in machine learning often uses a procedure called gradient descent.
This chapter assumes your knowledge of basic multivariable calcu-
lus. If you have not taken a course in multivariable calculus, read
Chapter 19 to familiarize yourself with the basic definitions.

3.1 Gradient Descent

In general, an ML model has an associated loss function. The “best”
model is the one that minimizes the training loss. In most cases, it is
impossible or difficult to find the minimum analytically; instead, we
use a numerical method called the gradient descent algorithm to find
the (approximate) optimum.

3.1.1 Univariate Example

Let’s start with an univariate example to motivate the topic. Let
f (w) = 4w2 − 6w− 9 be a quadratic function. Figure 3.1 shows the
graph of this function.

Figure 3.1: The graph of f (w) =
4w2 − 6w− 9

Let’s say that f attains its minimum at some point w = w∗. How

34 introduction to machine learning lecture notes for cos 324 at princeton university

should we find the value of w∗? Here is an idea. Let’s start from
some random point on the curve and “walk down” the curve.

Notice from the graph that f ′(w∗) = 0. Also, f is decreasing (i.
e., f ′(w) < 0) when w < w∗ and increasing (i. e., f ′(w) > 0) when
w > w∗. So if we examine a point w and find that f ′(w) = 0, then we
have arrived at our minimum. If f ′(w) > 0, then we are currently on
the right side of the minimum, so we need to decrease w. On the other
hand, if f ′(w) < 0, then we need to increase w.

For example, we start with the point w = 0. Since f ′(w) = −6 < 0,
we know that we are on the left side of the minimum, so we update
w ← 1. Since f ′(w) = 2 > 0, we are now on the right side of
the minimum, so we update w ← 1

2 . When we iterate this process,
we hope that we eventually slide down to the bottom of the curve.
Observe that the change of the value of w has the opposite sign from
f ′(w) at that point. That is, for each step of this iteration, we can
always find a η > 0 which decreases the value of w when

w← w− η f ′(w)

This is not a mere coincidence — a similar result holds for a multi-
variate function.

3.1.2 Gradient Descent (GD)

Let f : Rd → R be a multivariate function. If we want to “walk
down” the curve of f as in the univariate case, we need to find a
direction from the current point w⃗ that decreases f .

A generalization of the Taylor expansion in the multivariable
setting shows that the value of f in a small neighborhood around
x⃗ = (x1, x2, . . . , xd) can be approximated as a linear function in terms
of the gradient.

f (w⃗ + h⃗) ≈ f (w⃗) +∇ f (w⃗) · h⃗

where h⃗ ∈ Rd is small enough (i. e.,
∥∥∥⃗h
∥∥∥ ≈ 0).

If ∇ f is nonzero and we choose h⃗ = −η∇ f where η is a suffi-
ciently small positive number, then

f (w⃗− η∇ f) ≈ f (w⃗)− η∥∇ f ∥2
2

Since ∥∇ f ∥2
2 is positive, being the squared length of the vector ∇ f ,

we conclude that the update w⃗← w⃗− η∇ f causes a decrease in value
of f . 1 This discussion motivates the gradient descent algorithm, which 1 In fact, the gradient ∇ f is known as

the direction of steepest increase of f .
Hence, the opposite direction −∇ f is
the direction of steepest decrease of f .

iteratively decreases the value of f until ∇ f ≈ 0.

Definition 3.1.1 (Gradient Descent). Gradient descent is an iterative
algorithm that updates the weight vector w⃗ with the following rule:

w⃗← w⃗− η∇ f (w⃗) (3.1)

optimization via gradient descent 35

where η > 0 is a sufficiently small positive constant, called the learning
rate or step size.

We illustrate with an example.

Example 3.1.2. Let f (w1, w2) = (w2
1 + w2

2)
4 − 7(w2

1 + w2
2)

3 + 13(w2
1 +

w2
2)

2. From Figure 3.2, we see that it attains a global minimum at (0, 0).
The partial derivatives of f can be calculated as:

∂ f
∂w1

= 2w1(w2
1 + w2

2)(4(w
2
1 + w2

2)
2 − 21(w2

1 + w2
2) + 26)

∂ f
∂w2

= 2w2(w2
1 + w2

2)(4(w
2
1 + w2

2)
2 − 21(w2

1 + w2
2) + 26)

Now imagine initiating the gradient descent algorithm from the point
(0.5, 1) where the gradient vector is (7.5, 15). One iteration of gradient
descent with η = 0.01 would move from (0.5, 1) to (0.425, 0.85). The
gradient vector at (0.425, 0.85) is (7.90, 15.81) and the next iteration of GD
will move the point from (0.425, 0.85) to (0.35, 0.69). After 200 iterations,
the algorithm moves the point to (0.03, 0.06), which is very close to the
global minimum of f .

Figure 3.2: The graph of f (w1, w2) =
(w2

1 + w2
2)

4 − 7(w2
1 + w2

2)
3 + 13(w2

1 +
w2

2)
2. The function attains a global

minimum at (0, 0).

3.1.3 Learning Rate (LR)

Choosing an appropriate learning rate is crucial for GD. Figure 3.3
shows the result of two iterations of gradient descent with a different
learning rate. On the left, we see the result when η is too small. The
change of w is too small, and the loss function converges to the
minimum very slowly. On the right, we see the result when η is too
big. The change of w is too large, and the algorithm “shoots past” the
minimum. If η is even larger, the algorithm may even fail to converge
to the minimum.

36 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 3.3: Two iterations of gradient
descent with different learning rates.

The natural question to ask is: what is the appropriate learning
rate? There is some theory, and the best setting is known in some
cases. But in general, it has to be set by trial and error, especially
for non-convex loss functions. For instance, we start with some
learning rate, say 0.5 and decrease η by 1

2 if we do not observe a
steady decrease in the training loss. Such heuristics are called training
schedules and they are derived via trial and error on that particular
dataset and model. 2 2 Constants whose values are decided

by trial and error based on dataset
and model are called hyperparameters.
Modern ML models have several
hyperparameters. Often optimization
packages will suggest a default value
and a fine-tuning method.

3.1.4 Non-convex Functions

For convex functions that are “bowl shaped,” gradient descent with
a small enough learning rate provably converges to the minimum
solution. But for non-convex functions, the best we can hope for is
converging to a point where ∇ f = 0. 3 Finding the global minimum

3 Points where the gradient is zero are
called stationary points, which include
local minima, local maxima, and
saddle points. It is possible for a GD
algorithm to terminate at a saddle point,
instead of the intended local minimum.
There is advanced theory on how to
escape saddle points, which will not be
covered in this course.

of a non-convex function is NP-hard in the worst case.
In practice, loss functions are non-convex and have multiple local

minima. Then, the gradient descent algorithm may converge to a
different local minimum based on the initialization of the parameter
vector w⃗.

Figure 3.4: An example of a convex
and a non-convex function in two
variables. For non-convex functions,
GD will reach a stationary point, where
the gradient is zero. Figure from
https://www.kdnuggets.com/2016/

12/hard-thing-about-deep-learning.

html.

Example 3.1.3. Consider the function f (w) = 1
3 w4− 1

2 w3−w2 +w, which
has two local minima at (−1,−1) and (2,−1). As seen in Figure 3.5, the

https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html
https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html
https://www.kdnuggets.com/2016/12/hard-thing-about-deep-learning.html

optimization via gradient descent 37

local minimum that the gradient descent algorithm outputs depends on the
initial point.

Figure 3.5: The graph of f (w) =
1
3 w4 − 1

2 w3 − w2 + w with two local
minima.

3.2 Implications of the Linearity of a Gradient

The fact that gradient is a linear operator (i. e., ∇(f1 + f2) = ∇ f1 +

∇ f2) has great practical importance in machine learning.
Just like in (1.4), the training loss of a machine learning model is

usually defined as the average (or the sum) of the loss on individual
training data points. By the linearity of gradient, the gradient of the
entire loss can be found by taking the sum of the gradient of the loss
on individual data points.

3.2.1 Stochastic Gradient Descent

Since computing the gradient of the loss involves some computation
on each of the data points, the computation can be quite slow for
today’s large data sets, which can contain millions of data points.
A simple workaround is to estimate the gradient at each step by
randomly sampling k data points and averaging the corresponding
loss gradients. This is very analogous to opinion polls, which can
also be seen as sampling from a distribution on vectors and using the
average of the sample as a substitute for the population average. This
algorithm is called Stochastic Gradient Descent (SGD). 4 This technique 4 Some authors call this the Batch SGD

and use the name SGD only for the case
where k = 1.

works for two reasons: (1) all training data points are assumed to be
sampled from the same distribution; (2) the overall training loss is
just the sum/average of loss for individual data points.

3.2.2 Mini-batch Stochastic Gradient Descent

Today, large scale machine learning is done using special-purpose
processors called Graphical Processing Units (GPUs). 5 These highly 5 As the name suggests, these were

originally developed for computer
graphics operations, which were
most oftenly used in computer games.
Around 2012, deep learning experts
realized their usefulness for deep
learning. At that time, writing code
for GPUs was extremely difficult, but
today’s environments have made this
much easier.

38 introduction to machine learning lecture notes for cos 324 at princeton university

specialized architectures have the ability to perform fast parallel
computations. To exploit these special capabilities, a special vari-
ant of SGD — Mini-batch SGD — can be used. Here the dataset is
randomly partitioned into mini batches whose size is dictated by
the degree of parallelism available in the GPU, usually a power of 2,
such as 256. The members of each batch are loaded onto a different
processor. Together the processors compute the gradient for one mini-
batch in one go, add up the gradients to perform a single iteration for
the gradient descent. Then they move on to the next batch, perform
another update step, and so on.

3.2.3 Federated Learning

This is a conceptual framework for training an ML model on data be-
longing to different parties, some of whom do not wish to hand the
data over to a central server. Consider the following two examples:

1. Hospitals who wish to train an ML model on their pooled data,
but who are forbidden by privacy laws to hand the data to other
organizations.

2. Owners of Internet of Things (IoT) devices, who wish to benefit
from training on their data but do not wish to submit the data.

In Federated Learning, the model is trained at a central server,
whereas data remains with the data owners, who actively participate
in the training. Users retrieve the current model parameters from
the server and calculate the gradients locally. They send only the
gradients, but not the data, to the server, and the overall gradient is
calculated at the server as the weighted sum (or average) of the user
gradients.

3.3 Regularizers

This section describes regularization, a useful idea that often improves
generalization of the model. The main idea is that instead of min-
imizing the training loss function ℓ(w⃗), we minimize the function

ℓ(w⃗) + λR(w⃗) (3.2)

where λ > 0 is a constant and R(w⃗) is some non-negative function.
R(w⃗) is called a regularizer or sometimes penalty. We refer to (3.2) as
the regularized loss function.

The most commonly used regularizer is the ℓ2 regularizer where
the squared ℓ2 norm R(w⃗) = ∥w⃗∥2

2 of the weight vector is used.

optimization via gradient descent 39

Example 3.3.1. Recall the sentiment prediction model using least squares
loss. Suppose the training data consists of two data points: (⃗x1, y1) =

((1, 0, 1),−1) and (⃗x2, y2) = ((1, 1, 0),+1). Then the least squares loss,
without any regularizer, can be written as

1
2
((−1− (w0 + w2))

2 + (1− (w0 + w1))
2) (3.3)

A little thought suggests that the minimum value of this loss is 0 provided
there exists (w0, w1, w2) such that

(−1− (w0 + w2))
2 = 0 = (1− (w0 + w1))

2.

You can verify that infinitely many solutions exist: all w⃗∗ = (w0, w1, w2)

that lie on the line (0, 1,−1) + t(1,−1,−1) where t ∈ R. In other words,
the loss has infinitely many minimizers.

Now if impose an ℓ2 regularizer, the loss becomes

1
2
((−1− (w0 + w2))

2 + (1− (w0 + w1))
2) + λ(w2

0 + w2
1 + w2

2) (3.4)

Any minimizer of this loss must make the gradient zero. In other words, the
minimizer will satisfy the following system of linear equations:

(2 + 2λ)w0 + w1 + w2 = 0

w0 + (1 + 2λ)w1 = 1

w0 + (1 + 2λ)w2 = −1

You can verify that w⃗∗∗ =
(

0, 1
1+2λ ,− 1

1+2λ

)
is the unique minimizer for

any λ > 0. For a sufficiently small value of λ, the corresponding w⃗∗∗ is
close enough to the line (0, 1,−1) + t(1,−1,−1). That is, it has a non-zero
training loss, but the value is very close to zero. Combined with the fact it
has a relatively small norm, w⃗∗∗ becomes the minimizer for the regularized
loss.

Figure 3.6: The graph of the line
(0, 1,−1) + t(1,−1,−1) and the point
w⃗∗∗ = (0, 1

1+2λ ,− 1
1+2λ) when λ = 0.01

Note that if w⃗∗ is the minimizer of ℓ(w⃗) and w⃗∗∗ the minimizer
of the regularized loss, then by definition of a minimizer, it always

40 introduction to machine learning lecture notes for cos 324 at princeton university

holds that ℓ(w⃗∗) ≤ ℓ(w⃗∗∗). In general, regularization ends up lead-
ing to training models with a higher value of ℓ(w⃗). This is considered
acceptable because the models often generalize better. In other words,
a slightly higher training loss is considered a price worth paying for a
significantly lower test loss. This is illustrated by the example of sen-
timent prediction from Chapter 1. As hinted there, the results shown
used a model trained with an ℓ2 regularizer. The dataset involves 15k
distinct words, so that is the number of model variables. There are
8k data points. Recall from Problem 1.2.5 that in such settings, there
usually will exist a linear model that perfectly fits the data points.
Indeed, we see in Table 3.1 that this is the case when we don’t use a
regularizer. However, using a regularizer prevents the model from
perfectly fitting the training data. But the test loss drops tenfold with
regularization.

No regularizer With ℓ2-regularizer
Train MSE 0.0000 0.0727
Test MSE 7.9469 0.7523

Training accuracy 100.00% 99.55%
Test accuracy 61.67% 78.07%

Table 3.1: Training sentiment model on
the SST with and without ℓ2 regularizer.

3.3.1 Effects of Regularization

Here we briefly list some benefits of regularization.

1. Regularizers often help improve generalization. Above we saw a
concrete example with the sentiment prediction model.

2. Adding a scalar multiple of ∥w⃗∥2
2 to a function can speed up

optimization by slightly reshaping the optimization landscape.
The mathematical treatment of this is beyond the scope of this
course.

3. Without a regularizer term, models such as logistic regression and
soft-margin SVMs begin to lose their power. This will be explained
when we discuss these models in Chapter 4.

3.3.2 Why Does Regularization Help?

The simplest answer is that we do not fully understand this concept
yet. In this section, we present some intuitions derived from simple
models, but keep in mind that these ideas might be misleading in
more complicated models.

The usual explanation given is that the norm of the parameter
vector controls the expressiveness or complexity of the model. Here
“complexity” is being used in the sense of “complicatedness”. By

optimization via gradient descent 41

trying to minimize loss as well as the norm of the parameter vector,
the learned model tends to stay simple. 6 Whereas this discussion 6 Recall the famous Occam’s Razor for

judging goodness of scientific theories:
The simpler the theory that explains the
known facts, the more likely it is to be
correct. An ML model can be seen as a
“theory” about relationships in the data,
and thus the simplest theory is to be
preferred.

can be made fairly rigorous for linear models, it does not seem to
apply to more complicated models; for instance, regularization often
helps a lot in deep learning, but rigorous explanations appear to be at
best incomplete and at worst incorrect there. 7

7 See the blog https://www.offconvex.

org for posts about generalization and
deep learning. They also discuss how
other ideas such as VC dimension,
which we did not cover in this course,
also do not apply in deep learning.

Another explanation 8 is that a regularizer serves as a penalty for

8 See the online lecture video by An-
drew Ng. https://www.youtube.com/
watch?v=QjOILAQ0EFg

large weights and forces the model to choose smaller absolute values
of parameters. According to this explanation, adding regularizers to
a model penalizes higher-order terms or unnecessary variables and
is able to avoid overfitting. Indeed, Figure 3.7 shows that the weights
of the parameters in our sentiment model are significantly smaller
when trained with a regularizer. But one lingering question with
this explanation is: How come attaching the same penalty to all variables
forces the model to identify variables that are needed, and those that are not?
What causes this disparate treatment of the variables?

Figure 3.7: The histogram of weights of
the parameters in the sentiment predic-
tion model with (right) or without (left)
an ℓ2 regularizer.

Now consider this explanation — ℓ2 regularization introduces a
new dynamic to gradient descent, whereby gradient updates have to
constantly battle against a rescaling that is always trying to whittle
all variables down to zero. The effort succeeds only for variables
where gradient updates are pushing hardest to make them nonzero.
Therefore, the weights for “necessary” variables survive, while
“unnecessary” variables are thrown away. To say this more precisely,
consider the regularized loss ℓ(w⃗) + λ ∥w⃗∥2

2 whose gradient is

∇ℓ+ 2λw⃗

Thus the update rule in gradient descent can be written as

w⃗t+1 ← w⃗t − η(∇ℓ+ 2λw⃗t)

where w⃗t denotes the weight vector at the t-th time step. This update
rule can be rewritten as

w⃗t+1 ← w⃗t(1− 2ηλ)− η∇ℓ (3.5)

The first term is down-scaling: if for example η = λ = 0.1, this
amounts to multiplying the current vector by 0.98, and this of course
will make w⃗ very small in a few hundred iterations.

https://www.offconvex.org
https://www.offconvex.org
 https://www.youtube.com/watch?v=QjOILAQ0EFg
 https://www.youtube.com/watch?v=QjOILAQ0EFg

42 introduction to machine learning lecture notes for cos 324 at princeton university

The second term is the gradient update to w⃗. It can counteract
the down-scaling by making the variables larger. But notice that the
amount of change is based on how much each of the coordinates con-
tribute to reducing the loss. Variables that are not useful will tend not
to get increased by the gradient update and thus will keep getting
down-scaled to low values. 9 The choice of λ mediates between these 9 It is one of those “use it or lose it”

situations!two processes.

3.4 Gradient Descent in Python Programming

In this section, we briefly discuss how to implement the Gradient De-
scent algorithm in Python. It is customary to use the numpy package
to speed up computation and the matplotlib package for visualization.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm # colormap

initialize variables

num_iter = ...

x = np.zeros(num_iter + 1)

y = np.zeros(num_iter + 1)

x[0], y[0], eta = ...

define functions to calculate f and grad_f

def f(x, y):

...

return f

def grad_f(x, y):

...

return grad_f

run Gradient Descent

for i in range(num_iter):

grad_x, grad_y = grad_f(x[i], y[i])

x[i + 1] = x[i] - eta * grad_x

y[i + 1] = y[i] - eta * grad_y

plot the surface

xmin, xmax, ymin, ymax, n = ...

X, Y = np.meshgrid(np.linspace(xmin, xmax, n),

np.linspace(ymin, ymax, n))

Z = f(X, Y)

fig = plt.figure(figsize=(12, 10))

ax = fig.add_subplot(projection=’3d’)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

ax.view_init(elev=ax.elev, azim=ax.azim)

ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, alpha=0.5)

plot the trajectory of Gradient Descent

ax.plot(x, y, f(x, y), color=’orange’, markerfacecolor=’black’,

markeredgecolor=’k’, marker=’o’, markersize=5)

optimization via gradient descent 43

We first start off by importing necessary packages and initializing
variables. The following code initializes numpy arrays of length
num_iter + 1, with all entries initialized to 0

x = np.zeros(num_iter + 1)

y = np.zeros(num_iter + 1)

Sometimes, it is useful to make use of np.ones(), which will generate
arrays filled with entries equal to 1.

We then define functions that will calculate the values of f and ∇ f
given an array of data points (x, y).

def f(x, y):

...

return f

def grad_f(x, y):

...

return grad_f

This allows us to run the Gradient Descent algorithm as in

for i in range(num_iter):

grad_x, grad_y = grad_f(x[i], y[i])

x[i + 1] = x[i] - eta * grad_x

y[i + 1] = y[i] - eta * grad_y

Here we iteratively update the value of (x, y) using ∇ f (x, y) and
store each of the points in the array x and y.

We next plot the surface of the function f (x, y). To start, we first
create a grid of (x, y) points to evaluate f (x, y) at.

X, Y = np.meshgrid(np.linspace(xmin, xmax, n),

np.linspace(ymin, ymax, n))

Z = f(X, Y)

The function call np.linspace(min, max, n) generates an array of n
equally spaced values from min to max. For example, the code

np.linspace(-2, 2, 5)

will create an array [−2,−1, 0, 1, 2]. Then np.meshgrid(x, y) will create
a grid from the array of x values and the array of y values. We can
now perform the 3D plotting with the following code.

fig = plt.figure(figsize=(12, 10))

ax = fig.add_subplot(projection=’3d’)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

ax.view_init(elev=ax.elev, azim=ax.azim)

ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, alpha=0.5)

Feel free to change the values of the optional parameters to under-
stand their purpose. Unlike the code for plotting a scatter plot of a

44 introduction to machine learning lecture notes for cos 324 at princeton university

linear regression in Chapter 1, here we create an object of the Axes
class with the function plt.figure().gca()10. Then we call its instance 10 You can read more about the

differences between these two
matplotlib interfaces at https:
//matplotlib.org/matplotblog/posts/

pyplot-vs-object-oriented-interface/

methods to add features to it (e.g., x-, y-, z-labels).
Finally, we can plot the trajectory of the Gradient Descent algo-

rithm with the code

ax.plot(x, y, f(x, y), color=’orange’, markerfacecolor=’black’,

markeredgecolor=’k’, marker=’o’, markersize=5)

You can alternatively call

ax.scatter(x, y, f(x, y))

but the names of optional parameters might be slightly different.

3.4.1 Using Machine Learning Packages

When the function f is simple and it is possible to calculate ∇ f by
hand, we can implement the Gradient Descent algorithm by hand
as in the previous subsection. However, in most ML programs, the
loss function f is very high-dimensional, and it is difficult to write
a single function to directly compute the gradient ∇ f . Instead, we
can make use of functions defined in popular ML packages. Here, we
introduce one such package called PyTorch:

• torch: This is a popular package used for designing and train-
ing machine learning models. PyTorch uses an object-oriented
interface for user convenience and provides access to optimized
array data structures called tensors to make computations faster
and more efficient. The package also provides support for GPU
training. 11 11 Documentation is available at https:

//pytorch.org/docs/stable/index.

htmlUsing PyTorch, Gradient Descent can be implemented in just a few
lines:

import torch

model = ...

opt = torch.optim.SGD(model.parameters(), lr=0.1)

The code above will create an instance of the Optimzer class, which
has pre-defined methods that will compute the gradients and auto-
mate the Gradient Descent process.

3.4.2 Beyond Vanilla Gradient Descent

If you visit the documentation for torch.optim, 12 you may notice that 12 https://pytorch.org/docs/stable/

optim.htmlthere are other algorithms listed as an alternative to the Stochastic
Gradient Descent. A lot of these algorithms are extensions of the GD
algorithm we explained throughout this chapter, which have proven
to be more effective than the vanilla GD algorithm in certain cases

https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

optimization via gradient descent 45

(e.g., Adam, Adagrad, Nesterov momentum). For example, these
algorithms may choose to add a momentum to the gradient, so that
the rate of change of f will be accelerated if it has been updating in
the same direction in the recent few steps. These algorithms may also
choose to use a different learning rate for each of the model param-
eters. In particular, an appropriate learning rate can be computed
based on the mean and the variance of the gradient values from the
recent few steps.

4
Linear Classification

Multi-way Classification is a task of learning to predict a label on
newly seen data out of k possible labels. In binary classification, there
are only two possible labels, say ±1. Sentiment prediction in Chap-
ter 1 was an example of a binary classification task. In this chapter,
we introduce two other linear models that perform binary classi-
fication: logistic regression and Support Vector Machines (SVMs).
From these two models, we learn more about the thought process of
designing loss functions that are appropriate to the task. 1 1 All the linear models we will study fall

under an all-encompassing framework
called Generalized Linear Models. If you
ever are faced with a new situation
where none of the models below are an
exact match, try looking up this general
framework.

In this chapter, we are interested in using linear models to perform
classification. In a binary classification problem, the training dataset
consists of (point, label) pairs (⃗x, y) where y can take two values (e.g.,
{±1} or {0, 1}). In a more general multi-class classification problem,
the data has one of k labels, drawn from {0, 1, . . . , k− 1}.

4.1 General Form of a Linear Model

You already encountered a linear model in Chapter 1 — the least
squares regression model for sentiment prediction. Given an input x⃗,
we learned a parameter vector w⃗ that minimizes the loss ∑i(yi − w⃗ ·
x⃗i)2. The model can be seen as mapping an input vector x⃗ to a real
value w⃗ · x⃗. For sentiment classification, we changed this real-valued
output at test time to ±1 by outputting sign(w⃗ · x⃗).

You probably wondered there: Why don’t we simply use sign(w⃗ · x⃗)
directly as the output of the model while training? In other words, why
not do training on the following loss:

∑
i
(yi − sign(w⃗ · x⃗i))2 (4.1)

The answer is that using the sign(z) function in the loss makes
gradient-based optimization ill-behaved. The derivative of sign(z) is
0 except at z = 0 (where the derivative is discontinuous) and thus the
gradient is uninformative about how to update the weight vector.

48 introduction to machine learning lecture notes for cos 324 at princeton university

So the work-around in Chapter 1 (primarily for ease of exposition)
was to train the sentiment classification model using the least squares
loss ∑i(yi − w⃗ · x⃗i)2, which in practice is used more often in settings
where the desired output yi is real-valued output as opposed to bi-
nary. This gave OK results, but in practice one would use either of
the two linear models 2 introduced in this chapter: Logistic Regression 2 They are called linear because they use

the mapping x⃗ 7→ w⃗ · x⃗.and Support Vector Machines. These are similar in spirit to the linear
regression model — (1) given an input x⃗, the models learn a parame-
ter vector w⃗ that minimizes a loss, defined as a differentiable function
on w⃗ · x⃗; (2) at test-time, the model outputs sign(w⃗ · x⃗). 3 The main 3 There are other ways to output a

discrete ±1 label, but using the sign
function is the most canonical way. We
will discuss the behavior of the models
at test-time later in the chapter.

difference, however, is that the loss for the linear models introduced
in this chapter is designed specifically for the binary classification
task. Pay close attention to our “story” for why the loss makes sense.
This will prepare you to understand any new loss functions you
come across in your future explorations.

4.2 Logistic Regression

The logistic regression model arises from thinking of the answer
as being probabilistic: the model assigns a “probability” to each of
the two labels, with the sum of the two probabilities being 1. 4 This 4 This “probability” is what is called

subjective probability, analogous to what
we mean when say things like “I am
99 percent sure my friend X will like
movie Y.” There is only one person
X and one movie Y and they are not
drawn from some probability space.
Instead we’re expressing a subjective
feeling of near-certainty based upon
past observations of person X.

paradigm of a probabilistic answer is a popular way to design loss
functions in a host of ML settings, including deep learning.

Definition 4.2.1 (Logistic model). Given the input x⃗, 5 the model assigns

5 As in Chapter 1 we assume x⃗ contains
a dummy coordinate x0 that is 1 at
all points: this allows us to include a
constant bias term when we take the
dot product w⃗ · x⃗ with the weight vector.

the “Probability that the output is +1” to be

σ(w⃗ · x⃗) = 1
1 + exp(−w⃗ · x⃗) (4.2)

where σ is the sigmoid function (see Chapter 19). This implies that “Proba-
bility that the output is −1” is given by

1− 1
1 + exp(−w⃗ · x⃗) =

exp(−w⃗ · x⃗)
1 + exp(−w⃗ · x⃗) =

1
1 + exp(w⃗ · x⃗) (4.3)

See Figure 4.1. Note that “the probability that the output is +1”
is greater than 1

2 precisely if w⃗ · x⃗ > 0. Furthermore, increasing the
value of w⃗ · x⃗ causes the probability to rise towards 1. Conversely, if
w⃗ · x⃗ < 0, then “the probability of label −1” is greater than 1

2 . When
w⃗ · x⃗ = 0, the probability of label +1 and −1 are both equal to 1

2 . In
this way, the logistic model can be seen as a continuous version of the
sign(w⃗ · x⃗).

Example 4.2.2. If x⃗ = (1,−3) and w⃗ = (0.2,−0.1), then the probability of
label +1 is

1
1 + exp(−0.2− 0.3)

=
1

1 + e−0.5 ≃ 0.62

linear classification 49

Figure 4.1: The graph of the probability
that the output of a logistic model is +1

(red) or -1 (blue) given w⃗ · x⃗.

4.2.1 Defining Goodness of Probabilistic Predictions

Thus far, we explained how the logistic model generates its output
given an input vector x⃗ and the current weight vector w⃗. But we have
not yet talked about how to train the model. To define a loss function,
we need to decide what are the “good” values for w⃗. Specifically, we
formulate a definition of “quality” of probabilistic predictions.

Definition 4.2.3 (Maximum Likelihood Principle). Given a set of
observed events, the goodness of a probabilistic prediction model 6 is the 6 This is a definition of goodness, not the

consequence of some theory.probability it assigned to the set of observed events.

We illustrate with an example.

Example 4.2.4. You often see weather predictions that include an estimate
of the probability of rain. Table 4.1 shows the predictions by two models at
the start of each day of the week. After the week is over, we have observed if
it actually rained on each of the days. Based on these observations, which
model made better predictions this week?

M T W Th F
Model 1 60% 20% 90% 50% 40%
Model 2 70% 50% 80% 20% 60%
Rained? Y N Y N N

Table 4.1: Weather predictions by Model
1 and Model 2.

We can answer this question by seeing which model assigns higher
likelihood to the events that were actually observed (i.e., whether or not it
rained). For instance, the likelihood of the observed sequence according to
Model 1 is

0.6× (1− 0.2)× 0.9× (1− 0.5)× (1− 0.4) = 0.1296

50 introduction to machine learning lecture notes for cos 324 at princeton university

The corresponding number for Model 2 is 0.0896 (check this!). So Model 1
was a “better” model for this week.

4.2.2 Loss Function for Logistic Regression

We employ the Maximum Likelihood Principle from the previous
part to define the loss function for the logistic model. Suppose we
are provided the labeled dataset {(⃗x1, y1), (⃗x2, y2), . . . , (⃗xN , yN)} for
training where yi is a ±1 label for the input x⃗i. By the description
given in Definition 4.2.1, the probability assigned by the model with
the weights w⃗ to the i-th labeled data point is

1
1 + exp(−yiw⃗ · x⃗i)

which means that the total probability (“likelihood”) assigned to the
dataset is

P =
N

∏
i=1

1
1 + exp(−yiw⃗ · x⃗i)

(4.4)

We desire the model w⃗ that maximizes P. Since log(x) is an increas-
ing function, the best model is also the one that maximizes log P,
hence the one that minimizes − log P = log 1

P . This leads to the
logistic loss function:

log

(
N

∏
i=1

(1 + exp(−yiw⃗ · x⃗i))

)
=

N

∑
i=1

log(1 + exp(−yiw⃗ · x⃗i)) (4.5)

Note that this expression involves a sum over training data points,
which as discussed in Section 3.2, is a very desirable and practical
property of loss in machine learning.

Problem 4.2.5. Verify that the gradient for the logistic loss function is

∇ℓ =
N

∑
i=1

−yi⃗xi

1 + exp(yiw⃗ · x⃗i)
(4.6)

4.2.3 Using Logistic Regression for Roommate Matching

In this part, we use the following example to illustrate some of the
material covered in the previous parts.

Example 4.2.6. Suppose Princeton University decides to pair up newly
admitted undergraduate students as roommates. All students are asked to
fill a questionnaire about their sleep schedule and their music taste. The
questionnaire is used to generate a compatibility score in [0, 1] for each of
the two attributes, for each pair of students. Table 4.2 shows the calculated

linear classification 51

Sleep (S) Music (M) Compatible?
1 0.5 +1

0.75 1 +1
0.25 0 −1

0 1 −1

Table 4.2: Sample data of compatibility
scores for four pairs of students.

compatibility scores for four pairs of roommates from previous years and
whether or not they turned out to be compatible (+1 for compatible, −1 for
incompatible).

We wish to train a logistic model to predict if a pair of students
will be compatible based on their sleep and music compatibility
scores. To do this, we first convert the data in Table 4.2 into a vector
form.

x⃗1 = (1, 1, 0.5)

x⃗2 = (1, 0.75, 1)

x⃗3 = (1, 0.25, 0)

x⃗4 = (1, 0, 1)

y1 = +1

y2 = +1

y3 = −1

y4 = −1

(4.7)

where the first coordinate xi
0 of x⃗i is a dummy variable to introduce a

constant bias term, and the second and third coordinates are respec-
tively for sleep and music compatibility scores.

Figure 4.2: Graph representing the
points in Table 4.2. The x-, y-axis in
the graph correspond to the Sleep
and Music compatibility scores, or the
second and third coordinates in (4.7).

Consider two models — Model 1 with the weight vector w⃗1 =

(0, 1, 0) and Model 2 with the weight vector w⃗2 = (0, 0, 1). Model 1
only looks at the sleep compatibility score to calculate the probability
that a pair of students will be compatible as roommates, whereas

52 introduction to machine learning lecture notes for cos 324 at princeton university

Model 2 only uses the music compatibility score. For example, Model
1 assigns the probability that the first pair of students are compatible
as

σ(w⃗1 · x⃗1) =
1

1 + exp(−1)
≃ 0.73

We can calculate the probability for the other pairs and for Model 2

and fill out the following Table 4.3:

Pair 1 Pair 2 Pair 3 Pair 4
Model 1 0.73 0.68 0.56 0.50
Model 2 0.62 0.73 0.50 0.73

Compatible? Y Y N N

Table 4.3: Roommate compatibility
predictions by Model 1 and Model 2.

Then the likelihood of the observations (YYNN) according to
Model 1 can be calculated as

0.73× 0.68× (1− 0.56)× (1− 0.50) ≃ 0.11

where as the likelihood of the observations according to Model 2 is

0.62× 0.73× (1− 0.50)× (1− 0.73) ≃ 0.06

Therefore, the Maximum Likelihood Principle tells us that Model 1 is
a “better” model than Model 2.

The full logistic loss for this training data can be written as

4

∑
i=1

log(1 + exp(−yiw⃗ · x⃗i)) = log(1 + exp(−(w0 · 1 + w1 · 1 + w2 · 0.5))+

log(1 + exp(−(w0 · 1 + w1 · 0.75 + w2 · 1))+
log(1 + exp(w0 · 1 + w1 · 0.25 + w2 · 0)+
log(1 + exp(w0 · 1 + w1 · 0 + w2 · 1)

and the values that minimize this loss can be found as w0 ≈ −21, w1 ≈
32, w2 ≈ 8.9.

4.2.4 Testing the Model

After training the model on the training data, we can use it to define
label probabilities on any new data point. However, the probabilities
do not explicitly tell us what label to output on a new data point.
There are two options:

1. (Probabilistic) If p is the probability of the label +1 according
to (4.2), then use a random number generator to output +1 with
probability p and −1 with probability 1− p.

2. (Deterministic) Output the label with a higher probability.

linear classification 53

Recall from an earlier discussion that Pr[+1] ≥ Pr[−1] if and
only if w⃗ · x⃗ ≥ 0. In other words, the second deterministic option is
equivalent to the sign(z) function: sign(w⃗ · x⃗)!

We conclude that logistic regression is quite analogous to what we
did in Chapter 1, except instead of least squares loss, we are using
logistic loss to train the model. The logistic loss is explicitly designed
with binary classification in mind. 7 7 Using logistic loss (and ℓ2 regularizer)

instead of least squares in our senti-
ment dataset boosts test accuracy from
78.1% to 80.7%.4.3 Support Vector Machines

A Support Vector Machine (SVM) 8 is also a linear model. It comes in 8 From An optimal algorithm for training
maximum margin classifiers. by Boser,
Guyon, and Vapnik in COLT 1992. The
name Support Vector Machine comes
from a theorem that characterizes
the optimum model in terms of “sup-
port vectors.” We will not cover that
theorem here.

several variants, including a more powerful kernel SVM that we will
not study here. But this rich set of variants made it an interesting
family of models, and it is fair to say that in the 1990s its popularity
was somewhat analogous to the popularity of deep nets today. It
remains a very useful model for your toolkit. The version we are
describing is a so-called soft margin SVM.

As in the least squares regression, the main idea in designing the
loss is that the label should be +1 or −1 according to sign(w⃗ · x⃗). But
we want to design a loss with a well-behaved gradient that provides
a clearer direction of improvement. To be more specific, we want the
model to have more “confident” answers, and we will penalize the
model if it comes up with a correct answer but with a low degree of
“confidence.”

For z ∈ R, let us define

Hinge(z) = max{0, 1− z} (4.8)

Figure 4.3: The graph of the hinge
function.

Note that this function is always at least zero, and strictly positive
for z < 1. When z decreases to negative infinity, there is no finite
upper bound to the value. The derivative is zero for z > 1 and 1 for
z < 1. The derivative is currently undefined at z = 1, but we can
arbitrarily choose between 0 or 1 as the newly defined value.

For a single labeled data point (⃗x, y) where y ∈ {−1, 1}, the SVM
loss is defined as

ℓ = Hinge(yw⃗ · x⃗) (4.9)

and its gradient is

∇ℓ =

−y⃗x yw⃗ · x⃗ < 1

0 yw⃗ · x⃗ > 1

The SVM loss for the entire training dataset can be defined as

∑
i

Hinge(yiw⃗ · x⃗i) (4.10)

54 introduction to machine learning lecture notes for cos 324 at princeton university

that is, the sum of the SVM loss on each of the training data points.
Suppose y = +1. Then this loss is 0 only when w⃗ · x⃗ > 1. In other

words, making loss zero not only requires w⃗ · x⃗ to be positive, but also
be comfortably above 0. If w⃗ · x⃗ dips below 1, the loss is positive and
increases towards +∞ as w⃗ · x⃗ → −∞. (Likewise if the label y = −1,
then the loss is 0 only when w⃗ · x⃗ < −1.)

Recall that the goal of a gradient-based optimization algorithm is
to minimize the loss. Therefore, the loss gives a clear indication of
the direction of improvement until the data point has been classified
correctly with a comfortable margin away from 0, out of the zone of
confusion.

Example 4.3.1. Recall the roommate compatibility data from Table 4.2.
Consider the soft-margin SVM with the weight vector w⃗ = (−1.5, 3, 0).
This means the decision boundary — the set of points where w⃗ · x⃗ = 0 — is
drawn at Sleep = 1

2 , and the margins — the set of points where w⃗ · x⃗ = ±1
— are drawn at Sleep = 5

6 and Sleep = 1
6 . Figure 4.4 shows the decision

boundary and the two margin lines of the model. The SVM loss is zero
for the point (1, 0.5) because it is labeled +1 and away from the decision
boundary with enough margin. Similarly, the loss is zero for the point (0, 1).
The loss for the point (0.75, 1), however, can be calculated as

Hinge(1 · (−1.5 · 1 + 3 · 0.75)) = 0.25

and similarly, the loss for the point (0.25, 0) is 0.25.

Figure 4.4: The decision boundary of
a soft-margin SVM on the roommate
matching example. The region to the
left of the two dotted lines is where
the model confidently classifies as
−1; the region to the right is where it
confidently classifies as +1; and the
region between the two dotted lines is
the zone of confusion.

The gradient of the loss at the point (0.75, 1) is

−y⃗x = (−1,−0.75,−1)

linear classification 55

and the update rule for a gradient descent algorithm will be written as

w⃗← (−1.5, 3, 0)− 0.1(−1,−0.75,−1) = (−1.4, 3.075, 0.1)

where η = 0.1, and the new SVM loss will be

Hinge(1 · (−1.4, 3.075, 0.1) · (1, 0.75, 1)) = 0

which is now lower than the SVM loss before the update.

4.4 Multi-class Classification (Multinomial Regression)

So far, we have only seen problems where the model has to classify
using two labels ±1. In many settings there are k possible labels
for each data point 9 and the model has to assign one of them. The 9 This is the case in most settings in

modern machine learning. For instance
in the famous ImageNet challenge, each
image belongs to one of 1000 classes.

conceptual framework is similar to logistic regression, except the
model defines a nonzero probability for each label as follows. The
notation assumes data is d-dimensional and the model parameters
consist of k vectors θ⃗1, θ⃗2, . . ., θ⃗k ∈ Rd. We define a new vector z⃗ ∈ Rk

where each coordinate zi satisfies zi = θ⃗i · x⃗. Then the probability
of a particular label is defined through the softmax function (see
Chapter 19):

Pr[label i on input x⃗] = so f tmax(⃗z)

=
exp(⃗θi · x⃗)

∑k
j=1 exp(⃗θ j · x⃗)

(4.11)

This distribution can be understood as assigning a probability to
label i such that it is exponentially proportional to the value of θ⃗i · x⃗.

Problem 4.4.1. Using the result of Problem 19.2.4, verify that the definition
of logistic regression as in (4.2), (4.3) are equivalent to the definition of
multi-class regression as in (4.11).

Problem 4.4.2. Reasoning analogously as in logistic regression, derive a
training loss for this model using Maximum Likelihood Principle.

Since exp(z) > 0 for every real number z the model above assigns
a nonzero probability to every label. In some settings that may be
appropriate. But as in case of logistic regression, at test time we also
have the option of extracting a deterministic answer out of the model:
the i ∈ {1, 2, . . . , k} that has the largest value of θ⃗ j · x⃗.

4.5 Regularization with SVM

It is customary to use a regularizer, typically ℓ2, with logistic regres-
sion models and SVMs. When a ℓ2 regularizer is applied, the full

56 introduction to machine learning lecture notes for cos 324 at princeton university

SVM loss is rewritten as

∑
i

Hinge(yiw⃗ · x⃗i) + λ ∥w⃗∥2
2 (4.12)

Let’s see why regularization is sensible for SVMs, and even needed.
The Hinge function (4.8) treats the point z = 1 as special. In terms of
the SVM loss, this translates to the thought that having w⃗ · x⃗ > 1 is
a more “confident” classification of x⃗ than just having the sign(w⃗ · x⃗)
be correct (i. e., w⃗ · x⃗ > 0). But this choice is arbitrary because we
have not specified the scale of w⃗. If w⃗ · x⃗ = 1/10 then scaling w⃗ by
a factor 10 ensures w⃗ · x⃗ > 1. Thus the training algorithm has cheap
and meaningless ways of reducing the training loss. By applying an
ℓ2 regularizer, we are able to prevent this easy route for the model,
and instead, force the training to find optimal weights w⃗ with a small
norm.

Problem 4.5.1. Write a justification for why it makes sense to limit the ℓ2

norm of the classifier during logistic regression. How can large norm lead to
false confidence (i.e., unrealistically low training loss)?

4.6 Linear Classification in Python Programming

In this section, we briefly discuss how to implement the logistic re-
gression model in Python. It is customary to use the numpy package
to speed up computation and the matplotlib package for visualization.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

prepare dataset

X = ... # array of shape (n, d), each row is a d-dimensional data point

y = ... # array of shape (n), each value = -1 or +1

w = ... # array of shape (d), each value is a weight for each dimension

X_train, X_test, y_train, y_test, eta = ...

define functions

def loss(X, y, w):

returns the logistic loss

return sum log(1 + exp(-y*w*x))

...

def grad_loss(X, y, w):

returns the gradient of the logistic loss

return sum (-y*x)/(1 + exp(y*w*x))

...

def gradient_descent(X, y, w0, eta)

...

return w

run Gradient Descent

w = gradient_descent(X_train, y_train, w, eta)

linear classification 57

plot the learned classifier

assuming data is 2-dimensional

colors = {1: ’blue’, -1: ’red’}

xmin, xmax, ymin, ymax = ...

plt.scatter(X[:,0], X[:,1], c=np.array([colors[y_i] for y_i in y]))

plt.plot([xmin, xmax], [ymin, ymax], c=’black’)

We have already discussed how to implement the majority of the
code sample above in previous chapters. The only parts that are new
are the functions to calculate the logistic loss and its gradient. This is
consistent with the theme of this chapter — to discuss how to design
loss functions that are appropriate for the task. Nevertheless, while
the content of this code sample is familiar, some sections of the code
introduce new Python functionality and syntax. We first consider the
logistic loss and gradient functions:

def loss(X, y, w):

returns the logistic loss

return sum log(1 + exp(-y*w*x))

...

def grad_loss(X, y, w):

returns the gradient of the logistic loss

return sum (-y*x)/(1 + exp(y*w*x))

...

In Java, the programming language you learned in earlier program-
ming classes, you would have to rely on a for loop to account for the
array inputs in the loss() and grad_loss() functions. However, Python
and numpy support many vectorized operations, including matrix mul-
tiplication and element-wise multiplication. These operations are
far more concise to read and will also improve the runtime of the
program by a great margin. Note that the code snippet above does
not contain these operations; it is simply pseudo-code for your intu-
ition. You will be introduced to these vectorized operations during
the precept, and you will be expected to implement the loss function
with these new tools in your programming assignments.

Next, we use a Python dictionary to store information correspond-
ing to the plot’s coloring scheme:

colors = {1: ’blue’, -1: ’red’}

This is equivalent to a hash table from Java. Here, 1 and −1 are the
keys and “blue” and “red” are respectively their values.

We will now discuss multi-dimensional arrays in Python. There
are multiple ways to perform array indexing. For example, if X is a
2-dimensional array, both X[i][j] and X[i, j] can be used to extract the
entry at the i-th row, j-th column. It is also possible to provide a set
of rows or a set of columns to extract. The following code snippet
generates an array of shape (2, 2), where each entry is from the row 0

58 introduction to machine learning lecture notes for cos 324 at princeton university

or 1 and column 0 or 2:

X[[0, 1], [0, 2]]

Note that similar to the 1D case, the : operator is used to perform
array slicing. Bounding indices can be omitted as shown in the
following code snippet:

X[:,0]

This extracts the full set of rows and the column 0, or in other words,
the first column of X.

Finally, we use a list comprehension to specify the plotting color for
each data point:

[colors[y_i] for y_i in y]

This is Python syntactic sugar that allows the user to create an array
while iterating over the elements of an iterator. The code snippet here
is equivalent to the following code.

list = []

for y_i in y:

list.append(colors[y_i])

5
Exploring “Data Science” via Linear Regression

So far, our treatment of machine learning has been from the perspec-
tive of a computer scientist. It is important to note, however, that
models such as linear regression are useful in a variety of other fields
including the physical sciences, social sciences, etc. In this chapter,
we present case studies from different fields. Here, the inputs xi are
considered to be explanatory variables, the output y is considered to be
the effect variable, and the weights wi quantify the causal significance
of the associated inputs xi on the output y. The interpretation of
weights as a type of causality is crucial; often, the ideal method of
determining causality through a set of rigorous randomized control
trials is too expensive.

5.1 Boston Housing: Machine Learning in Economics

Our first case study comes from the field of economics. In 1978,
Harrison and Rubinfeld released a classic study on the willingness to
pay for clean air in the Boston metropolitan area. Their methodology
involved an economic model called hedonic pricing, 1 which essentially 1 This definition is paraphrased from

the following Wikipedia article: https:
//en.wikipedia.org/wiki/Hedonic_

regression

estimates the value of a good by breaking it down into “constituent
characteristics.” It turns out we can use linear regression to help
determine which of these attributes are most important. Specifically,
suppose we have a dataset of house sales where y represents the
price of the house and x⃗ ∈ R15 represents a set of house attributes. 2 2 x0 is a dummy variable, and the

remaining 14 coordinates x1, . . . , x14
each correspond to an attribute.

Then, we aim to find an optimum set of weights w⃗ for the linear
model:

y ≈
14

∑
i=0

wixi (5.1)

Table 5.1 lists all 14 attributes that were used in the linear regres-
sion model. Before fitting the model with these attributes, it is useful
to intuitively reason about some of the attributes. For instance, we
expect the weight w5 corresponding to RM, the number of bedrooms,

https://en.wikipedia.org/wiki/Hedonic_regression
https://en.wikipedia.org/wiki/Hedonic_regression
https://en.wikipedia.org/wiki/Hedonic_regression

60 introduction to machine learning lecture notes for cos 324 at princeton university

Index Code Description

1 ZN
proportion of residential land zoned for

lots over 25, 000 ft2

2 INDUS proportion of non-retail business acres per town

3 CHAS
Charles River indicator variable

(1 if tract bounds river; 0 otherwise)
4 NOX nitric oxides concenteration (parts per 10 million)
5 RM average number of rooms per dwelling

6 AGE
proportion of owner-occupied units

built prior to 1940

7 DIS
weighted distances to

five Boston employment centres
8 RAD index of accessibility to radial highways
9 TAX full-value property-tax rate per $10, 000

10 MEDV
Median value of owner-occupied homes

(in $1, 000s)
11 CRIM per capita crime rate in town
12 PTRATIO pupil-teacher ratio by town
13 LSTAT % lower status of the population

14 B
1000(Bk− 0.63)2 where Bk is the proportion

of black population in town

Table 5.1: 14 attributes used in the
Boston housing regression model. The
attributes are presented in a different
order from the paper.

to be positive because larger houses typically sell for more. Con-
versely, we expect the weight w4 corresponding to NOX, the amount
of air pollution, to be negative as people would prefer not to live in a
polluted environment. After running the regression, it indeed turns
out that these intuitions are correct. 3 In general, it can be useful to 3 The regression weights can be found

on page 100 of the original paper.
https://deepblue.lib.umich.edu/

bitstream/handle/2027.42/22636/

0000186.pdf?sequence=1&isAllowed=y.

double-check that the calculated weights align with intuition: if they
do not, it could be a sign that a modeling assumption is incorrect.

5.1.1 The Strange Math of Feature B

The headline result of the paper is that the willingness to pay for
cleaner air increases both when income level is higher and when
the current pollution level is higher. However, if you read the paper
closely, you may notice the presence of a curious parameter B, which
is defined in terms of Bk, the proportion of black population in the
neighborhood. This parameter is meant to represent a social segrega-
tion effect present within the Boston housing market. The authors of
the paper speculated that (1) at a lower level of Bk, the housing price
will decrease as Bk increases since the white population tend to avoid
black population, but (2) at a very high level of Bk, the housing price
will increase as Bk increases because black population prefer predom-

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf?sequence=1&isAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf?sequence=1&isAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf?sequence=1&isAllowed=y

exploring “data science” via linear regression 61

inantly black neighborhoods. To capture this intuition, they defined
the attribute B in the parabolic expression B = 1000(Bk − 0.63)2. It
indeed turns out that the weight w14 corresponding to B is positive as
shown in Figure 5.1.

Figure 5.1: The graph of B =
1000(Bk − 0.63)2. This is an exam-
ple of featurization as discussed in
Chapter 1. It encodes prevailing dis-
crimination of that period. The term
“black” is not favored today either.

5.1.2 Ethnic Concerns Behind a Model

It seems strange to have such a sensitive attribute as B have an in-
fluence on the model. We might wonder about the social harm that
could arise if the model was used by real-life sellers or buyers (e.g.,
the buyers could demand a house for a lower price based on the pro-
portion of black population in the neighborhood). On the other hand,
the fitted model confirms that there is an underlying segregation
effect already present in the society. Also, we cannot guarantee that
the model would be race-neutral even if we eliminated the parameter
B. For instance, maybe one or more of the other variables (e.g., air
quality variables) is highly correlated with B. 4 4 We will revisit such issues of bias in

Chapter 16.Ultimately, the primary takeaway from this case study is that
implementing machine learning models in real life is a challenge
itself. At a technical level, the model may make sense and make good
predictions of house prices. But one has to consider the social effects
of an ML model on the phenomenon being studied: in particular,
whether it supports or extends prevailing inequities. The following
are some important considerations to keep in mind:

1. If the world has a problem, the data will reflect it and so will our
models

2. If a problematic model later gets used in real life, it can exacerbate
the existing problem

3. The choices of attributes when making a model might bias the
outcome

62 introduction to machine learning lecture notes for cos 324 at princeton university

4. Carelessly using data can later lead to modeling issues

5.2 fMRI Analysis: Machine Learning in Neuroscience

We next consider an application of ML in a vastly different field.
One of the most important tools in contemporary neuroscience is
Functional Magnetic Resonance Imaging (fMRI). fMRI has been used
successfully to map human functionality (e.g., speech, memory) to
brain regions. In a more active role, it can assist with tumor surgery
or “decoding” thoughts and emotions.

Figure 5.2: A sample image of an
fMRI reading. Source: https://en.
wikipedia.org/wiki/Functional_

magnetic_resonance_imaging

fMRI experiments often involve presenting a set of stimuli (e.g.,
images of human faces) to the subject in order to elicit a neurological
response, which is then captured through an fMRI reading. Each
reading reveals the concentration of oxygen in the blood stream
throughout the brain, which is used as a proxy for brain activity. 5 5 Formally, this is referred to as the

blood-oxygen-level-dependent (BOLD)
signal.

Through the result of the reading, we are able to conclude if a par-
ticular voxel responds to a particular stimulus. The naive way of
conducting these experiments is to present one stimulus at a time
and wait until we get a reading of the brain response before we move
on to the next stimulus.

But if you have previously taken a course in neuroscience, you
may recall that fMRI is unfortunately a double-edged sword. It
features excellent spatial resolution, with each voxel as small as 1 mm3.
However, it has poor temporal resolution: often, readings require
several seconds for blood flow to stabilize! Coupled with the fact that
regulations limit the amount of time human subjects can spend in
the scanner, it becomes clear that methodologies based on sequential
presentation of stimuli are too inefficient. In this section, we explore

https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging

exploring “data science” via linear regression 63

how to leverage techniques from linear regression in order to solve
this problem.

5.2.1 Linear Superposition

The key intuition involves a concept called linear superposition: if a
subject is shown multiple stimuli in quick succession, the strength
of the voxel’s response is the sum of the strength of its response to
each of the individual stimuli. 6 Instead of waiting until we have 6 This is exactly like the linear superpo-

sition of wave functions in physics.the image of one stimulus to move on, considering showing a new
stimulus every 1 or 2 seconds. Each fMRI reading will now capture
the composite brain response to the stimuli from the past few seconds.
We will use linear regression to disentangle the information, and
extract which voxel responded to which stimulus. 7 7 Note that this is a very simplified

version. The actual process is much
more complicated.

Consider the following example.

Example 5.2.1. See Figure 5.3. The graph on the top left represents a voxel’s
response when the subject is shown the image of a face. The graph on the
top right represents the response when the subject is shown the image of a
flower. The bottom graph represents the response when the subject is shown
the image of a flower 1 second after the image of a face. Notice that the first
two graphs have been superposed to create the third graph. In practice, we
are interested in the problem of extracting the individual graphs when given
the superposed graph.

Figure 5.3: Three graphs explaining the
effect of linear superposition.

5.2.2 Linear Regression

Now let us describe how to formulate this problem in terms of linear
regression. First assume that the subject is shown one of k types
of stimuli at each time step t where t ∈ {1, 2, . . . , T}. Let yt be the

64 introduction to machine learning lecture notes for cos 324 at princeton university

response of a particular voxel at step t. The main assumption is that
yt is the linear superposition of the responses to stimuli from the
steps in [t− 10, t]. We also define a T × k matrix X with 0/1 entries,
where Xts = 1 if stimulus type s is shown during [t − 10, t] and 0
otherwise. Then we can set up the following linear regression model:

yt ≈
k

∑
s=1

wsXts

When we find the optimal values of ws via least squares, ws = 1
means that the particular voxel responds to the stimulus type s.

5.2.3 Neural Correlates of Thought

Now we know how to find the values of ws for a specific voxel. That
is, we can test if a particular voxel responds to a particular stimu-
lus. Combining this method with a spatial smoothing (i. e., applying
the principle that nearby voxels behave similarly), 8 we are able to 8 The simplest smoothing method is to

take the ws values for one voxel and
replace them with the average of the
neighboring voxels.

identify which region of a brain is associated to which stimulus. So
far, more than 1, 000 regions of the brain have been identified and
mapped.

Figure 5.4: A detailed map labeling
areas of the brain with corresponding
stimuli. https://www.nature.com/
articles/nature17637

5.2.4 Brain-Computer Interface (BCI)

We finish off with a tangible example of how our studies can help
people. Patients who are suffering from Locked-in Syndrome (LIS)
are aware of their surroundings and have normal reasoning capacities

https://www.nature.com/articles/nature17637
https://www.nature.com/articles/nature17637

exploring “data science” via linear regression 65

but have no way of communicating with others through speech or
facial movements. Using a combination of a technology called Brain-
Computer Interface and a linear regression model, we are able to
communicate with these patients.

Brain-Computer Interface is an electode sensor implanted near the
motor cortex that can detect the electric signal that LIS patients are
trying to send to the motor cortex. We can teach the patients to visu-
alize writing with their dominant hand if they want to answer “no”
and visualize writing with their non-dominant hand if they want to
answer “yes.” Since the neural correlates of the two movements are
very different, BCI will pick up essentially disjoint signals, and we
can use linear regression model to distinguish between them. 9 9 Note: training also requires labeled

data, which can be produced by asking
the patient questions about known
facts (e. g., birth date, marital status,
etc.). This technique has been used
to communicate with patients in
deep coma and presumed to be in a
vegetative state. See Science of Mind
Reading, New Yorker, December 6 2021,
which also profiles several Princeton
researchers.

Part II

Unsupervised Learning

6
Clustering

So far, we have considered ML models which require labeled data
in order to learn. However, there is a large class of models which
can learn from unlabeled data. From this chapter, we will begin to
introduce models from this modeling paradigm, called unsupervised
learning. In this chapter, we focus on one application of unsupervised
learning, called clustering algorithm.

6.1 Unsupervised Learning

Unsupervised learning is a branch of machine learning which only uses
unlabeled data. Examples of unlabeled data include a text corpus
containing the works of William Shakespeare (Chapter 8) or a set of
unlabeled images (Chapter 7). Some key goals in this setting include:

• Learn the structure of data: It is possible to learn if the data consists
of clusters, or if it can be represented in a lower dimension.

• Learn the probability distribution of data: By learning the probability
distribution where the training data came from, it is possible to
generate synthetic data which is “similar” to real data.

• Learn a representation for data: We can learn a representation that is
useful in solving other tasks later. With this new representation,
for example, we can reduce the need for labeled examples for
classification.

6.2 Clustering

Clustering is one of the main tasks in unsupervised learning. It is the
process of detecting clusters in the dataset. Often the membership
of a cluster can replace the role of a label in the training dataset. In
general, clusters reveal a lot of information about the underlying
structure of the data.

70 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 6.1: Height vs weight scatter
plot of basketball players. In the plot on
the right, the points in green and blue
respectively correspond to female and
male players.

In Figure 6.1, we see a scatter plot of measurements of height and
weight of basketball players. If you look at the plot on the left, it is
easy to conclude that there is a usual linear relationship between the
height and the weight of the athletes. However, upon further inspec-
tion, it seems like there are two clusters of the data points, separated
around the middle of the plot. In fact, this is indeed the case! If we
label the dataset with the additional information of whether the data
point is from a male or female athlete, the plot on the right shows
something more than just the linear relationship. In practice, however,
we do not always have access to this additional label. Instead, one
uses clustering algorithms to find natural clusterings of the data. This
raises the question of what a “clustering” is, in the first place.

Technically, any partition of the dataset D into k subsets C1, C2, . . . , Ck

can be called a clustering. 1 That is, 1 Here k, the number of clusters may be
given as part of the problem, or k may
have to be decided upon after looking
at the dataset. We’ll revisit this soon.

k⋃
i=1

Ci = D and
k⋂

i=1

Ci = ∅

But we intuitively understand that not all partitions are a natural
clustering of the dataset; our goal therefore will be to define what a
“good” clustering is.

6.2.1 Some Attempts to Define a “Good” Cluster

The sample data in Figure 6.1 suggests that our vision system has
evolved to spot natural clusterings in two or three dimensional data.
To do machine learning, however, we need a more precise definition
in Rd: specifically, for any partition of the dataset into clusters, we try
to quantify the “goodness” of the clusters.

Definition 6.2.1 (Cluster: Attempt 1). A “good” cluster is a subset of
points which are closer to each other than to all other points in the dataset.

But this definition does not apply to the clusters in Figure 6.1. The
points in the middle of the plot are far away from the points on the
top right corner or the bottom left corner. So whichever cluster we
assign the middle points to, they will be farther away from some

clustering 71

points in their assigned cluster than to some of the points on the
other cluster. Ok, so that did not work. Consider the following
definition.

Definition 6.2.2 (Cluster: Attempt 2). A “good” cluster is a subset of
points which are closer to the mean of their own cluster than to the mean of
other clusters.

Here Mean and Variance are defined as follows:

Definition 6.2.3 (Mean and Variance of Clusters). Let Ci be one of the
clusters for a dataset D. Let mi = |Ci| denote the cluster size. The mean of
the cluster Ci is

y⃗i =
1

mi
∑

x⃗∈Ci

x⃗

and the variance within the cluster Ci is

σ2
i =

1
mi

∑
x⃗∈Ci

∥⃗x− y⃗i∥2
2

You may notice that Definition 6.2.2 appears to be using circular
reasoning: it defines clusters using the mean of the clusters, but the
mean can only be calculated once the clusters have been defined. 2 2 Such circular reasoning occurs in most

natural formulations of clustering. Look
at the Wikipedia page on clustering for
some other formulations.6.3 k-Means Clustering

In this section, we present a particular partition of the dataset called
the k-means clustering. Given k, the desired number of clusters, the
k-means clustering partitions D into k clusters C1, C2, . . . , Ck so as to
minimize the cost function:

k

∑
i=1

∑
x⃗∈Ci

∥⃗x− y⃗i∥2
2 (6.1)

This can be seen as minimizing the average of the individual cost of
the k clusters, where cost of Ci is ∑

x⃗∈Ci

∥⃗x− y⃗i∥2
2. 3 This idea is similar 3 Notice that each cluster cost is the

cluster size times the variance.
in spirit to our earlier attempt in Definition 6.2.2 — we want the
distance of each data point to the mean of the cluster to be small. But
this method is able to circumvent the problem of circular reasoning.

The process of finding the optimal solution for (6.1) is called the
k-means clustering problem.

6.3.1 k-Means Algorithm

Somewhat confusingly, the most famous algorithm that is used
to solve the k-means clustering problem is also called k-means. It is
technically a heuristic, meaning it makes intuitive sense but it is not

72 introduction to machine learning lecture notes for cos 324 at princeton university

guaranteed to find the optimum solution.4 The following is the k- 4 There is extensive research on finding
near-optimal solutions to k-means. The
problem is known to be NP-complete,
so we believe that an algorithm that is
guaranteed to produce the optimum
solution on all instances must require
exponential time.

means algorithm. It is given some initial clustering (we discuss some
choices for initialization below) and we repeat the following iteration
until we can no longer improve the cost function:

Maintain clusters C1, C2, . . . , Ck

For each cluster Ci, find the mean y⃗i

Initialize new clusters C′i ← ∅
for x⃗ ∈ D do

ix = arg mini ∥⃗x− y⃗i∥2
C′ix
← C′ix

∪ {⃗x}
end for
Update clusters Ci ← C′i

At each iteration, we find the mean of each current cluster. Then
for each data point, we assign it to the cluster whose mean is the
closest to the point, without updating the mean of the clusters. In
case there are multiple cluster means that the point is closest to, we
apply the tie-breaker rule that the point gets assigned to the current
cluster if it is among the closest ones; otherwise, it will be randomly
assigned to one of them. Once we have assigned all points to the new
clusters, we update the current set of clusters, thereby updating the
mean of the clusters as well. We repeat this process until there is no
point that is mis-assigned.

6.3.2 Why Does k-Means Algorithm Terminate in Finite time?

The k-means algorithm is actually quite akin to Gradient Descent, in
the sense that the iterations are trying to improve the cost.

Lemma 6.3.1. Given a set of points x⃗1, x⃗2, . . . , x⃗m, their mean y⃗ = 1
m

m
∑

i=1
x⃗i

is the point that minimizes the average squared distance to the points.

Proof. For any vector z⃗, let C(⃗z) denote the sum of squared distance
to the set of points. That is,

C(⃗z) =
m

∑
i=1
∥⃗z− x⃗i∥2

2 =
m

∑
i=1

((⃗z− x⃗i) · (⃗z− x⃗i))

=
m

∑
i=1

(⃗z · z⃗− 2⃗z · x⃗i + x⃗i · x⃗i)

=
m

∑
i=1

(∥⃗z∥2
2 − 2⃗z · x⃗i + ∥⃗xi∥2

2)

To find the optimal z⃗, we set the gradient ∇C to 0

∇C(⃗z) =
m

∑
i=1

(2⃗z− 2⃗xi) = 0

clustering 73

which yields the solution

z⃗ =
1
m

m

∑
i=1

x⃗i

We are ready to prove the main result.

Theorem 6.3.2. Each iteration of the k-means Algorithm 6.3.1, possibly
except for the last iteration before termination, strictly decreases the total
cluster cost (6.1).

Proof. We follow the same notation as in Algorithm 6.3.1. The total
cost at the end of one iteration is:

k

∑
i=1

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2

where y⃗′i is the mean of the newly defined cluster C′i . Notice that
each of the cluster cost ∑

x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 is the sum of the squared dis-

tance between a set of points x⃗ ∈ C′i and their mean. By Lemma 6.3.1,
this sum is smaller than the sum of squared distance between the
same set of points to any other point. In particular, we can compare
with y⃗i, the mean of Ci before the update. That is,

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 ≤ ∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2

for any 1 ≤ i ≤ k. If we sum over all clusters, we see that

k

∑
i=1

∑
x⃗∈C′i

∥∥⃗x− y⃗′i
∥∥2

2 ≤
k

∑
i=1

∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2

Now notice that the summand ∥⃗x− y⃗i∥2
2 in the right hand side of the

inequality is the squared distance between the point x⃗ and the mean
y⃗i (before update) of the cluster C′i that x⃗ is newly assigned to. In
other words, we can rewrite this term as ∥⃗x− y⃗ix∥

2
2 and instead sum

over all points x⃗ in the dataset. That is,

k

∑
i=1

∑
x⃗∈C′i

∥⃗x− y⃗i∥2
2 = ∑

x⃗∈D
∥⃗x− y⃗ix∥

2
2

Finally, recall that the index ix was defined as ix = arg mini ∥⃗x− y⃗i∥2.
In particular, if j was the index of the cluster that a data point x⃗
originally belonged to, then ∥⃗x− y⃗ix∥

2
2 ≤

∥∥⃗x− y⃗j
∥∥2

2. Therefore, we
have the following inequality,

∑
x⃗∈D
∥⃗x− y⃗ix∥

2
2 ≤

k

∑
j=1

∑
x⃗∈Cj

∥∥⃗x− y⃗j
∥∥2

2

74 introduction to machine learning lecture notes for cos 324 at princeton university

The equality holds in the inequality above if and only if when
∥⃗x− y⃗ix∥

2
2 =

∥∥⃗x− y⃗j
∥∥2

2 for each point x⃗, which means that the origi-
nal cluster Cj was one of the closest clusters to x⃗. By the tie-breaker
rule, ix would have been set to j. This is exactly the case when the
algorithm terminates immediately after this iteration since no point
is reassigned to a different cluster. In all other cases, we have a strict
inequality:

∑
x⃗∈D
∥⃗x− y⃗ix∥

2
2 <

k

∑
j=1

∑
x⃗∈Cj

∥∥⃗x− y⃗j
∥∥2

2

Notice that the right hand side of the inequality is the total cost at the
beginning of the iteration.

Now we are ready to prove that the k-means algorithm is guaran-
teed to terminate in finite time. Since each iteration strictly reduces
the cost, we conclude that the current clustering (i. e., partition) will
never be considered again, except at the last iteration when the al-
gorithm terminates. Since there is only a finite number of possible
partitions of the dataset D, the algorithm must terminate in finite
time.

6.3.3 k-Means Algorithm and Digit Classification

You might be familiar with the MNIST hand-written digits dataset.
Here, each image, which depicts some digit between 0 and 9, is
represented as a an 8× 8 matrix of pixels and each pixel can take on a
different luminosity value from 0 to 15.

We can apply k-means clustering to differentiate between images
depicting the digit “1” and the digit “0.” After running the model
with k = 2 on 360 images of the two digits, we achieve the clusters in
Figure 6.2. 5 Note the presence of two colored regions: a point is col- 5 This 2D visualization of the clusters

is achieved through a technique called
low dimensional representation, which
is covered in Chapter 7.

ored red if a hypothetical held-out data point at that location would
get assigned a “0;” otherwise it is colored blue. This assignment is
based on which cluster center is closer.

Figure 6.2: Sample images from the
MNIST dataset (left) and 2D visu-
alization of the k-means clusters
differentiating between the digits “1”
and “0” (right). Only two images were
misclassified!

clustering 75

This example also shows that clustering into two clusters can be
turned into a technique for binary classification — use training data
to come up with two clusters; at test time, compute a ±1 label for
each data point according to which of the two cluster centers it is
closer to.

6.3.4 Implementation Detail: How to Pick the Initial Clustering

The choice of initial clusters greatly influences the quality of the
solution found by the k-means algorithm. The most naive method is
to pick k data points randomly to serve as the initial cluster centers
and create k clusters by assigning each data point to the closest
cluster center. However, this approach can be problematic. Suppose
there exists some “ground truth” clustering of the dataset. By picking
the initial clusters randomly, we may end up splitting one of these
ground truth clusters (e.g., two initial centers are drawn from within
the same ground truth cluster), and the final clustering ends up
being very sub-optimal. Thus one tries to select the initial clustering
more intelligently. For instance the popular k-means++ initialization
procedure 6 is the following: 6 It was invented by Arthur and Vassil-

vitskii in 2007.

1. Choose one center uniformly at random among all data points.

2. For each data point x⃗ compute D(⃗x), the distance between x⃗ and
the nearest center which has already been chosen.

3. Choose a new data point at random as a new center, where a
point x⃗ is chosen with probability proportional to D(⃗x)2.

4. Repeat steps 2 and 3 until k centers have been chosen.

In COS 324, we will not expect you to understand why this is a
good initialization procedure, but you may be expected to be able to
implement this or similar procedures in code.

6.3.5 Implementation Detail: Choice of k

Above we assumed that the number of clusters k is given, but in
practice you have to choose the appropriate number of clusters k.

Example 6.3.3. Is there a value of k that guarantees an optimum cost of
0? Yes! Just set k = n (i.e., each point is its own cluster). Of course, this is
useless from a modeling standpoint!

Problem 6.3.4. Argue that the optimum cost for k + 1 clusters is no more
than the optimum cost for k clusters.

76 introduction to machine learning lecture notes for cos 324 at princeton university

Note that Problem 6.3.4 only concerns the optimum cost, which
as we discussed may not be attained by the k-means algorithm.
Nevertheless, it does suggest that we can try various values of k and
see when the cost is low enough to be acceptable.

A frequent heuristic is the elbow method: create a plot of the num-
ber of clusters vs. the final value of the cost as in Figure 6.3 and look
for an “elbow” where the objective tapers off. Note that if the dataset
is too complicated for a simple Euclidean distance cost, the data
might not be easy to cluster “nicely” meaning there is no “elbow”
shown on the plot.

Figure 6.3: Two graphs of number of
clusters vs. final value of cost. There is
a distinct elbow on the left, but not on
the right.

6.4 Clustering in Programming

In this section, we briefly discuss how to implement k-means algo-
rithm for digit classification in Python. As usual, we use the numpy
package to speed up computation and the matplotlib package for vi-
sualization. Additionally, we use the sklearn package to help perform
the clustering.

import necessary packages

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load_digits

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

prepare dataset

X, y = load_digits(n_class=2, return_X_y=True)

X = scale(X)

X_train, X_test = ...

define functions

def initialize_cluster_mean(X, k):

X: array of shape (n, d), each row is a d-dimensional data point

k: number of clusters

returns Y: array of shape (k, d), each row is the center of a cluster

def assign_cluster(X, Y)

X: array of shape (n, d), each row is a d-dimensional data point

Y: array of shape (k, d), each row is the center of a cluster

returns loss, the sum of squared distance from each point to its

assigned cluster

clustering 77

returns C: array of shape (n), each value is the index of the closest

cluster

def update_cluster_mean(X, k, C):

X: array of shape (n, d), each row is a d-dimensional data point

k: number of clusters

C: array of shape (n), each value is the index of the closest cluster

returns Y: array of shape (k, d), each row is the center of a cluster

def k_means(X, k, max_iters=50, eps=1e-5):

Y = initialize_cluster_mean(X, k)

for i in range(max_iters):

loss, C = assign_cluster(X, Y)

Y = update_cluster_mean(X, k, Y)

if loss_change < eps:

break

return loss, C, Y

def scatter_plot(X, C):

plt.figure(figsize=(12, 10))

k = int(C.max()) + 1

from itertools import cycle

colors = cycle(’bgrcmk’)

for i in range(k):

idx = (C == i)

plt.scatter(X[idx, 0], X[idx, 1], c=next(colors))

plt.show()

run k-means algorithm and plot the result

loss, C, Y = k_means(X_train, 2)

low_dim = PCA(n_components=2).fit_transform(X_train)

scatter_plot(low_dim, C)

We start by importing outside packages.

from sklearn.datasets import load_digits

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

The load_digits() method loads the MNIST digits dataset, with around
180 data points per digit. The scale() method linearly scales each of
the data points such that the mean is 0 and variance is 1. The PCA()
method helps visualize the MNIST digits data points, which are 64-
dimensional, in the Cartesian plane (i. e., R2). See the next Chapter 7

for details on this process.
Next we prepare the dataset by calling the load_digits() method.

X, y = load_digits(n_class=2, return_X_y=True)

X = scale(X)

X_train, X_test = ...

Notice that we discard the target array y because we are performing
clustering, a type of unsupervised learning. If we were to perform
supervised learning instead, we would need to make use of y.

78 introduction to machine learning lecture notes for cos 324 at princeton university

Then we define the functions necessary for the k-means algorithm.

def initialize_cluster_mean(X, k):

return Y

def assign_cluster(X, Y)

return loss, C

def update_cluster_mean(X, k, C):

return Y

def k_means(X, k, max_iters=50, eps=1e-5):

Y = initialize_cluster_mean(X, k)

for i in range(max_iters):

loss, C = assign_cluster(X, Y)

Y = update_cluster_mean(X, k, Y)

if loss_change < eps:

break

return loss, C, Y

In practice, it is common to limit the number of cluster update itera-
tions (i. e., the parameter max_iters) and specify the smallest amount
of loss change allowed for one iteration (i. e., the constant ϵ). By termi-
nating the algorithm once either one of the conditions is reached, we
can get an approximate solution within a reasonable amount of time.

Next, take a look at the helper function used to plot the result of
the k-means algorithm.

def scatter_plot(X, C):

plt.figure(figsize=(12, 10))

k = int(C.max()) + 1

from itertools import cycle

colors = cycle(’bgrcmk’)

for i in range(k):

idx = (C == i)

plt.scatter(X[idx, 0], X[idx, 1], c=next(colors))

plt.show()

The cycle() method from the itertools package lets you iterate through
an array indefinitely, with the index wrapping around back to the
start, once it reaches the end of the array.

Now, consider the for loop section in the helper function above. We
first use Boolean conditions to concisely generate a new array.

idx = (C == i)

This generates a Boolean array with the same length as C, where each
entry is either True/False based on whether the corresponding entry in
C is equal to i. The following code is equivalent.

idx = np.zeros(C.size)

for j in range(C.size):

clustering 79

idx[j] = (C[j] == i)

We then use a technique called Boolean masking to extract a particular
subset of rows of X.

X[idx, 0]

Notice that in place of a list of indices of rows to extract, we are
indexing with the Boolean array we just defined. The code will extract
only the rows where the Boolean value is True. For example, if the
value of idx is [True, False, True], then the code above is equivalent to

X[[0, 2], 0]

Finally, we make use of the helper functions we defined earlier to
run the k-means algorithm and plot results.

_, C, _ = k_means(X_train, 2)

low_dim = PCA(n_components=2).fit_transform(X_train)

scatter_plot(low_dim, C)

The first line of this code snippet shows how we can use the _ symbol
to selectively disregard individual return values of a function call.
The second line of code uses the PCA() method to transform the
64-dimensional data X_train into 2-dimensional data so that we can
visualize it with the scatter_plot() method. We will learn the details of
this process in the next Chapter 7.

7
Low-Dimensional Representation

High-dimensional datasets arise in quite a few settings. This chapter
concerns a phenomenon that arises frequently: the data points (i.
e., vectors) collectively turn out to be “approximately low rank.” A
running theme in this chapter is that arrays and matrices, which in
introductory courses like COS 126 and COS 226 were thought of as
data structures (i. e., an abstraction from programming languages),
are treated now as objects that we can pass through some remarkable
(but simple) mathematical procedures.

If a large dataset of N vectors in Rd has rank k, then we can think
of a natural compression method. Let U be the k-dimensional sub-
space spanned by the vectors, and identify k basis vectors for U. For
each of the N vectors, find the k coefficients of their representation
in terms of the basis vectors. Following this method, instead of spec-
ifying the N vectors using Nd real numbers, we can represent them
using k(N + d) real numbers, which is a big win if d is much larger
than k.

Figure 7.1: v⃗1, v⃗2, v⃗3 ∈ R3 (left) and
their 2-dimensional representationŝ⃗v1, ̂⃗v2, ̂⃗v3 ∈ R2.

Example 7.0.1. Figure 7.1 shows three vectors v⃗1 = (3.42,−1.33, 6.94), v⃗2 =

(7.30, 8.84, 1.95), v⃗3 = (−7.92,−6.37,−5.66) in R3. The three vectors
have rank 2 — they are all in the 2-dimensional linear subspace generated

82 introduction to machine learning lecture notes for cos 324 at princeton university

by u⃗1 = (8, 8, 4) and u⃗2 = (1,−4, 6). Specifically,

v⃗1 = 0.31⃗u1 + 0.95⃗u2

v⃗2 = 0.95⃗u1 − 0.31⃗u2

v⃗3 = −0.95⃗u1 − 0.31⃗u2

Therefore, we can represent these vectors in a 2-dimensional plane, aŝ⃗v1 = (0.31, 0.95), ̂⃗v2 = (0.95,−0.31), ̂⃗v3 = (−0.95,−0.31)

7.1 Low-Dimensional Representation with Error

Of course, in general, high dimensional datasets are not exactly
low rank. We’re interested in datasets which have low-dimension
representations once we allow some error.

Definition 7.1.1 (Low-dimensional Representation with Error). We
say a set of vectors v⃗1, v⃗2, . . . , v⃗N ∈ Rd has rank k with mean-squared
error ϵ if there exist some basis vectors u⃗1, u⃗2, . . . , u⃗k ∈ Rd and N vectorŝ⃗v1, ̂⃗v2, . . . , ̂⃗vN ∈ span(⃗u1, u⃗2, . . . , u⃗k) such that

1
N ∑

i

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

2
≤ ϵ (7.1)

We say that ̂⃗v1, . . . , ̂⃗vN are the low-rank or low-dimensional approxi-
mation of v⃗1, . . . , v⃗N . Typically we will assume without loss of generality
that the basis vectors are orthonormal (i.e., have ℓ2 norm equal to 1 and are
pairwise orthogonal).

Definition 7.1.1 can be thought of as a lossy compression of the
dataset of vectors since the low-dimensional representation of vectors
is roughly correct, but with a bound of ϵ on the MSE. This compres-
sion view will be used in Section 7.3.

Figure 7.2: v⃗1, v⃗2, v⃗3 ∈ R3 (left) and
their 2-dimensional approxima-
tions ̂⃗v1, ̂⃗v2, ̂⃗v3 represented in the
2-dimensional subspace spanned by
u⃗1, u⃗2.

low-dimensional representation 83

Example 7.1.2. Figure 7.2 shows three vectors v⃗1 = (3.42,−1.33, 6.94), v⃗2 =

(7.30, 8.84, 1.95), v⃗3 = (−6.00,−7.69,−6.86) in R3. The three vectors
have rank 2 with mean-squared error 2.5. If you choose the basis vec-
tors u⃗1 = (8, 8, 4), u⃗2 = (1,−4, 6) and the low-rank approximationŝ⃗v1 = v⃗1, ̂⃗v2 = v⃗2, ̂⃗v3 = (−7.92,−6.37,−5.66) ∈ span(⃗u1, u⃗2) then,

1
3 ∑

i

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

2
≃ 2.28 ≤ 2.5

Note that the basis vectors in this example are only orthogonal and not
orthonormal, but it is easy to set them as orthonormal by normalizing them.

Problem 7.1.3. Show that if u⃗1, u⃗2, . . . , u⃗k ∈ Rd is any set of orthonor-
mal vectors and v⃗ ∈ Rd then the vector ̂⃗v in span(⃗u1, u⃗2, . . . , u⃗k) that

minimizes
∥∥∥⃗v− ̂⃗v∥∥∥2

2
is

k

∑
j=1

(⃗v · u⃗j)⃗uj (7.2)

(Hint: If α1, α2, . . . , αk minimize
∥∥∥⃗v−∑j α j⃗uj

∥∥∥2

2
then the gradient of this

expression with respect to α1, α2, . . . , αk must be zero.)

Problem 7.1.3 illustrates how to find the low-dimensional represen-
tation of the vectors, once we specify the k basis vectors. Notice that
(7.2) is the vector projection of v⃗ onto the subspace U spanned by the

vectors u⃗1, u⃗2, . . . , u⃗k. Therefore, the approximation error
∥∥∥⃗v− ̂⃗v∥∥∥2

2
is

the squared norm of the component of v⃗ that is orthogonal to U. 1 1 Also known as the vector rejection of v⃗
from U.Problem 7.1.4 is only for more advanced students but all students

should read its statement to understand the main point. It highlights
how miraculous it is that real-life datasets have low-rank represen-
tations. It shows that generically one would expect ϵ in (7.1) to be
1− k/n, which is almost 1 when k≪ n. And yet in real life ϵ is small
for fairly tiny k.

Problem 7.1.4. Suppose the v⃗i’s are unit vectors 2 and the vectors 2 Note: the maximum possible value
of ϵ when v⃗i’s are unit vectors is 1.
Convince yourself!

u⃗1, u⃗2, . . . , u⃗k were the basis vectors of a random k-dimensional subspace in
Rd. (That is, chosen without regard to the v⃗i’s.) Heuristically argue that the
ϵ one would need in (7.1) would be 1− k/n.

7.1.1 Computing the Low-Dimensional Representation with Error

In Problem 7.1.3, we have already seen how to find the low-dimension
representation with error, once we are given the basis vectors. All
there remains is to identify a suitable value of k and find the corre-
sponding basis vectors that will minimize the error.

There is a simple linear algebraic procedure, the Singular Value
Decomposition (SVD). Given a set of vectors v⃗i and a positive integer

84 introduction to machine learning lecture notes for cos 324 at princeton university

k, SVD can output the best orthonormal basis in sense of Defini-
tion 7.1.1 that has the lowest possible value of ϵ. In practice, we treat
k as a hyperparameter and use trial and error to find the most suit-
able k. Problem 7.1.5 shows that the accuracy of the low-dimensional
representation will decrease when we choose a smaller number of
dimensions. So we are making a choice between the accuracy of the
representations against how condensed our compression is.

Problem 7.1.5. Show that as we decrease k in Definition 7.1.1, the corre-
sponding ϵ can only increase (i.e., cannot decrease).

Formally, SVD takes a matrix as its input; the rows of this matrix
are the vector v⃗i’s. The procedure operates on this matrix to output
a low-rank approximation. We discuss details in Section 20.3. To
follow the rest of this chapter, you do not need to understand details
of the procedure. You just need to remember the fact that the best
k-dimensional representation is computable for each k. In practice,
programming languages have packages that will do the calculations
for you. Below is a Python code snippet that will calcuate the SVD.

import sklearn.decomposition.TruncatedSVD

n * n matrix

data = ...

prepare transform on dataset matrix "data"

svd = TruncatedSVD(n_components=k)

svd.fit(data)

apply transform to dataset and output an n * k matrix

transformed = svd.transform(data)

Now we see some fun applications.

7.2 Application 1: Stylometry

In many cases in old literature, the identity of the author is disputed.
For instance, the King James Bible (i. e., the canonical English bible
from the 17th century) was written by a team whose identities and
work divisions are not completely known. Similarly the Federalist
Papers, an important series of papers explicating finer points of the
US government and constitution, were published in the early days of
the republic with the team of authors listed as Alexander Hamilton,
James Madison, and John Jay. But it was not revealed which paper
was written by whom. In such cases, can machine learning help
identify who wrote what?

Here we present a fun example about the books in the Wizard of
Oz series. 3 L. Frank Baum was the author of the original Wonderful 3 Original paper at http://dh.

obdurodon.org/Binongo-Chance.pdf.
A survey paper by Erica Klarreich in
Science News Dec 2003: Statistical tests
are unraveling knotty literary mysteries
at http://web.mit.edu/allanmc/www/
stylometrics.pdf

Wizard of Oz, which was a best-seller in its day and remains highly
popular to this day. The publisher saw a money-making opportunity

http://dh.obdurodon.org/Binongo-Chance.pdf
http://dh.obdurodon.org/Binongo-Chance.pdf
http://web.mit.edu/allanmc/www/stylometrics.pdf
http://web.mit.edu/allanmc/www/stylometrics.pdf

low-dimensional representation 85

and convinced Baum to also write 15 follow-up books. After Baum’s
death the publisher managed to pass on the franchise to Ruth Plumly
Thompson, who wrote many other books.

Figure 7.3: Royal Book of Oz
(1921). Cover image from https:

//en.wikipedia.org/wiki/The_Royal_

Book_of_Oz

However, the last of the Baum books, Royal Book of Oz (RBOO), al-
ways seemed to Oz readers closer in style to Thompson’s books than
to Baum’s. But with all the principals in the story now dead, there
seemed to be no way to confirm the suspicion. Now we describe how
simple machine learning showed pretty definitively that this book
was indeed written by Ruth Plumly Thompson. The main idea is to
represent the books vectors in some way and then find their low-rank
representations.

The key idea is that different authors use English words at differ-
ent frequencies. Surprisingly, the greatest difference lies in frequen-
cies of function words such as with, however, upon, rather than
fancy vocabulary words (the ones found on your SAT exam).

Example 7.2.1. Turns out Alexander Hamilton used upon about 10
times more frequently than James Madison. We know this from analyzing
their individual writing outside their collaboration on the Federalist Papers.
Using these kinds of statistics, it has been determined that Hamilton was
the principal author or even the sole author of almost all of the Federalist
Papers.

The statistical analysis of the Oz books consisted of looking at the
frequencies of 50 function words. All Oz books except RBOO were
divided into text blocks of 5000 words each. For each text block, the
frequency (i. e., number of occurrences) of each function word was
computed, which allows us to represent the block as a vector in R50.
There were 223 text blocks total, so we obtain 223 vectors in R50.

Figure 7.4: The top 50 most frequently
used function words in the Wizard
of Oz series. Their occurrences were
counted in 223 text blocks. Figure from
Binongo’s paper.

Then we compute a rank 2 approximation of these 223 vectors.
Figure 7.5 shows the scatter plot in the 2-dimensional visualization.

The two axes correspond to the two basis vectors we found for the
rank 2 approximation. It becomes quickly clear that the vectors from
the Baum books are in a different part of the space than those from
the Thompson books. It is also clear that RBOO vectors fall in the

https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz
https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz
https://en.wikipedia.org/wiki/The_Royal_Book_of_Oz

86 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 7.5: Rank-2 visualization of the
223 text block vectors from books of
Oz. The dots on the left correspond
to vectors from Oz books known to be
written by Ruth Plumly Thompson. The
hearts on the left correspond to vectors
from RBOO. The ones on the right
correspond to ones written by L. Frank
Baum. Figure from Binongo’s paper.

same place as those from other Thompson books. Conclusion: Ruth
Plumly Thompson was the true author of Royal Book of Oz!

By the way, if one takes the non-Oz writings of Baum and Thomp-
son and plot their vectors in the 2D-visualization in Figure 7.6, they
also fall on the appropriate side. So the difference in writing style
came across clearly even in non-Oz books!

Figure 7.6: Rank-2 visualization of text
block vectors from books written by
Baum and Thompson outside of the Oz
series. Figure from Binongo’s paper.

low-dimensional representation 87

7.3 Application 2: Eigenfaces

This section uses the lossy compression viewpoint of low-rank rep-
resentations. As you may remember from earlier computer science
courses (e.g., Seam Carver from COS 226), images are vectors of
pixel values. In this section, let us only consider grayscale (i. e., B&W)
images where each pixel has an integer value in [−127, 127]. −127
corresponds to the pixel being pitch black; 0 corresponds to middle
gray; and 127 corresponds to total white. We can also reorganize the
entries to form a single vector:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

→ (a11, a12, · · · , a1n, a21, · · · , a2n, · · · , amn)

Once we have this vectorized form of an image, it is possible to
perform linear algebraic operations on the vectors. For example, we
can take 0.3 times the first image and add it to −0.8 times the second
image, etc. See Figure 7.7 for some of these examples.

Figure 7.7: Example of linear algebra on
images.

Eigenfaces was an idea for face recognition 4. The dataset in this 4 L. Sirovich; M. Kirby (1987). Low-
dimensional procedure for the character-
ization of human faces. Journal of the
Optical Society of America.

lecture is from a classic Olivetti dataset from 1990s. Researchers
took images of people facing the camera in good light, downsized
to 64× 64 pixels. This makes them vectors in R4096. Now we can
find a 64-rank approximation of the vectors using procedures we will
explore in more detail in Section 20.3.

Figure 7.8 shows four basis vectors in the low-rank approximation
of the images. The first image looks like a generic human with a
ill-defined nose and lips; the second image looks like having glasses
and a wider nose; the third image potentially looks like a female
face; the fourth image looks like having glasses, a moustache, and
a beard. All images in the dataset can be approximated as a linear

88 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 7.8: Some basis vectors (which
turn out to be face-like) in the low-rank
approximation of the Olivetti dataset.

combination of 128 of these basis images, and the approximations are
surprisingly accurate. Figure 7.9 shows four original images of the
dataset, compared with their 64-rank approximations and 128-rank
approximations.

Figure 7.9: 4 original images in the
Olivetti dataset (left), compared with
their 64-rank approximations (middle)
and 128-rank approximations (right).

From Figure 7.9, we also see that the approximations are more
accurate when the corresponding value of k is larger. In fact, Fig-

ure 7.10 shows the average value of ∥⃗vi−̂⃗vi∥2
2

∥⃗vi∥2
2

as a function of the

rank of the approximation. Note that this value roughly represents
the fraction of v⃗ lost in the approximation. It can be seen that the error
is a decreasing function in terms of k. 5 However, note that doing 5 This was also explored in Prob-

lem 7.1.5machine learning — specifically face recognition — on low-rank
representations is computationally more efficient particularly because
the images are compressed to a lower dimension. With a smaller
value of k, we can improve the speed of the learning.

Figure 7.10: What fraction of norm
of the image is not captured in the
low-dimensional representation, plotted
versus the rank k.

8
n-Gram Language Models

In this chapter, we continue our investigation into unsupervised
learning techniques and now turn our attention to language mod-
els. You may have heard of natural language processing (NLP) and
models such as GPT-3 in the news lately. The latter is quite impres-
sive, being able to write and publish its own opinion article on a
reputable news website! 1 While most of these models are trained 1 The full piece can be found at

https://www.theguardian.com/

commentisfree/2020/sep/08/

robot-wrote-this-article-gpt-3

using state-of-the-art deep learning techniques which we will discuss
later on in this text, this chapter explores a key idea, which is to view
language as the output of a probabilistic process, which leads to an
interesting measure of the “goodness” of the model. Specifically, we
will investigate the so-called n-gram language model.

8.1 Probabilistic Model of Language

Classical linguistics focused on the syntax or the formal grammar of
languages. The linguists believed that a language can be modeled
by a set of sentences, constructed from a finite set of vocabularies
and a finite set of grammatical rules. But this approach in language
modeling had limited success in machine learning.

Figure 8.1: An example of a syntax tree
of an English sentence.

Instead, the approach of machine learning in language models,

https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3

90 introduction to machine learning lecture notes for cos 324 at princeton university

pioneered by Claude Shannon, has been to learn the distribution of
pieces of text.

Figure 8.2: Claude Shannon, inventor
of the n-gram language model in
https://languagelog.ldc.upenn.edu/

myl/Shannon1950.pdf. Picture from
https://en.wikipedia.org/wiki/

Claude_Shannon.

In other words, the model assigns a probability to all conceivable
finite pieces of English text (even those that have not yet been spoken
or written). For example, the sentence “how can I help you” will be
assigned some probability, most likely larger than the probability
assigned to the sentence “can I how you help.” Note that we don’t
expect to find a “correct” model; all models found to date are ap-
proximations. But even an approximate probabilistic model can have
interesting uses, such as the following:

1. Speech recognition: A machine processes a recording of a human
speech that sounds somewhere between “I ate a cherry” and “eye
eight a Jerry.” If the model assigns a higher probability score to the
former, speech recognition can still work in this instance.

2. Machine translation: “High winds tonight” should be considered a
better translation than “large winds tonight.”

3. Context sensitive spelling correction: We can compare the proba-
bilities of sentences that are similar to the following sentence —
“Their are problems wit this sentence.” — and output the cor-
rected version of the sentence.

4. Sentence completion: We can compare the probabilities of sentences
that will complete the following phrase — “Please turn off your ...”
— and output the one with the highest probability.

8.2 n-Gram Models

Say we are in the middle of the process of assigning a probability
distribution over all English sentences of length 5. We want to find
the probability of the sentence “I love you so much.” If we let Xi be
the random variable that represents the value of the i-th word, the
probability we are looking for is the joint probability

Pr[X1 = ”I”, X2 = ”love”, X3 = ”you”, X4 = ”so”, X5 = ”much”] (8.1)

By the Chain Rule, we can split this joint probability into the product
of a marginal probability and four conditional probabilities:

(8.1) = Pr[X1 = ”I”] (8.2)

× Pr[X2 = ”love” | X1 = ”I”]

× Pr[X3 = ”you” | X1 = ”I”, X2 = ”love”]

× Pr[X4 = ”so” | X1 = ”I”, X2 = ”love”, X3 = ”you”]

× Pr[X5 = ”much” | X1 = ”I”, X2 = ”love”, X3 = ”you”, X4 = ”so”]

https://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf
https://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Claude_Shannon

n-gram language models 91

If we estimate all components of the product in (8.2), we will be able
to estimate the joint probability (8.1).

Now consider the bigram model, which has the following two
assumptions:

1. The probability of a word is only dependent on the immediately
previous word.

2. That probability does not depend on the position of the word in
the sentence.

The first assumption says that, for example, the conditional proba-
bility

Pr[X3 = ”you” | X1 = ”I”, X2 = ”love”]

can be simplified as

Pr[X3 = ”you” | X2 = ”love”]

The second assumption says that

Pr[X3 = ”you” | X2 = ”love”] = Pr[Xi+1 = ”you” | Xi = ”love”]

for any 1 ≤ i ≤ 4. We abuse notation and denote any of these
probabilities as Pr[”you” | ”love”].

Applying these assumptions to (8.2), we can simplify it as

(8.1) = Pr[”I”]× Pr[”love” | ”I”]× Pr[”you” | ”love”]

× Pr[”so” | ”you”]× Pr[”much” | ”so”] (8.3)

Now we are going to estimate each component of (8.3) from a
large corpus of text. The estimation for the marginal probability of
the word “I” is given as

Pr[”I”] ≈ Count("I")
total number of words

(8.4)

where Count refers to the number of occurrences of the word in
the text. In other words, this is the proportion of the occurrence of
the word “I” in the entire corpus. Similarly, we can estimate the
conditional probability of the word “love” given its previous word is
“I” as

Pr[”love” | ”I”] ≈ Count("I love")

∑
w

Count("I" + w)
(8.5)

where in the denominator, we sum over all possible words in the
dictionary. This is the proportion of the word “love” occurring im-
mediately after the word “I” out of every time some word w in the
dictionary occurring immediately after the word “I.” 2 In general, we 2 Notice that there is no word occurring

immediately after the word “I” when
“I” is at the end of the sentence in
the training corpus. Therefore, the
denominator in (8.5) is equal to the
Count of “I” minus the Count of “I”
at the end of a sentence. This is not
necessarily the case when we introduce
the sentence stop tokens in Section 8.3.

92 introduction to machine learning lecture notes for cos 324 at princeton university

can estimate the following conditional probability as

Pr[wi+1 | wi] ≈
Count(wiwi+1)

∑
w

Count(wiw)
(8.6)

where wi is the i-th word of the sentence. Once we calculate these
estimates from the corpus, we are able to define the probability of the
sentence "I love you so much."

8.2.1 Defining n-Gram Probabilities

We can extend the example above to a more general setting. Now we
want to define the probability distribution over all sentences of length
k (grammatical or not). Say we want to find the joint probability of
the sentence w1w2 . . . wk where wi is the i-th word of the sentence. We
will employ an n-gram model which has two assumptions:

1. The probability of a word is only dependent on the immediately
previous n− 1 words. 3 3 If n = 1, the model is called a unigram

model, and the probability is not de-
pendent on any previous word. When
n = 2 and n = 3, the model is respec-
tively called a bigram and a trigram
model.

2. That probability does not depend on the position of the word in
the sentence.

By a similar logic from the earlier example, we abuse notation
and denote the joint probability of the sentence w1w2 · · ·wk as
Pr[w1w2 . . . wk]; the marginal probability of the first word being
w1 as Pr[w1]; and so on. We can apply the Chain Rule again to define
the n-gram model.

Definition 8.2.1 (n-Gram Model). An n-gram model assigns the following
probability to the sentence w1w2 . . . wk if n > 1: 4 4 max(1, i− n + 1) in the third line is to

ensure that we access the correct indices
for the first n− 1 words, where there are
less than n− 1 previous words to look
at.

Pr[w1w2 . . . wk] = Pr[w1]Pr[w2 | w1] · · ·Pr[wk | w1w2 . . . wk−1]

= Pr[w1]×
k

∏
i=2

Pr[wi | w1 . . . wi−1]

= Pr[w1]×
k

∏
i=2

Pr[wi | wmax(1,i−n+1) . . . wi−1] (8.7)

and the following probability if n = 1:

Pr[w1w2 . . . wk] =
k

∏
i=1

Pr[wi] (8.8)

where the n-gram probabilities are estimated from a training corpus as the
following

Pr[wi] ≈
Count(wi)

total number of words

Pr[wj | wi . . . wj−1] ≈
Count(wi . . . wj−1wj)

∑
w

Count(wi . . . wj−1w)

n-gram language models 93

This defines the “best” possible probabilistic model in terms of the
Maximum Likelihood Principle from Subsection 4.2.1. 5 We now turn 5 We will prove this for n = 1 later.

to the following example.

Example 8.2.2. We investigate a cowperson language which has two words
in the dictionary: {Yee, Haw}. Suppose the training corpus is given as “Yee
Haw Haw Yee Yee Yee Haw Yee.” Then the unigram probabilities can be
estimated as

Pr[”Yee”] =
5
8

Pr[”Haw”] =
3
8

We can also create the bigram frequency table as in Table 8.1 and we normal-
ize the rows of the bigram frequency table to get the bigram probability table
in Table 8.2.

previous
next

“Yee” “Haw” Total

“Yee” 2 2 4
“Haw” 2 1 3

Table 8.1: Bigram frequency table of the
cowperson language.

previous
next

“Yee” “Haw” Total

“Yee” 2/4 2/4 1
“Haw” 2/3 1/3 1

Table 8.2: Bigram probabilty table of the
cowperson language.

From Table 8.2, we get the following bigram probabilities:

Pr[”Yee” | ”Yee”] =
2
4

Pr[”Haw” | ”Yee”] =
2
4

Pr[”Yee” | ”Haw”] =
2
3

Pr[”Haw” | ”Haw”] =
1
3

Then by the bigram model, the probability that we see the sentence “Yee Haw
Yee” out of all sentences of length 3 can be calculated as

Pr[”Yee”]×Pr[”Haw” | ”Yee”]×Pr[”Yee” | ”Haw”] =
5
8
× 2

4
× 2

3
≃ 0.21

8.2.2 Maximum Likelihood Principle

Recall the Maximum Likelihood Principle introduced in Subsec-
tion 4.2.1. It gave a way to measure the “goodness” of a model with
probabilistic outputs.

Now we formally prove that the estimation methods given in
Definition 8.2.1 satisfy the Maximum Likelihood Principle for the
n = 1 case. A probabilistic model is “better” than another if it assigns
more probability to the actual outcome. Here, the actual outcome is
the training corpus, which also consists of words. So let us denote

94 introduction to machine learning lecture notes for cos 324 at princeton university

the training corpus as a string of words w1w2 . . . wT . By definition, a
unigram model will assign the probability

Pr[w1w2 . . . wT] =
T

∏
i=1

Pr[wi] (8.9)

to this string. Remember that each of the wi’s are a member of a
finite set of dictionary words. If we let V be the size of the dictionary,
then the model is defined by the choice of V values, the probabilities
we assign to each of the dictionary words. Let pi be the probability
that we assign to the i-th dictionary word, and let ni be the number
of times that the i-th dictionary word appears in the training corpus.
Then (8.9) can be rewritten as

Pr[w1w2 . . . wT] =
V

∏
i=1

pni
i (8.10)

We want to maximize this value under the constraint
V
∑

i=1
pi = 1. A

solution to this type of a problem can be found via the Lagrange
multiplier method. We will illustrate with an example.

Example 8.2.3. We revisit the cowperson language from Example 8.2.2. Here
V = 2 and T = 8. Let p1 = Pr[”Yee”] and p2 = Pr[”Haw”]. Then the
probability assigned to the training corpus by the unigram model is

Pr[”Yee Haw Haw Yee Yee Yee Haw Yee”] = p5
1 p3

2

We want to maximize this value under the constraint p1 + p2 = 1. Therefore,
we want to find the point where the gradient of the following is zero.

f (p1, p2) = p5
1 p3

2 + λ(p1 + p2 − 1)

for some λ. The gradients are given as

∂ f
∂p1

= 5p4
1 p3

2 + λ
∂ f
∂p2

= 3p5
1 p2

2 + λ

From 5p4
1 p3

2 + λ = 3p5
1 p2

2 + λ = 0, we get p1
p2

= 5
3 . Combined with the fact

that p1 + p2 = 1, we get the optimal solution p1 = 5
8 and p2 = 3

8 .

Problem 8.2.4. Following the same Lagrange multiplier method as in
Example 8.2.3, verify that the heuristic solution pi =

ni
T (the empirical fre-

quency) is the optimal solution that maximizes (8.10) under the constraint
V
∑

i=1
pi = 1.

8.3 Start and Stop Tokens

In this section, we present a convention that is often useful: start
token ⟨s⟩ and stop token ⟨/s⟩. They signify the start and the end

n-gram language models 95

of each sentence in the training corpus. They are a special type of
vocabulary item that will be augmented to the dictionary, so you
will want to pay close attention to the way they contribute to the
vocabulary size, number of words, and the n-gram probabilities.
Also, by introducing these tokens, we are able to define a probability
distribution over all sentences of finite length, not just a given length
of k. For the sake of exposition, we will only consider the bigram
model for most parts of this section.

8.3.1 Re-estimating Bigram Probabilities

Consider the cowperson language again.

Example 8.3.1. The training corpus “Yee Haw Haw Yee Yee Yee Haw Yee”
actually consists of three different sentences: (1) "Yee Haw," (2) "Haw Yee
Yee," and (3) "Yee Haw Yee." We can append the start and stop tokens to the
corpus and transform it into

⟨s⟩ Yee Haw ⟨/s⟩
⟨s⟩ Haw Yee Yee ⟨/s⟩
⟨s⟩ Yee Haw Yee ⟨/s⟩

With these start and stop tokens in mind, we slightly relax the As-
sumption 2 of the n-gram model and investigate the probability of a
word w being the first or the last word of a sentence, separately from
other probabilities. We will denote these probabilities respectively as
Pr[w | ⟨s⟩] and Pr[⟨/s⟩ | w]. The former probability will be estimated
as

Pr[w | ⟨s⟩] ≈ Count(⟨s⟩ w)
total number of sentences

(8.11)

which is the proportion of sentences that start with the word w in the
corpus. The latter probability is estimated as

Pr[⟨/s⟩ | w] ≈ Count(w ⟨/s⟩)
Count(w)

(8.12)

which is the proportion of the occurrence of w that is at the end of a
sentence in the corpus.

Also, notice that other bigram probabilities are also affected when
introducing the stop tokens. In (8.6), the denominator originally did
not include the occurrence of the substring at the end of the sentence
because there was no word to follow that substring. However, if we
consider ⟨/s⟩ as a word in the dictionary, the denominator can now
include the case where the substring is at the end of the sentence.
Therefore, the denominator is just equivalent to the Count of the
substring in the corpus. Therefore, the bigram probabilities after
introducing start, stop tokens can be estimated instead as 6 6 If we consider ⟨s⟩ , ⟨/s⟩ as vocabularies

of the dictionary, (8.13) can also include
(8.11), (8.12).

96 introduction to machine learning lecture notes for cos 324 at princeton university

Pr[wj | wj−1] ≈
Count(wj−1wj)

Count(wj−1)
(8.13)

Example 8.3.2. We revisit Example 8.2.2. The bigram frequency table and
the bigram probability table can be recalculated as in Table 8.3 and Table 8.4.
7

7 Note that the values in the Total
column now correspond to the unigram
count of that word.

previous
next

“Yee” “Haw” ⟨/s⟩ Total

⟨s⟩ 2 1 0 3
“Yee” 1 2 2 5

“Haw” 2 0 1 3

Table 8.3: Bigram frequency table of the
cowperson language with start and stop
tokens.

previous
next

“Yee” “Haw” ⟨/s⟩ Total

⟨s⟩ 2/3 1/3 0/3 1
“Yee” 1/5 2/5 2/5 1

“Haw” 2/3 0/3 1/3 1

Table 8.4: Bigram probabilty table of the
cowperson language with start and stop
tokens.

Therefore, the bigram probabilities of the cowperson language, once we
introduce the start and stop tokens, are given as

Pr[”Yee” | ⟨s⟩] = 2
3

Pr[”Haw” | ⟨s⟩] = 1
3

Pr[”Yee” | ”Yee”] =
1
5

Pr[”Haw” | ”Yee”] =
2
5

Pr[⟨/s⟩ | ”Yee”] =
2
5

Pr[”Yee” | ”Haw”] =
2
3

Pr[”Haw” | ”Haw”] =
0
3

Pr[⟨/s⟩ | ”Haw”] =
1
3

8.3.2 Redefining the Probability of a Sentence

The biggest advantage of introducing stop tokens is that now we can
assign a probability distribution over all sentences of finite length,
not just a given length k. Say we want to assign a probability to the
sentence w1w2 . . . wk (without the start and stop tokens). By introduc-
ing start and stop tokens, we can interpret this as the probability of
w0w1 . . . wk+1 where w0 = ⟨s⟩ and wk+1 = ⟨/s⟩. Following the similar
logic from (8.2), we can define this probability by the Chain Rule.

Definition 8.3.3 (Bigram Model with Start, Stop Tokens). A bigram
model, once augmented with start, stop tokens, assigns the following proba-
bility to a sentence w1w2 . . . wk

8 8 Notice that we do not have the term
Pr[w0] in the expansion. A sentence
always starts with a start token, so the
marginal probability that the first word
is ⟨s⟩ can be understood to be 1.

Pr[w1w2 . . . wk] =
k+1

∏
i=1

Pr[wi | wi−1] (8.14)

where the bigram probabilities are estimated as in (8.13).

n-gram language models 97

Example 8.3.4. The probability that we see the sentence “Yee Haw Yee” in
the cowperson language can be calculated as

Pr[”Yee” | ⟨s⟩]× Pr[”Haw” | ”Yee”]× Pr[”Yee” | ”Haw”]× Pr[⟨/s⟩ | ”Yee”]

=
2
3
× 2

5
× 2

3
× 2

5
≃ 0.07

Note that this probability is taken over all sentences of finite length.

Problem 8.3.5. Verify that (8.14) defines a probability distribution over all
sentences of finite length.

8.3.3 Beyond Bigram Models

In general, if we have an n-gram model, then we may need to in-
troduce more than 1 start or stop tokens. For example, in a trigram
model, we will need to define the probability that the word is the first
word of the sentence as Pr[w | ⟨s⟩ ⟨s⟩]. Based on the number of start
and stop tokens introduced, the n-gram probabilities will need to be
adjusted accordingly.

8.4 Testing a Language Model

So far, we discussed how to define an n-gram language model given
a corpus. This is analogous to training a model given a training
dataset. Naturally, the next step is to test the model on a newly
seen held-out data to ensure that the model generalizes well. In this
section, we discuss how to test a language model.

8.4.1 Shakespeare Text Production

First consider a bigram text generator — an application of the bi-
gram model. The algorithm initiates with the start token ⟨s⟩. It then
outputs a random word w1 from the dictionary, according to the
probability Pr[w1 | ⟨s⟩]. It then outputs the second random word
w2 from the dictionary, according to the probability Pr[w2 | w1]. It
repeats this process until the newly generated word is the stop to-
ken ⟨/s⟩. The final output of the algorithm will be the concatenated
string of all outputted words.

It is possible to define a text generator for any n-gram model in
general. Figure 8.4 shows the output of the unigram, bigram, trigram,
quadrigram text generators when the models were trained on all
Shakespeare texts.

Notice the sentence “I will go seek the traitor Gloucester.” in the
output of the quadrigram text generator. This exact line appears in
King Lear, Act 3 Scene 7. This is not a coincidence. Figure 8.5 presents

98 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 8.3: An example run of the
bigram text generator.

Figure 8.4: The outputs of unigram,
bigram, trigram, quadrigram text
generators trained on Shakespeare texts.

the snapshot of the bigram, trigram, and quadrigram text generators
once they have outputted the phrase “go seek the.” You can see that
bigram models and trigram models assign very small probabilities to
the word “traitor” because there are many more instances of phrases
“the” or “seek the” in the corpus than “go seek the.” On the other
hand, the quadrigram model assigns a very large probability to the
word “traitor” because there is only a limited number of times that
the phrase “go seek the” appears in the corpus.

Figure 8.5: The probability of the next
word given the previous three words
are “go seek the” in the n-gram model,
where n = 2, 3, 4.

Once the quadrigram model outputs the word “traitor” after the

n-gram language models 99

phrase “go seek the,” the problem is even worse. As can be seen
in Figure 8.6, the quadrigram model assigns probability of 1 to the
word “Gloucester” meaning that the phrase “seek the traitor” only
appears before the word “Gloucester.” So the model has memorized
one completion of the phrase from the training text. From this exam-
ple, we can see that text production based on n-grams is sampling
and remixing text fragments seen in the training corpus.

Figure 8.6: The probability of the next
word given the previous three words
are “seek the traitor.”

The Shakespeare corpus consists of N = 884, 647 words and V =

29, 066 distinct words from the dictionary. There are about V2 ≈ 845
million possible combinations of bigrams, but Shakespeare only used
around 300, 000 of them in his text. So 99.96% of the possible bigrams
were never seen. The percentage is much higher for quadrigrams!
Furthermore, for the quadrigrams that do appear in the corpus,
most do not even repeat. Thus what comes out of the quadrigram
model looks like Shakespeare because it is a memorized fragment of
Shakespeare.9 9 Do this remind you of overfitting?

8.4.2 Perplexity

Having described a way to train a simple language model, we now
turn our attention to a formal way of testing 10 a language model. 10 This method is used even for testing

state of the art models.Just like any other model in ML, a language model will be given
a corpus w1w2 . . . wT . Then we can assess the performance of the
model by its perplexity on the corpus.

Definition 8.4.1 (Perplexity). The perplexity of a language model on the
corpus w1w2 . . . wT is defined as

Pr[w1w2 . . . wT]
− 1

T = T

√
1

Pr[w1w2 . . . wT]
(8.15)

Note that, perplexity is defined for any probabilistic language
model: the Chain Rule of joint probability applies to every model,

100 introduction to machine learning lecture notes for cos 324 at princeton university

and does not require the n-gram assumptions. That is, 11 11 Assume for now that start and stop
tokens do not exist in the corpus.

Pr[w1w2 . . . wT] = Pr[w1]×
T

∏
i=2

Pr[wi | w1 . . . wi−1]

Then the perplexity of the model can be rewritten as

T

√√√√ 1
Pr[w1]

×
T

∏
i=2

1
Pr[wi | w1 . . . wi−1]

(8.16)

Example 8.4.2. Consider the uniform (“clueless”) model which assumes that
the probability of all words are equal in any given situation. That is, if V is
the vocabulary size (i.e., size of the dictionary),

Pr[wi] = Pr[wi | w1 . . . wi−1] =
1
V

for any given w1, . . . , wi ∈ V. This model assigns
(

1
V

)T
to every sequence

of T words, including the corpus. Therefore, the perplexity of the model is((
1
V

)T
)− 1

T

= V

Now we try to understand perplexity at an intuitive level. (8.16) is
the geometric mean 12 of the following T values: 12 The geometric mean of T numbers

a1, a2, . . . , aT is defined as (∏i ai)
1/T

1
Pr[w1]

,
1

Pr[w2 | w1]
, . . . ,

1
Pr[wT | w1 . . . wT−1]

Now note that a probabilistic model splits the total probability of 1
to fractions and distributes them to the potential options for the next
word. So the inverse of an assigned probability for a word can be
thought roughly as the number of choices the model considered for the
next word. With this viewpoint, perplexity as written in (8.16) means:
how much has the model narrowed down the number of choices for the next
word on average? The clueless model had not narrowed down the
possibilities at all and had the worst-possible perplexity equal to the
number of vocabulary words.

Example 8.4.3. Consider a well-trained language model. At any given place
of text, it can identify a set of 20 words and assigns probability 1

20 to each of
them to be the next word. It happens that the next word is always one of
the 20 words that the model identifies. The perplexity of the model is((

1
20

)T
)− 1

T

= 20

Interestingly enough, the true perplexity of English is believed to
be between 15 and 20. That is, if at an “average” place in text, you
ask humans to predict the next word, then they are able to narrow
down the list of potential next words to around 15 to 20 words. 13 13 The perplexity of state of the art

language models is under 20 as well.

n-gram language models 101

8.4.3 Perplexity on Test Corpus

The perplexity of a language model is analogous to a loss of an ML
model. 14 Similar to ML models we have been studying so far, it is 14 It is customary to use the logarithm

of the perplexity, as we also did for
logistic loss in Chapter 4.

possible to define a train perplexity and a test perplexity. The “good-
ness” of the model will be defined by how low the perplexity was on
a previously unseen, held-out data.

For example, when n-gram models are trained on 38 million words
and tested on 1.5 million words from Wall Street Journal articles,
they show the following test perplexities in Table 8.5. 15 Note that 15 To be more exact, the models were

augmented with smoothing, which will
be introduced shortly.

the state-of-the-art deep learning models achieve a test perplexity of
around 20 on the same corpus.

Unigram Bigram Trigram
962 170 109

Table 8.5: Test perplexities of n-gram
models on WSJ corpus.

8.4.4 Perplexity With Start and Stop Tokens

When start and stop tokens are introduced to a corpus, we also need
to redefine how to calculate the perplexity of the model. Again, we
will only focus on a bigram model for the sake of exposition.

Say the corpus consists of t sentences:

⟨s⟩w1,1w1,2, . . . , w1,T1 ⟨/s⟩
⟨s⟩w2,1w2,2, . . . , w2,T2 ⟨/s⟩

...

⟨s⟩wt,1wt,2, . . . , wt,Tt ⟨/s⟩

The probability of the corpus w1,1w1,2 . . . wt,Tt is redefined as the
product of the probability of each of the sentences:

Pr[w1,1w1,2 . . . wt,Tt] =
t

∏
i=1

Pr[wi,1wi,2 . . . wi,Ti]

=
t

∏
i=1

Ti+1

∏
j=1

Pr[wi,j | wi,j−1] (8.17)

Now we apply the interpretation of the perplexity that it is the geo-
metric mean of probabilities of each word. Notice that we multiplied

t
∑

i=1
(Ti + 1) probabilities to calculate the probability of the corpus.

If we let T =
t

∑
i=1

Ti denote the total number of words (excluding

start and stop tokens) of the corpus, the number of probabilities we
multiplied can be written as T∗ = T + t. 16 16 This can also be thought as adding

the number of stop tokens to the
number of words in the corpus.

102 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 8.4.4 (Perplexity with Start, Stop Tokens). The perplexity of a
bigram model with start, stop tokens can be redefined as

T∗

√√√√√√ 1
t

∏
i=1

Ti+1
∏
j=1

Pr[wi,j | wi,j−1]

(8.18)

8.4.5 Smoothing

One big problem with our naive definition of the perplexity of a
model is that it does not account for a zero denominator. That is,
if the model assigns probability exactly 0 to the corpus, then the
perplexity of the model will be ∞! 17 17 Mathematically, it is undefined, but

here assume that the result is a positive
infinity that is larger than any real
number.

Example 8.4.5. Suppose the phrase “green cream” never appeared in the
training corpus, but the test corpus contains the sentence “You like green
cream.” Then a bigram model will have a perplexity of ∞ because it assigns
probability 0 to the bigram “green cream.”

To address this issue, we generally apply smoothing techniques,
which never allow the model to output a zero probability. By reducing
the naive estimate of seen events and increasing the naive estimate
of unseen events, we can always assign nonzero probabilities to
previously unseen events.

The most commonly used smoothing technique is the 1-add
smoothing (a.k.a, Laplace smoothing). We describe how the smooth-
ing works for a bigram model. The main idea of the 1-add smoothing
can be summarized as “add 1 to all bigram counts in the bigram
frequency table.” Then the bigram probability as defined in Defini-
tion 8.2.1 can be redefined as

Pr[wj | wj−1] ≈
Count(wj−1wj) + 1

∑
w
(Count(wj−1w) + 1)

=
Count(wj−1wj) + 1

∑
w
(Count(wj−1w)) + V

(8.19)
where V is the size of the dictionary. If we had augmented the corpus
with the start and the stop tokens, the denominator in (8.19) is just
equal to Count(wj−1) + V∗ 18 and so the bigram probability can be 18 V∗ = V + 1 is the size of the dictionary

after adding the start and the stop
tokens. It is customary to add only
one to the vocabulary count. It may
help to look at the number of rows and
columns in the bigram frequency table
8.3.

written as

Pr[wj | wj−1] ≈
Count(wj−1wj) + 1
Count(wj−1) + V∗

(8.20)

Notice that the denominator is just V∗, the new vocabulary size,
added to the unigram count of wj−1.

Example 8.4.6. Recall the cowperson language with the start and stop
tokens from Example 8.3.2. Upon further research, it turns out the language
actually consists of three words: {Yee, Haw, Moo}, but the training corpus

n-gram language models 103

“Yee Haw Haw Yee Yee Yee Haw Yee” left out one of the vocabularies in
the dictionary. By applying add-1 smoothing to the bigram model, we can
recalculate the bigram frequency and the bigram probability table as in
Table 8.6 and Table 8.7

previous
next

“Yee” “Haw” “Moo” ⟨/s⟩ Total

⟨s⟩ 3 2 1 1 7
“Yee” 2 3 1 3 9

“Haw” 3 1 1 2 7
“Moo” 1 1 1 1 4

Table 8.6: Bigram frequency table of the
cowperson language with start and stop
tokens with smoothing.

previous
next

“Yee” “Haw” “Moo” ⟨/s⟩ Total

⟨s⟩ 3/7 2/7 1/7 1/7 1
“Yee” 2/9 3/9 1/9 3/9 1

“Haw” 3/7 1/7 1/7 2/7 1
“Moo” 1/4 1/4 1/4 1/4 1

Table 8.7: Bigram probability table of
the cowperson language with start and
stop tokens with smoothing.

The probability that we see the sentence "Moo Moo" in the cowperson
language, which would have been 0 before smoothing, is now assigned a
non-zero value:

Pr[”Moo” | ⟨s⟩]× Pr[”Moo” | ”Moo”]× Pr[⟨/s⟩ | ”Moo”]

=
1
7
× 1

4
× 1

4
≃ 0.01

Problem 8.4.7. Verify that (8.19) defines a proper probability distribution
over the conditioned event. That is, show that

∑
w

Pr[w | w′] = 1

for any w in the dictionary.

Another smoothing technique is called backoff smoothing. The
intuition is that n-gram probabilities are less likely to be zero if n is
smaller. So when we run into an n-gram probability that is zero, we
replace it with a linear combination of n-gram probabilities of lower
values of n.

Example 8.4.8. Recall Example 8.4.5. The bigram probability of “green
cream” can be approximated instead as

Pr[“cream′′ | “green′′] ≈ Pr[“cream′′]

Also, say we want to calculate the trigram probability of “like green cream,”
which is also zero in the naive trigram model. We can approximate it instead
as

Pr[“cream′′ | “like green′′] ≈ α Pr[“cream′′]+ (1− α)Pr[“cream′′ | “green′′]

104 introduction to machine learning lecture notes for cos 324 at princeton university

where α is a hyperparameter for the model.

There are other variants of the backoff smoothing, 19 with some 19 For instance, Good-Turing and
Kneser-Ney smoothing.theory for what the “best” choice is, but we will not cover it in these

notes.

9
Matrix Factorization and Recommender Systems

9.1 Recommender Systems

Cataloging and recommender systems have always been an essential
asset for consumers who find it difficult to choose from the vast scale
of available goods. As early as 1876, the Dewey decimal system was
invented to organize libraries. In 1892, Sears released their famed
catalog to keep subscribers up to date with the latest products and
trends, which amounted to 322 pages. Shopping assistants at depart-
ment stores or radio disc jockeys in the 1940s are also examples of
recommndations via human curation. In more contemporary times,
bestseller lists at bookstores, or Billboard Hits list aim to capture
what is popular among people. The modern recommender system
paradigm now focuses on recommending products based on what is
liked by people “similar” to you. In this long history of recommender
systems, the common theme is that people like to follow trends, and
recommender systems can help catalyze this process.

9.1.1 Movie Recommendation via Human Curation

Suppose we want to design a recommender system for movies. A
human curator identifies r binary attributes that they think are im-
portant for a movie (e.g., is a romance movie, is directed by Steven
Spielberg, etc.) Then they assign each movie an r-dimensional at-
tribute vector, where each element represents whether the movie has
the corresponding attribute (e.g., coordinate 2 will have value 1 if a
movie is a “thriller” and 0 otherwise).

Now, using a list of movies that a particular user likes, the curator
assigns an r-dimensional taste vector to a given user in a similar
manner (e.g., coordinate w will have value 1 if a user likes “thrillers”
and 0 otherwise). With these concepts in mind, we can start with
defining the affinity of a user for a particular movie:

106 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 9.1.1 (User Affinity). Given a taste vector Ai = (ai,1, ai,2, . . . , ai,r)

for user i and the genre vector Bj = (b1,j, b2,j, . . . , br,j) for movie j, we de-
fine the affinity of user i for movie j as

Ai · Bj =
r

∑
k=1

ai,kbk,j (9.1)

Intuitively, this metric counts the number of attributes which are
1 in both vectors, or equivalently how many of the user’s boxes are
“checked off” by the movie. Mathematically, the affinity is defined as
a dot product, which can be extended to matrix multiplication. Thus
if we have a matrix A ∈ Rm×r where each of m rows is a taste vector
for a user and a matrix B ∈ Rr×n where each of n columns is a genre
vector for a movie, the (i, j) entry of the matrix product M = AB
represents the affinity score of user i for movie j.

We can also define an additional similarity metric:

Definition 9.1.2 (Similarity Metric). Given taste vector Ai for user i and
taste vector Aj for user j, we define the similarity of user i and user j as

r

∑
k=1

ai,kaj,k (9.2)

Similarly, the similarity of movie i and movie j is defined as

r

∑
k=1

bk,ibk,j (9.3)

Finally, in practice, each individual is unique and has a different
average level of affinity for movies (for example, some users like
everything while others are very critical). This means that directly
comparing the affinity of one user to another might not be helpful.
One way to circumvent this problem is to augment (9.1) in Defini-
tion 9.1.1 as

r

∑
k=1

ai,kbk,j + ai,0 (9.4)

with a bias term ai,0.
Based on the affinity scores or similarity scores, the human curator

will be able to recommend movies to users. This model design seems
like it does the job as a recommender system. In practice, developing
such models through human curation comes with a set of pros and
cons:

• Pros: Using human curation allows domain expertise to be lever-
aged and this intuition can be critical in the development of a
good model (i. e., which attribute is important). In addition, a
human curated model will naturally be interpretable.

matrix factorization and recommender systems 107

• Cons: The process is tedious and expensive; thus it is difficult to
scale. In addition, it can be difficult to account for niche demo-
graphics and genres and this becomes a problem for companies
with global reach.

We conclude that while human curated models can certainly be
useful, the associated effort is often too great.

9.2 Recommender Systems via Matrix Factorization

In this section, we provide another technique that can be used for
recommender systems — matrix factorization. This method started to
become popular since 2005.

9.2.1 Matrix Factorization

Matrix factorizations are a common theme throughout linear alge-
bra. Some common techniques include LU and QR decomposition,
Rank Factorization, Cholesky Decomposition, and Singular Value
Decomposition.

Definition 9.2.1 (Matrix Factorization). Suppose we have some matrix
M ∈ Rm×n. A matrix factorization is the process of finding matrices
A ∈ Rm×r, B ∈ Rr×n such that M = AB for some r < m, n.

Unfortunately, these techniques become less directly applicable
once we consider the case where most of the entries of M are missing
(i. e., a missing-data setting). As we saw in Section 9.1.1, this is very
common in real-world applications — for example, if the (m, n) entry
of M represents the rating of user m for movie n, most entries in M
are missing because not everyone has seen every movie. What can we
do in such a case?

In turns out, if we assume that M is a low-rank matrix (which is
true for many high-dimensional datasets, as noted in Chapter 7), then
we can consider an approximate factorization M ≈ AB on the known
entries. We express this as the following optimization problem:

Definition 9.2.2 (Approximate Matrix Factorization). Suppose we have
some matrix M ∈ Rm×n where Ω ⊂ [m]× [n] is the subset of (i, j) where
Mij is known. An approximate matrix factorization is the process of
finding matrices A ∈ Rm×r, B ∈ Rr×n for some r < m, n that minimize the
loss function:

L(A, B) =
1
|Ω| ∑

(i,j)∈Ω
(Mij − (AB)ij)

2 (9.5)

We denote the approximation as M ≈ AB.

108 introduction to machine learning lecture notes for cos 324 at princeton university

Notice this form is familiar: we are effectively trying to find op-
timal matrices A, B which will minimize the MSE between known
entries of M and corresponding entries in the matrix product AB!
One thing to note is that by calculating the matrix product AB, we
can “predict” entries of M that are unknown.

You can take the following result from linear algebra as granted.

Theorem 9.2.3. Given M ∈ Rm×n, we can find the matrix factorization
M = AB, with A ∈ Rm×r and B ∈ Rr×n if and only if M has rank at most
r. Also, we can find the approximate matrix factorization M ≈ AB, with
A ∈ Rm×r, B ∈ Rr×n if and only if M is “close to” rank r.

9.2.2 Matrix Factorization as Semantic Embeddings

Recall the setup in Section 9.1.1. But instead of calculating the affinity
matrix M as the product of the matrices A, B, we will approach
from the opposite direction. We will start with an affinity matrix
M ∈ Rm×n (which is only partially known) and find its approximate
matrix factorization M ≈ AB. We can understand that A ∈ Rm×r

represents a set of users and that B ∈ Rr×n represents a set of
movies.

Figure 9.1: Matrix factorization on
movie recommendations. Usually the
inner dimension r would be much
smaller than m, n.

Specifically, if we let Ai∗ denote the i-th row of A and B∗j denote
the j-th column of B, then Ai∗ can be understood as the taste vector
of user i and B∗j can be understood as the attribute vector of movie
j. One difference to note is that the output of a matrix factorization
is real-valued, unlike the the 0/1 valued matrices A, B from Sec-
tion 9.1.1. We can then use the vectors Ai∗ and B∗j to find similar
users or movies and make recommendations.

Example 9.2.4. Assume all columns of B have ℓ2 norm 1. That is,
∥∥B∗j

∥∥
2 =

1 for all j. When the inner product B∗j · B∗j′ of two movie vectors is actually
1, the two vectors are exactly the same! They have the same inner product
with every user vector Ai∗ — in other words these movies have the same
appeal to all users. Now suppose B∗j · B∗j′ is not quite 1 but close to 1, say
0.9. This means the movie vectors are quite close but not the same. Still,
their inner product with typical user vectors will not be too different. We

matrix factorization and recommender systems 109

conclude that two movies j, j′ with inner product B∗j · B∗j′ close to 1 tend
to get recommended together to users. One can similarly conclude that high
value of inner product between two user vectors is suggestive that the users
have similar tastes.

9.2.3 Netflix Prize Competition: A Case Study

During 2006-09, DVDs were all the rage. Companies like Netflix were
quite interested in recommending movies as accurately as possible
in order to retain clients. At the time, Netflix was using an algorithm
which had stagnated around RMSE = 0.95. 1 Seeking fresh ideas, 1 RMSE is shorthand for

√
MSE.

Netflix curated an anonymized database of 100M ratings (each rating
was on a 1− 5 scale) of 0.5M users for 18K movies. Adding a cash
incentive of $1, 000, 000, Netflix challenged the world to come up
with a model that could achieve a much lower RMSE! 2 It turned out 2 This was an influential competi-

tion, and is an inspiration for today’s
hackathons, Kaggle, etc.

that matrix factorization would be the key to achieving lower scores.
In this example, m = 0.5M, n = 18k, and Ω corresponds to the 100M
ratings out of m · n = 10B affinities. 3 3 Less than 1% of possible elements are

accounted for by Ω.After a lengthy competition, 4 the power of matrix factorization is
4 Amazingly, a group of Princeton
undergraduates managed to achieve the
second place!

on full display when we consider the final numbers:

• Netflix’s algorithm: RMSE = 0.95

• Plain matrix factorization: RMSE = 0.905

• Matrix factorization and bias: RMSE = 0.9

• Final winner (an ensemble of many methods) : RMSE = 0.856

Figure 9.2: 2D visualization of embed-
dings of film vectors. Note that you
see clusters of “artsy” films on top
right, and romantic films on the bottom.
Credit: Koren et al., Matrix Factorization
Techniques for Recommender Systems,
IEEE Computer 2009.

110 introduction to machine learning lecture notes for cos 324 at princeton university

9.2.4 Why Does Matrix Factorization Work?

In general, we need mn entries to completely describe a m× n matrix
M. However, if we find factor M into the product M = AB of m× r
matrix A and r× n matrix B, then we can describe M with essentially
only (m + n)r entries. When r is small enough such that (m + n)r ≪
mn, some entries of M (including the missing entries) are not truly
“required” to understand M.

Example 9.2.5. Consider the matrix

M =


1 1 ∗ 2
1 1 ∗ ∗
4 ∗ 8 ∗
4 ∗ ∗ ∗


Is it possible to fill in the missing elements such that the rank of M is 1?
Since r = 1, it means that all the rows/columns of M are the same up to
scaling. By observing the known entries, the second row should be equal to
the first row, and the third and the fourth row should be equal to the the first
row multiplied by 4. Therefore, we can fill in the missing entries as

M =


1 1 2 2
1 1 2 2
4 4 8 8
4 4 8 8


It is not hard to infer that M = AB where A = (1, 1, 4, 4)T and B =

(1, 1, 2, 2)

Example 9.2.6. Consider another matrix

M =


1 1 ∗ ∗
1 7 ∗ ∗
4 ∗ ∗ 2
∗ 4 ∗ ∗


Is it possible to fill in the missing elements such that the rank of M is 1?
This time, the answer is no. Following a similar logic from Example 9.2.5,
the second row should be equal to the first row multiplied by a constant.
This is not feasible since M2,1/M1,1 = 1 and M2,2/M1,2 = 7.

9.3 Implementation of Matrix Factorization

In this section, we look more deeply into implementing matrix fac-
torization in an ML setting. As suggested in Definition 9.2.2, we can
consider the process of approximating a matrix factorization to be an
optimization problem. Therefore, we can use gradient descent.

matrix factorization and recommender systems 111

9.3.1 Calculating the Gradient of Full Loss

Recall that for an approximate matrix factorization of a matrix M, we
want to find matrices A, B that minimize the following loss:

L(A, B) =
1
|Ω| ∑

(i,j)∈Ω
(Mij − (AB)ij)

2 (9.5 revisited)

Here (AB)ij = Ai∗ · B∗j. Now we find the gradient of the loss
L(A, B) by first finding the derivatives of L with respect to elements
of A (a total of mr derivatives), then finding the derivatives of L with
respect to elements of B (a total of nr derivatives).

First, consider an arbitrary element Ai′k′ :

∂

∂Ai′k′
L(A, B) =

1
|Ω| ∑

(i,j)∈Ω
2(Mij − (AB)ij)

∂

∂Ai′k′
(−(AB)ij)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
2(Mi′ j − (AB)i′ j)

∂

∂Ai′k′
(−(AB)i′ j)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
2(Mi′ j − (AB)i′ j) · (−Bk′ j)

=
1
|Ω| ∑

j: (i′ ,j)∈Ω
−2Bk′ j(Mi′ j − (AB)i′ j) (9.6)

Note that the second step is derived because (AB)ij = ∑k AikBkj and

if i ̸= i′, then
∂(AB)ij
∂Ai′k′

= 0. Enumerating (i, j) ∈ Ω can be changed to
only enumerating (i′, j) ∈ Ω. Similarly, we can consider an arbitrary
element Bk′ j′ :

∂

∂Bk′ j′
L(A, B) =

1
|Ω| ∑

(i,j)∈Ω
2(Mij − (AB)ij)

∂

∂Bk′ j′
(−(AB)ij)

=
1
|Ω| ∑

i: (i,j′)∈Ω
2(Mij′ − (AB)ij′)

∂

∂Bk′ j′
(−(AB)ij′)

=
1
|Ω| ∑

i: (i,j′)∈Ω
2(Mij′ − (AB)ij′) · (−Aik′)

=
1
|Ω| ∑

i: (i,j′)∈Ω
−2Aik′(Mij′ − (AB)ij′) (9.7)

Whew! That’s a lot of derivatives, but we now have ∇L(A, B) at our
disposal.

9.3.2 Stochastic Gradient Descent for Matrix Factorization

Of course, we could use ∇L(A, B) for a plain gradient descent as
shown in Chapter 3. However, given that each derivative in the
gradient involves a sum over a large number of indices, it would be

112 introduction to machine learning lecture notes for cos 324 at princeton university

worthwhile to use stochastic gradient descent in order to estimate the
overall gradient via a small random sample (as shown in Section 3.2).

If we take a sample S ⊂ Ω of the known entries at each iteration,
the loss becomes

L̂(A, B) =
1
|S| ∑

i,j∈S
(Mij − (AB)ij)

2 (9.8)

and the gradient becomes

∂

∂Ai′k′
L̂(A, B) =

1
|S| ∑

j: (i′ ,j)∈S
−2Bk′ j(Mi′ j − (AB)i′ j) (9.9)

∂

∂Bk′ j′
L̂(A, B) =

1
|S| ∑

i: (i,j′)∈S
−2Aik′(Mij′ − (AB)ij′) (9.10)

However, if we take a uniform sample S of Ω, the computation will
not become much cheaper, since (i, j) ∈ S can spread into many
different rows and columns. One clever (and common) way to do
so is to select a set of columns C by sampling k out of the overall n
columns. This method is called column sampling. We then only need
to consider entries (i, j) ∈ Ω where j ∈ C and compute gradients only
for the entries Bk,j where j ∈ C. We can also perform row sampling
in a very similar manner. In practice, whether we should use column
sampling or row sampling, or gradient descent of full loss, depends
on the actual sizes of m and n.

Part III

Deep Learning

10
Introduction to Deep Learning

Deep learning is currently the most successful machine learning
approach, with notable successes in object recognition, speech and
language understanding, self-driving cars, automated Go playing,
etc. It is not easy to give a single definition to such a broad and
influential field; nevertheless here is a recent definition by Chris
Manning:1 1 Source: https://hai.stanford.

edu/sites/default/files/2020-09/

AI-Definitions-HAI.pdf.Deep Learning is the use of large multi-layer (artificial) neural networks
that compute with continuous (real number) representations, a little like the
hierarchically-organized neurons in human brains. It is currently the most
successful ML approach, usable for all types of ML, with better generalization
from small data and better scaling to big data and compute budgets.

Deep learning does not represent a specific model per se, but
rather categorizes a group of models called (artificial) neural net-
works (NNs) (or deep nets) which involve several computational
layers. Linear models studied in earlier chapters, such as logistic
regression in Section 4.2, can be seen as special sub-cases involving
only a single layer. The main difference, however, is that general deep
nets employ nonlinearity in between each layer, which allows a much
broader scale of expressivity. Also, the multiple layers in a neural net
can be viewed as computing “intermediate representations” of the
data, or “high level features” before arriving at its final answer. By
contrast, a linear model works only with the data representation it
was given.

Deep nets come in various types, including Feed-Forward NNs
(FFNNs), Convolutional NNs (CNNs), Recurrent NNs (RNNs), Resid-
ual Nets, and Transformers. 2 Training uses a variant of Gradient 2 Interestingly, a technique called Neural

Architecture Search uses deep learn-
ing to design custom deep learning
architectures for a given task.

Descent, and the gradient of the loss is computed using an algorithm
called backpropagation.

Due to the immense popularity of deep learning, a variety of
software environments such as Tensorflow and PyTorch allow quick
implementation of deep learning models. You will encounter them in
the homework.

https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf

116 introduction to machine learning lecture notes for cos 324 at princeton university

10.1 A Brief History

Neural networks are inspired by the biological processes present
within the brain. The concept of an artificial neuron was first outlined
by Warren MuCulloch and Walter Pitts in the 1940s. 3 The basic 3 Paper: https://www.cs.cmu.edu/

~./epxing/Class/10715/reading/

McCulloch.and.Pitts.pdf.
frameworks for CNNs and modern training soon followed in the
1980s. 4 Later in 1986, backpropagation was discovered as a new 4 Paper: https://link.springer.com/

article/10.1007/BF00344251.procedure to efficiently apply gradient-based training methods to
these models. 5 However, by the 21st century deep learning had gone 5 Paper: https://www.nature.com/

articles/323533a0.out of fashion. This changed in 2012, when Krizhevsky, Sutskever,
and Hinton leveraged deep learning techniques through their AlexNet
model and set new standards for performance on the ImageNet
dataset. 6 Deep learning has since begun a resurgence throughout 6 Paper: https:

//papers.nips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.

pdf.

the last decade, boosted by some key factors:

• Hardware, such as GPU and TPU (Tensor Processing Unit, specifi-
cally developed for neural network machine learning) technology
has made training faster.

• The development of novel neural network architecutres as well as
better algorithms for training neural networks.

• A vast amount of data collection, boosted by the spread of the
internet, has augmented the performance of NN models.

• Popular frameworks, such Tensorflow and PyTorch, have made it
easier to prototype and deploy NN architectures.

• Commercial payoff has caused tech corporations to invest more
financial resources.

Each of the reasons listed above has interfaced in a positively
reinforcing cycle, causing the acceleration of this technology into the
foreseeable future.

10.2 Anatomy of a Neural Network

10.2.1 Artificial Neuron

An artificial neuron, or a node, is the main component of a neural
network. Artificial neurons were inspired by early work on neurons
in animal brains, with the analogies in Table 10.1.

Formally, a node is a computational unit which receives m scalar
inputs and outputs 1 scalar. This scalar output can be used as an
input for a different neuron.

Consider the vector x⃗ = (x1, x2, . . . , xm) of m inputs. A neuron
internally maintains a trainable weight vector w⃗ = (w1, w2, . . . , wm)

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

introduction to deep learning 117

Biological neuron Artificial neuron
Dendrites Input

Cell Nucleus / Soma Node
Axon Output

Synapse Interconnections

Table 10.1: A comparison between
biological neurons in the brain and
artificial neurons in neural networks

Figure 10.1: A comparison between a
brain neuron and an artificial neuron.

x1

x2

x3

x4

x5

w⃗ · x⃗ f (w⃗ · x⃗)

w1
w2
w3
w4
w5

f

Figure 10.2: A sample artificial neuron.

and optionally a nonlinear activation function f : R→ R and outputs
the following value: 7 7 If no activation function is chosen,

we can assume that f is an identity
function f (z) = z.

y = f (w⃗ · x⃗) (10.1)

We can also add a scalar bias b before applying the activation func-
tion f (z) in which case the output will look like the following: 8 8 If we introduce a dummy variable for

the constant bias term as in Chapter 1

we can absorb the bias term into the
equation in (10.1).

y = f (w⃗ · x⃗ + b)

10.2.2 Activation Functions

An artificial neuron can choose its nonlinear activation function f (z)
from a variety of options. One such choice is the sigmoid function

σ(z) =
1

1 + e−z (10.2)

118 introduction to machine learning lecture notes for cos 324 at princeton university

Note that in this case, the neuron represents a logistic regression
unit. 9 Another popular activation function is the hyperbolic tangent, 9 However, in this context the output

is not considered to be a subjective
probability as in the case of standard
logistic regression.

which is similar to the sigmoid function:

tanh(z) =
ez − e−z

ez + e−z (10.3)

In fact, we can rewrite the hyperbolic tangent in terms of sigmoid:

tanh(z) = 2σ(2z)− 1 (10.3 revisited)

According to this expression, tanh function can be viewed as a
rescaled sigmoid function. The key difference is: the range of σ(z) is
(0, 1) and the range of tanh(z) is (−1, 1).

Arguably the most commonly used activation function is the
Rectified Linear Unit, or ReLU:

ReLU(z) = [z]+ = max{z, 0} (10.4)

There are several benefits to the ReLU activation function. It is far
cheaper to compute than the previous two alternatives and avoids
the “vanishing gradient” problem. 10 With sigmoid and hyperbolic 10 The vanishing gradient problem refers

to a situation where the derivative of
a certain step is too close to 0, which
can stall the gradient-based learning
techniques common in deep learning.

tangent activation functions, the vanishing gradient problem happens
when z = x⃗ · w⃗ has high absolute values, but ReLU avoids this
problem because the derivative is exactly 1 even for high values of z.

Example 10.2.1. Consider a vector x⃗ = (−2,−1, 0, 1, 2) of inputs and a
neuron with the weights w⃗ = (1, 1, 1, 1, 1). If the activation function of this
neuron is the sigmoid, then the output will be:

y = σ(w⃗ · x⃗) = σ(0) =
1
2

If the activation is ReLU, it will output:

[w⃗ · x⃗]+ = [0]+ = 0

Problem 10.2.2. Consider a neuron with the weights w⃗ = (1, 1, 5, 1, 1) and
the ReLU activation function. What will the outputs y1 and y2 be for the
inputs x⃗1 = (−2,−2, 0, 1, 2) and x⃗2 = (2,−1, 0, 1, 2) respectively?

10.2.3 Neural Network

A neural network consists of nodes connected with directed edges,
where each edge has a trainable parameter called its “weight” and
each node has an activation function as well as associated parame-
ter(s). There are designated input nodes and output nodes. The input
nodes are given some input values, and the rest of the network then
computes as follows: each node produces its output by taking the

introduction to deep learning 119

Figure 10.3: A sample neural network
design. Each circle represents one
artificial neuron. Two nodes being
connected by an edge means that the
output of the node on the left is being
used as one of the inputs for the node
on the right.

values produced by all nodes that have a directed edge to it. If the
directed graph of connections is acyclic — which is the case in most
popular architectures — this process of producing the values takes
finite time and we end up with a unique value at each of the output
nodes. 11 The term hidden nodes is used for nodes that are not input 11 We will not study Recurrent Neural

Nets (RNNs), where the graph contains
cycles. These used to be popular until
a few years ago, and present special
difficulties due to the presence of
directed loops. For instance, can you
come up with instances where the
output is not well-defined?

or output nodes.

10.3 Why Deep Learning?

Now that we are aware of the basic building blocks of neural net-
works, let’s consider why we prefer these models over techniques
explored in previous chapters. The key understanding is that the
models previously discussed are fundamentally linear in nature. For
instance, if we do binary classification, where the data point x⃗ is
mapped to a label based on sign(w⃗ · x⃗), then this corresponds to sep-
arating the points with label +1 from the points with label −1 via a
linear hyperplane w⃗ · x⃗ = 0. But such models are not a good choice for
datasets which are not linearly separable. Deep learning is inherently
nonlinear and is able to do classification in many settings where linear
classification cannot work.

Figure 10.4: Some examples of datasets
that are not linearly separable.

120 introduction to machine learning lecture notes for cos 324 at princeton university

10.3.1 The XOR Problem

Consider the boolean function XOR with the truth table in Table 10.2.

x1 x2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

Table 10.2: The truth table for the XOR
Boolean function.

Let us first attempt to represent the XOR function with a single
linear neuron. That is, consider a neuron that takes two inputs x1, x2

with weights w1, w2, a bias term b, and the following Heaviside step
activation function: 12 12 This neuron is called a linear per-

ceptron. It uses a nonlinear activation
function, but the nonlinearity is strictly
for the binary classification in the final
step. The boundary of the classification
is still linear.

g(z) =

0 if z ≤ 0

1 if z > 0
(10.5)

Proposition 10.3.1. There are no values of w1, w2, b such that the linear
neuron defined by the values represent the XOR function.

Proof. Assume to the contrary that there are such values. Let x⃗1 =

(0, 0), x⃗2 = (0, 1), x⃗3 = (1, 0), x⃗4 = (1, 1). Then we know that

g(w⃗ · x⃗1 + b) = g(w⃗ · x⃗4 + b) = 0

g(w⃗ · x⃗2 + b) = g(w⃗ · x⃗3 + b) = 1

which implies that

w⃗ · x⃗1 + b ≤ 0, w⃗ · x⃗4 + b ≤ 0

w⃗ · x⃗2 + b > 0, w⃗ · x⃗3 + b > 0

Now let x⃗ =
(

1
2 , 1

2

)
. Since we have x⃗ = 1

2 x⃗1 +
1
2 x⃗4, we should have

w⃗ · x⃗ + b =
1
2
· ((w⃗ · x⃗1 + b) + (w⃗ · x⃗4 + b)) ≤ 0

since we are taking the average of two non-positive numbers. But at
the same time, since x⃗ = 1

2 x⃗2 +
1
2 x⃗3, we should have

w⃗ · x⃗ + b =
1
2
· ((w⃗ · x⃗2 + b) + (w⃗ · x⃗3 + b)) > 0

since we are taking the average of two positive numbers. This leads
to a contradiction.

Problem 10.3.2. Verify that the AND, OR Boolean functions can be
represented by a single linear node.

introduction to deep learning 121

Figure 10.5 visualizes the truth table for XOR in the 2D plane. The
two axes represent the two inputs x1 and x2; blue circles denote that
y = 1; and white circles denote that y = 0. A single linear neuron can
be understood as drawing a red line that can separate white points
from blue points. Notice that it is possible to draw such a line for
AND and OR functions, but the data points that characterize the
XOR function are not linearly separable.

Figure 10.5: The data points that
characterize the XOR function are not
linearly separable.

Instead, we will leverage neural networks to solve this problem.
Let us design an architecture with inputs x1, x2, a hidden layer with
two nodes h1, h2, and a final output layer with one node y1. We
assign the ReLU activation function to the hidden nodes and define
weights and biases as shown in Figure 10.6.

x1

x2

b

h1

h2

b

y

1

1

1

1

0 −1

1

−2

0

Figure 10.6: A sample neural network
which computes the XOR of its inputs
x1 and x2. The weights for inputs are
shown by black arrows, while bias
terms are shown by grey arrows.

To be more explicit, the neural network is defined by the following
three neurons:

h1 = ReLU(x1 + x2)

h2 = ReLU(x1 + x2 − 1)

y1 = ReLU(h1 − 2h2)

Problem 10.3.3. Verify that the model in Figure 10.6 represents the XOR
function by constructing a truth table.

The main difference between the single linear neuron approach
and the neural network for the XOR function is that the network now

122 introduction to machine learning lecture notes for cos 324 at princeton university

has two layers of neurons. If we only focus on the final layer of the
neural network, we expect the boundary of the binary classification
to be linear in the values of h1, h2. However, the values of h1, h2 are
not linear in the input values x1, x2 because the hidden nodes utilize a
nonlinear activation function. Hence the boundary of the classification
is also not linear in the input values x1, x2. The nonlinear activation
function transforms the input space into a space where the XOR
operation is linearly separable. As shown in Figure 10.7, the h space is
quite clearly linearly separable in contrast to the original x space.

Figure 10.7: Unlike the x space, after
applying the nonlinear ReLU activation
function, the mapped h space is linearly
separable.

10.4 Multi-class Classification

Neural networks, like multi-class regression in Chapter 4, can be
used for classification tasks where the number of possible labels is
larger than 2. Real-life scenarios include hand-written digit recog-
nition on the MNIST dataset, where the model designer could use
ten different classes to correspond to each possible digit. Another
possible example is a speech recognition language model, where the
model is trained to distinguish between sounds of |V| vocabularies.

It turns out that such functionality can be added by simply includ-
ing the same number of output neurons as the desired number of
classes in the output layer. Then, the values of the output neurons
will be converted into a probability distribution Pr[y = k] over the
number of classes.

10.4.1 Softmax Function

Just as in Chapter 4, we use the softmax function for the purpose of
the multi-class classification. See Chapter 19 for the definition of the
softmax function.

Example 10.4.1. Say o⃗ = (3, 0, 1) are the values of the output neurons
of a neural network before applying the activation function. If we decide to

introduction to deep learning 123

apply the softmax function as the activation function, the final outputs of the
network will be so f tmax(⃗o) ≃ (0.84, 0.04, 0.11). If the network was trying
to solve a multi-class classification task, we can understand that the given
input is most likely to be of class 1, with probability 0.84 according to the
model.

One notable property of the softmax function is that the output
of the function is the same if all coordinates of the input vector is
shifted by the same amount; that is so f tmax(⃗z) = so f tmax(⃗z + c · 1⃗)
for any c ∈ R, where 1⃗ = (1, 1, . . . , 1) is a vector of all ones.

Example 10.4.2. Consider two vectors z⃗1 = (5, 2, 3) and z⃗2 = (3, 0, 1).
Then so f tmax(⃗z1) = so f tmax(⃗z2) because z⃗2 = z⃗1 − (2, 2, 2).

Problem 10.4.3. Prove the property that so f tmax(⃗z) = so f tmax(⃗z + c · 1⃗)
for any c ∈ R. (Hint: multiply both the numerator and the denominator of
so f tmax(⃗z)k by exp(c).)

11
Feedforward Neural Network and Backpropagation

Feedforward Neural Networks (FFNNs) are perhaps the simplest kind of
deep nets and are characterized by the following properties:

• There are nodes connected with no cycles.

• Nodes are partitioned into layers numbered 1 to k for some k. The
nodes in the first layer receive input of the model and output some
values. Then the nodes in layer i + 1 receive output of the nodes
in layer i as their input and output some values. The output of the
model can be computed with the output of the nodes in layer k.

• No outputs are passed back to lower layers.

Now, we only consider fully-connected layers — a special case of a
layer in feedforward neural networks.

Definition 11.0.1 (Fully-Connected Layer). A fully-connected layer
is a neural network layer in which all the nodes from one layer are fully
connected to every node of the next layer.

Note that not all layers of feedforward neural networks are nec-
essarily fully-connected (a typical case is a Convolutional Neural
Network, which we will explore in Chapter 12). However, feedfor-
ward neural networks with fully-connected layers are very common
and also easy to implement.

11.1 Forward Propagation: An Example

Forward propagation refers to how the network converts a specific
input to the output, specifically the calculation and storage of inter-
mediate variables from the input layer to the output layer. In this
section, we use concrete examples to motivate the topic. We will pro-
vide a more general formula in the next section. Readers who have a
stronger background in math may feel to skip this section altogether.

126 introduction to machine learning lecture notes for cos 324 at princeton university

11.1.1 One Output Node

We start with the network in Figure 11.1 as an example. The network
receives three inputs x1, x2, x3 and has a first hidden layer with two
nodes h(1)1 , h(1)2 , a second hidden layer with two nodes h(2)1 , h(2)2 , and
a final output layer with one node o. We assign the ReLU activa-
tion function to the hidden units, and define weights as shown in
Figure 11.1.

Figure 11.1: A sample feedforward
neural network with two hidden layers
and one output node.

The two hidden nodes in the first hidden layer are characterized
by the following equations:

h(1)1 = ReLU(2x1 − 3x2)

h(1)2 = ReLU(−x1 + x2 + 2x3)
(11.1)

and the two hidden nodes in the second hidden layer are character-
ized by the following equations:

h(2)1 = ReLU(h(1)1 + 2h(1)2)

h(2)2 = ReLU(2h(1)1 − 2h(1)2)
(11.2)

and the output node is characterized by the following equation:

o = −h(2)1 + 2h(2)2

Therefore, if we know the input values x1, x2, x3, we can first calcu-
late the values h(1)1 , h(1)2 , then using these values, calculate h(2)1 , h(2)2 ,
and finally using these values, we can calculate the output o of the
network.

Example 11.1.1. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1), we can calculate the first hidden layer as

h(1)1 = ReLU(2− 3) = 0

h(1)2 = ReLU(−1 + 1 + 2) = 2

feedforward neural network and backpropagation 127

and the second hidden layer as

h(2)1 = ReLU(0 + 2 · 2) = 4

h(2)2 = ReLU(0− 2 · 2) = 0

and the output as

o = −4 + 2 · 0 = −4

11.1.2 Multiple Output Nodes

Networks can have more than one output node. An example is the
network in Figure 11.2.

Figure 11.2: A sample feedforward
neural network with two hidden layers
and three output nodes.

The networks in Figure 11.1 and Figure 11.2 are the same except
for the output layer; the former has one output node, while the latter
has three output nodes. Now the output values of the network in
Figure 11.2 can be calculated as:

o1 = −h(2)1 + 2h(2)2

o2 = 2h(2)1 + h(2)2

o3 = h(2)1 + 2h(2)2

(11.3)

Recall from the previous Chapter 10 that a FFNN with multiple
output nodes is used for multi-class classfication. After the naive
output values are calculated, the output nodes will use the softmax
activation function to transform the values into the probabilities for
each of the three classes. That is, the probability for predicting each
class will be calculated as:

ô1 = so f tmax(o1, o2, o3)1

ô2 = so f tmax(o1, o2, o3)2

ô3 = so f tmax(o1, o2, o3)3

(11.4)

128 introduction to machine learning lecture notes for cos 324 at princeton university

Example 11.1.2. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1), we can calculate the output layer as

o1 = −4 + 0 = −4

o2 = 2 · 4 + 0 = 8

o3 = 4 + 0 = 4

and the probabilities of each class as

ô1 = so f tmax(−4, 8, 4)1 =
e−4

e−4 + e8 + e4 ≃ 0.00

ô2 = so f tmax(−4, 8, 4)2 =
e8

e−4 + e8 + e4 ≃ 0.98

ô3 = so f tmax(−4, 8, 4)3 =
e4

e−4 + e8 + e4 ≃ 0.02

11.1.3 Matrix Notation

Let w(1)
i,j be the weight between the i-th node h(1)i in the first hidden

layer and the j-th input xj. Then (11.1) can be rewritten as

h(1)1 = ReLU(w(1)
1,1 x1 + w(1)

1,2 x2 + w(1)
1,3 x3)

h(1)2 = ReLU(w(1)
2,1 x1 + w(1)

2,2 x2 + w(1)
2,3 x3)

Notice that if we set x⃗ = (x1, x2, x3) ∈ R3 and h⃗(1) = (h(1)1 , h(1)2) ∈ R2

and define a matrix W(1) ∈ R2×3 where its (i, j) entry is w(1)
i,j , then we

can further rewrite (11.1) as 1 1 Here we interpret the vectors x⃗, h⃗(1) as
column vectors, or equivalently a 3× 1
matrix and a 2× 1 matrix respectively.
This will be a convention throughout
this chapter.

h⃗(1) = ReLU
(

W(1)x⃗
)

(11.5)

where the ReLU function is applied element-wise.
Similarly, if we let w(2)

i,j be the weight between the i-th node h(2)i

in the second hidden layer and the j-th node h(1)j in the first hidden
layer, (11.2) can be rewritten as

h(2)1 = ReLU(w(2)
1,1 h(1)1 + w(2)

1,2 h(1)2)

h(2)2 = ReLU(w(2)
2,1 h(1)1 + w(2)

2,2 h(1)2)

or in a matrix notation as

h⃗(2) = ReLU
(

W(2)h⃗(1)
)

(11.6)

where h⃗(2) = (h(2)1 , h(2)2) ∈ R2 and W(2) ∈ R2×2 is a matrix whose

(i, j) entry is w(2)
i,j .

feedforward neural network and backpropagation 129

Next, if we let w(o)
i,j be the weight between the i-th output node oi

(before softmax) and the j-th node h(2)j in the second hidden layer,
(11.3) can be rewritten as

o1 = w(o)
1,1 h(2)1 + w(o)

1,2 h(2)2

o2 = w(o)
2,1 h(2)1 + w(o)

2,2 h(2)2

o3 = w(o)
3,1 h(2)1 + w(o)

3,2 h(2)2

or in a matrix notation as

o⃗ = W(o)h⃗(2) (11.7)

where o⃗ = (o1, o2, o3) ∈ R3 and W(o) ∈ R3×2 is a matrix whose (i, j)
entry is w(o)

i,j .

Finally, if we let ⃗̂o = (ô1, ô2, ô3) ∈ R3, then (11.4) can be rewritten
as

⃗̂o = so f tmax(⃗o) (11.8)

We summarize the results above into the following matrix equations

h⃗(1) = ReLU
(

W(1)⃗x
)

h⃗(2) = ReLU
(

W(2)h⃗(1)
)

o⃗ = W(o)h⃗(2)

⃗̂o = so f tmax(⃗o)

(11.9)

Example 11.1.3. If the provided input vector to the neural network in
Figure 11.2 is x⃗ = (1, 1, 1), we can calculate the first hidden layer as

h⃗(1) = W(1)x⃗ = ReLU

[2 −3 0
−1 1 2

] 1
1
1


 =

[
0
2

]

and the second hidden layer as

h⃗(2) = W(2)h⃗(1) = ReLU

([
1 2
2 −2

] [
0
2

])
=

[
4
0

]

and the output layer o⃗ (before the softmax) as

o⃗ = W(o)h⃗(2) =

−1 2
2 1
1 2

 [4
0

]
=

−4
8
4


The probability distribution ⃗̂o of the three classes can then be calculated as

⃗̂o = so f tmax(⃗o) =
(

e−4

e−4 + e8 + e4 ,
e8

e−4 + e8 + e4 ,
e4

e−4 + e8 + e4

)

130 introduction to machine learning lecture notes for cos 324 at princeton university

11.2 Forward Propagation: The General Case

We now consider an arbitrary feedforward neural network with L ≥ 1
layers. Let x⃗ ∈ Rd0 be the vector of d0 inputs to the network. For
k = 1, 2, . . . , L, let h⃗(k) = (h(k)1 , h(k)2 , . . . , h(k)dk

) ∈ Rdk represent the dk

outputs (values of each of the nodes) of the k-th layer. The L-th layer
is also known as the output layer, and we alternatively denote d0 = din

and dL = dout to emphasize that they are respectively the number of
inputs and the number of output nodes. Each of the k-th layer where
1 ≤ k ≤ L− 1 is considered a hidden layer, but for convenience, we may
abuse notation and refer to the input/output layers as respectively
the 0-th and L-th hidden layers as well.

Additionally, we consider W(k) ∈ Rdk×dk−1 to represent the weights
for the k-th hidden layer. Its (i, j) entry is the weight between the
i-th node h(k)i of the k-th hidden layer and the j-th node h(k−1)

j of the

(k− 1)-th hidden layer. We also alternatively denote W(L) = W(o) to
emphasize that it represents the weights for the output layer.

Finally, let f (k) be the nonlinear activation function for layer k.
For instance, consider the output layer. If dout = 1 (i. e., there is one
output node), we can assume that f (L) is the identity function. On
the other hand, if dout > 1 (i. e., there are multiple output nodes), we
can assume that f (L) is the softmax function. It is also possible to use
different activation functions for each layer.

With all these new notations in mind, we can express the nodes of
layer k as:

h⃗(k) = f (k)(W(k)h⃗(k−1))

for each k = 1, 2, . . . , L.
If dout = 1, we let o = W(L)h⃗L−1 denote the final output of the

model. If dout > 1, we let o⃗ = W(L)h⃗L−1 denote the output layer
before the softmax and ⃗̂o = f (L) (⃗o) denote the output layer after the
softmax.

11.2.1 Number of Weights

We now briefly consider the number of weights in a feedforward
network. There are din · d1 weights (or variables) for the first hidden
layer. Similarly, there are d1 · d2 weights for the second hidden layer. In

total, the number of weights is
L−1
∑

i=0
di · di+1.

Example 11.2.1. The number of weights in the model in Figure 11.2 can be
calculated as

3× 2 + 2× 2 + 2× 3 = 16

feedforward neural network and backpropagation 131

11.2.2 What If We Remove Nonlinearity?

If we removed the nonlinear activation function ReLU in our model
from (11.9), we would have the following forward propagation equa-
tions:

h⃗(1) = W(1)⃗x
h⃗(2) = W(2)h⃗(1)

o⃗ = W(o)h⃗(2)

⃗̂o = so f tmax(⃗o)

Notice that if we set W′ = W(o)W(2)W(1) ∈ R3×3, then

⃗̂o = so f tmax(W′⃗x)

We have thus reduced our neural net to a standard multi-classification
logistic regression model! As we have discussed the limitation of lin-
ear models earlier, this indicates the importance of having nonlinear
activation functions between layers.

11.2.3 Training Loss

Just like we have defined a loss function for ML models so far, we
also define an appropriate loss function for neural networks, where
the objective of the network becomes finding a set of weights that
minimize the loss. While there are many different definitions of loss
functions, here we present two — one that is more appropriate when
there is a single output node, and another that is more appropriate
for multi-class classification.

When there is only one scalar node in the output layer (i. e., dout =

1), we can use a squared error loss, similar to the least squares loss
from (1.4):

∑
(⃗x,y)∈D

(y− o)2 (Squared Error Loss)

where x⃗ ∈ Rdin is the input vector, y is its gold value (i. e., actual value
in the training data), and o = W(o)h⃗(L−1) is the final output (i. e.,
prediction) of the neural network.

Example 11.2.2. If the provided input vector to the neural network in
Figure 11.1 is x⃗ = (1, 1, 1) and the training output is y = 0, we can
calculate the squared error loss as

(y− o)2 = (0− (−4))2 = 16

When there are multiple nodes in the output layer (e.g., for multi-
class classification), we can use a loss function that is similar to the
logistic loss. Recall that in logistic regression, we defined the logistic

132 introduction to machine learning lecture notes for cos 324 at princeton university

loss as a sum of log loss over a set of data points:

∑
(⃗x,y)∈D

− log Pr[label y on input x⃗] (4.5 revisited)

where y ∈ {−1, 1} denotes the gold label. For neural networks, we
can analogously define the cross-entropy loss:

∑
(⃗x,y)∈D

− log ôy (Cross-Entropy Loss)

where y ∈ {1, . . . , dout} denotes the gold label, and ôy denotes the
probability that the model assigns to class y — that is, the y-th coordi-
nate of the output vector ⃗̂o = so f tmax(⃗o) after applying the softmax
function.

Example 11.2.3. If the provided input vector to the neural network in
Figure 11.2 is x⃗ = (1, 1, 1) and the training output is y = 2, we can
calculate the cross-entropy loss for this data point as

− log ôy = − log
e4

e−4 + e8 + e4 ≃ 4.02

11.3 Backpropagation: An Example

Just like in previous ML models we have learned, the process of
training a neural network model involves three steps:

1. Defining an an appropriate loss function.

2. Calculating the gradient of the loss with respect to the training
data and the model parameters.

3. Iteratively updating the parameters via the gradient descent
algorithm.

But once a neural network grows in size, the second step of cal-
culating the gradients starts to become a problem. Naively trying to
calculate each of the gradients separately becomes inefficient. Instead,
Backpropagation 2 is an efficient way to calculate the gradients with 2 Reference: https://www.nature.com/

articles/323533a0respect to the network parameters such that the number of steps for
the computation is linear in the size of the neural network.

The key idea is to perform the computation in a very specific
sequence — from the output layer to the input layer. By the Chain
Rule, we can use the already computed gradient value of a node in a
higher layer in the computation of the gradient of a node in a lower
layer. This way, the gradient values propagate back from the top layer
to the bottom layer.

https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

feedforward neural network and backpropagation 133

11.3.1 The Delta Method: Reasoning from First Principles

The main goal of backpropagation is to compute the partial deriva-
tive ∂ f /∂w where f is the loss and w is the weight of an edge. This
will allow us to apply the gradient descent algorithm and appro-
priately update the weight w. Students often find backpropagation
a confusing idea, but it is actually just a simple application of the
Chain Rule in multivariate calculus.

In this subsection, we motivate the topic with the Delta Method,
which is an intuitive way to compute ∂ f /∂w. We perturb a weight w
by a small amount ∆ and measure how much the output changes. In
doing so, we also measure how the rest of the network changes. As
we will see later, the process of computing the partial derivative of
the form ∂ f /∂w requires us to also compute the partial derivative of
the form ∂ f /∂h where h is the value at a node.

Readers who are familiar with the Chain Rule can quickly browse
through the rest of this subsection.

Example 11.3.1. Consider the model from Figure 11.2 but now with the
inputs x⃗ = (3, 1, 2). We use the same notation for the nodes and the weights
that we used throughout Section 11.1. The goal of this simple example is to
illustrate what the derivatives mean.

Figure 11.3: The model from Figure 11.2
with inputs x⃗ = (3, 1, 2).

Suppose we want to take the partial derivative of first output node o1

with respect to the weight w(1)
2,2 (i.e., the weight on the edge between the

second input x2 and the second node h(1)2 of first hidden layer). This is

denoted as ∂o1/∂w(1)
2,2 . Its definition involves considering how changing

w(1)
2,2 by an infinitesimal amount ∆ changes o1, whose current value is −3.

Adding ∆ to w(1)
2,2 will change the values of the first hidden layer to

h(1)1 = ReLU(2 · 3 + (−3) · 1 + 0 · 2) = 3

h(1)2 = ReLU((−1) · 3 + (1 + ∆) · 1 + 2 · 2) = 2 + ∆

Letting ∆→ 0, we see that the rate of change of h(1)1 and h(1)2 with respect to

134 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 11.4: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2 is

changed by a small number ∆, the first
hidden layer is also affected.

change of w(1)
2,2 is 0 and 1 respectively. In more formal terms, ∂h(1)1 /∂w(1)

2,2 =

0 and ∂h(1)2 /∂w(1)
2,2 = 1.

Figure 11.5: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2

is changed by a small number ∆, the
second hidden layer is also affected.

Using the updated values of the first hidden layer, the second hidden layer
will be calculated as

h(2)1 = ReLU(1 · 3 + 2 · (2 + ∆)) = 7 + 2∆

h(2)2 = ReLU(2 · 3 + (−2) · (2 + ∆)) = 2− 2∆

This shows that the rate of change of h(2)1 and h(2)2 with respect to change of

w(1)
2,2 is 2 and −2 respectively.
Finally the output layer can now be calculated as

o1 = (−1) · (7 + 2∆) + 2 · (2− 2∆) = −3− 6∆

o2 = 2 · (7 + 2∆) + 1 · (2− 2∆) = 16 + 2∆

o3 = 1 · (7 + 2∆) + 2 · (2− 2∆) = 11− 2∆

This shows that the rate of change of o1 with respect to change of w(1)
2,2 is −6.

Example 11.3.2. Now we consider the meaning of ∂o1/∂h(2)1 : how changing

the value of h(2)1 by an infinitesimal ∆ affects o1. Note that this is a thought

feedforward neural network and backpropagation 135

Figure 11.6: The model from Figure 11.2

with inputs x⃗ = (3, 1, 2). When w(1)
2,2

is changed by a small number ∆, the
output layer is also affected.

experiment that does not correspond to a change that is possible if the net
were a physical object constructed of nodes and wires — the value of h(2)1 is
completely decided by the previous layers and cannot be changed in isolation
without touching the previous layers. However, treating these values as
variables, it is possible to put on a calculus hat and and think about the rate
of change of one with respect to the other.

If only the value of h(2)1 is changed from 7 to 7 + ∆ in Figure 11.3, then o1

can be calculated as

o1 = (−1) · (7 + ∆) + 2 · 2 = −3− ∆

which shows that ∂o1/∂h(2)1 = −1.

Problem 11.3.3. Following the calculations in Example 11.3.1 and Ex-
ample 11.3.2, calculate ∂o1/∂h(2)2 , ∂h(2)1 /∂w(1)

2,2 , and ∂h(2)2 /∂w(1)
2,2 . Verify

that
∂o1

∂w(1)
2,2

=
∂o1

∂h(2)1

·
∂h(2)1

∂w(1)
2,2

+
∂o1

∂h(2)2

·
∂h(2)2

∂w(1)
2,2

Problem 11.3.4. Following the calculations in Example 11.3.1 and Exam-
ple 11.3.2, calculate ∂h(2)1 /∂h(1)2 , ∂h(2)2 /∂h(1)2 , and ∂h(1)2 /∂w(1)

2,2 . Verify that

∂o1

∂w(1)
2,2

=
∂o1

∂h(2)1

·
∂h(2)1

∂h(1)2

·
∂h(1)2

∂w(1)
2,2

+
∂o1

∂h(2)2

·
∂h(2)2

∂h(1)2

·
∂h(1)2

∂w(1)
2,2

(11.10)

Some readers may notice that (11.10) is just the result of the Chain
Rule in multivariable calculus. It shows that the effect of w(1)

2,2 on o1 is
the sum of its effect through all possible paths that the values prop-
agate through the network, and the amount of effect for each path
can be calculated by multiplying the appropriate partial derivative
between each layer.

In this section, we calculated by hand one partial derivative
∂o1/∂w(1)

2,2 . But in general, to compute the loss gradient, we see below
that we want to calculate the partial derivative of each output node

136 introduction to machine learning lecture notes for cos 324 at princeton university

oi with respect to each weight in the network. Manually applying the
Chain Rule for each partial derivative as in (11.10) is too inefficient.3 3 Putting on your COS 226 hat, you can

check that the computational cost of
this naive method scales quadratically
in the size of the network.

Instead, in the next section, we will learn how to utilize matrix opera-
tions to combine the computation for multiple partial derivatives into
one process.4 4 This efficiency holds even without

taking into account the fact that today’s
GPUs are optimized for fast matrix
operations.11.4 Backpropagation: The General Case

11.4.1 Jacobian Matrix

Suppose some vector y⃗ = (y1, y2, . . . , ym) ∈ Rm is a function of
x⃗ = (x1, x2, . . . , xn) ∈ Rn — that is, there is a mapping f : Rn → Rm

such that y⃗ = f (⃗x), or equivalently, there are m functions fi : Rn → R

for each i = 1, 2, . . . , m such that yi = fi (⃗x).
Then the Jacobian matrix of y⃗ with respect to x⃗, denoted as J(⃗y, x⃗),

is an m× n matrix whose (i, j) entry is the partial derivative ∂yi/∂xj.
Note that each entry of this matrix is itself a function of x⃗. A bit
confusingly, a Jacobian matrix is also often denoted as ∂⃗y/∂⃗x when it
is clear from the context that x⃗, y⃗ are vectors and hence this object is
not a partial derivative or gradient. 5 5 Note that the i-th row of the Jacobian

matrix contains the gradient of yi , i. e.
the gradient of the i-th coordinate of y⃗.

The mathematical interpretation of the Jacobian matrix is that if
we change x⃗ such that each coordinate xi is updated to xi + δi for an
infinitesimal value δi, then the output y⃗ changes to y⃗ + J(⃗y, x⃗)⃗δ.

Example 11.4.1. Suppose y⃗ is a linear function of x⃗ — that is, there exists
a matrix A ∈ Rm×n such that y⃗ = A⃗x. Then notice that yi, the i-th
coordinate of y⃗, can be expressed as

yi = Ai,∗⃗x = Ai,1x1 + Ai,2x2 + . . . + Ai,nxn

Notice that the partial derivative ∂yi/∂xj is equal to Aij. This means that
the (i, j) entry of the Jacobian matrix is the (i, j) entry of the matrix A, and
hence J(⃗y, x⃗) = A.

Problem 11.4.2. If y⃗ ∈ R2 is a function of x⃗ ∈ R3 such that

y1 = 2x1 − x2 + 3x3

y2 = −x1 + 2x3

then what is the Jacobian matrix J(⃗y, x⃗)?

Example 11.4.3. If x⃗ ∈ Rn and y⃗ = ReLU(⃗x) ∈ Rn, then notice that

∂yi
∂xi

=

1 xi > 0

0 otherwise

We can also denote this with an indicator function 1(xi > 0). Also for any
j ̸= i, we see that ∂yi/∂xj = 0. Therefore, the Jacobian matrix J(⃗y, x⃗) is a

feedforward neural network and backpropagation 137

diagonal matrix whose entry down the diagonal is 1(xi > 0); that is

J(⃗y, x⃗) = diag(1(⃗x > 0))

where we take the indicator function element-wise to the vector x⃗.

Definition 11.4.4 (Jacobian Chain Rule). Suppose vector z⃗ ∈ Rk is a
function of y⃗ ∈ Rm and y⃗ is a function of x⃗ ∈ Rn, then by the Chain Rule,
the Jacobian matrix J(⃗z, x⃗) ∈ Rk×n is represented as the matrix product:

J(⃗z, x⃗) = J(⃗z, y⃗)J(⃗y, x⃗) (11.11)

In context of the feedforward neural network, each hidden layer is
a function of the previous layer. Specifically, vector of activations of a
hidden layer is a function of the vector of activations of the previous
layer as well as of the trainable weights within the layer.

Example 11.4.5 (Gradient calculation for a single layer with ReLU’s).
If x⃗ ∈ Rn, A ∈ Rm×n, y⃗ = A⃗x ∈ Rm and z⃗ = ReLU(⃗y) ∈ Rm, then the
Jacobian matrix J(⃗z, x⃗) can be calculated as

J(⃗z, x⃗) = J(⃗z, y⃗)J(⃗y, x⃗) = diag(1(A⃗x > 0))A

11.4.2 Backpropagation — Efficiency Using Jacobian Viewpoint

Now we return to backpropagation, and show how the Jacobian
viewpoint allows computing the gradient of the loss (with respect to
network parameters) with a number of mathematical operations (i.
e., additions and multiplications) proportional to the size of the fully
connected net.

Recall that we want to find the weights W(1), W(2), . . . , W(o) that
minimize the cross-entropy loss ℓ. To apply the standard/stochastic
gradient descent algorithm, we need to find the partial derivative

∂ℓ

∂W(k)
i,j

of the loss function with respect to each weight W(k)
i,j of each

layer k.
To simplify notations, we introduce a new matrix ∂ℓ

∂W(k) which has

the same dimensions as W(k) (e.g., ∂ℓ
∂W(1) ∈ R2×3 in Figure 11.2) and

the (i, j) entry of the matrix is:(
∂ℓ

∂W(k)

)
i,j
=

∂ℓ

∂W(k)
i,j

(11.12)

for any layer k. The matrix ∂ℓ
∂W(k) will be called the gradient with

respect to the weights of the k-th layer. 6 Now the update rule for the 6 Alternatively, you can think of flat-
tening W(k) into a single vector, then
finding the Jacobian matrix ∂ℓ/∂W(k),
and later converting it back to a matrix
form.

gradient descent algorithm can be written as the following:

W(k) → W(k) − η · ∂ℓ

∂W(k)
(11.13)

138 introduction to machine learning lecture notes for cos 324 at princeton university

where η is the learning rate. Now the question remains as how to
calculate these gradients. As the name “backpropagation” suggests,
we will first compute the gradient of the loss ℓ with respect to the
output nodes; we then inductively compute the gradient for the
previous layers, until we reach the input layer.

1. Output Layer: First recall that the cross-entropy loss due to one
data point is

ℓ = − log

 eoy

dout
∑

i=1
eoi


= − log(eoy) + log

(
dout

∑
i=1

eoi

)

= −oy + log

(
dout

∑
i=1

eoi

)

where y ∈ {1, 2, . . . , dout} is the ground truth value. Therefore, the
gradient with respect to the output layer is

∂ℓ

∂oi 1≤i≤dout

=

−1 + ôi y = i

ôi y ̸= i

To simplify notations, we introduce a one-hot encoding vector e⃗y, which
has 1 only at the y-th coordinate and 0 everywhere else. Then, we can
rewrite the equation above as: 7 7 Note that ∂ℓ/∂⃗o, the term on the

left hand side, is a Jacobian matrix in
R1×dout . But ⃗̂o and e⃗y, the terms on
the right hand side, are both column
vectors, or equivalently a dout × 1 matrix.
We resolve the problem by taking the
transpose.

∂ℓ

∂⃗o
=
(⃗

ô− e⃗y

)⊺
∈ R1×dout (11.14)

This is the Jacobian matrix of the loss ℓ with respect to the output
layer o⃗.

2. Jacobian With Respect To Hidden Layer: We first compute ∂ℓ/∂⃗h(L−1),
the Jacobian matrix with respect to the last hidden layer before the
output layer. Since o⃗ = W(o)h⃗(L−1), we can apply the result from
Example 11.4.1 and get

∂ℓ

∂⃗h(L−1)
=

∂ℓ

∂⃗o
J(⃗o, h⃗(L−1))

=
∂ℓ

∂⃗o
W(o) (11.15)

Now as an inductive hypothesis, assume that we have already com-
puted the gradient (or Jacobian matrix) ∂ℓ/∂⃗h(k+1). We now compute

feedforward neural network and backpropagation 139

∂ℓ/∂⃗h(k) using the result from Example 11.4.5.

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
J(⃗h(k+1), h⃗(k))

=
∂ℓ

∂⃗h(k+1)
diag(1(W(k+1)h⃗(k) > 0))W(k+1) (11.16)

3. Gradient With Respect to Weights: We first compute ∂ℓ/∂W(o), the
gradients with respect to the weights of the output layer. Notice that
a particular weight w(o)

i,j is only used in computing oi out of all output
nodes:

oi = w(o)
i,1 h(L−1)

1 + . . . + w(o)
i,j h(L−1)

j + . . . + w(o)
i,dL−1

h(L−1)
dL−1

Therefore, the gradient with respect to w(o)
i,j can be calculated as

∂ℓ

∂w(o)
i,j

=
∂ℓ

∂oi
· ∂oi

∂w(o)
i,j

=
∂ℓ

∂oi
· h(L−1)

j

We can combine these results into the following matrix form

∂ℓ

∂W(o)
=

(
∂ℓ

∂⃗o

)⊺ (
h⃗(L−1)

)⊺
(11.17)

Now as an inductive hypothesis, assume that we have already
computed the gradient (or Jacobian) ∂ℓ/∂⃗h(k). We now compute
∂ℓ/∂W(k).

To do this, we introduce an intermediate variable z⃗(k) = W(k)h⃗(k−1)

such that h⃗(k) = ReLU(⃗z(k)). Then the gradient with respect to a par-
ticular weight w(k)

i,j can be calculated as

∂ℓ

∂w(k)
i,j

=
∂ℓ

∂z(k)i

·
∂z(k)i

∂w(k)
i,j

=
∂ℓ

∂z(k)i

· h(k−1)
j

We can combine these results into the following matrix form

∂ℓ

∂W(k)
=

(
∂ℓ

∂⃗z(k)

)⊺ (
h⃗(k−1)

)⊺
=

(
∂ℓ

∂⃗h(k)
J(⃗h(k), z⃗(k))

)⊺ (
h⃗(k−1)

)⊺
=
(

J(⃗h(k), z⃗(k))
)⊺ (∂ℓ

∂⃗h(k)

)⊺ (
h⃗(k−1)

)⊺
= diag(1(W(k)h⃗(k−1) > 0))

(
∂ℓ

∂⃗h(k)

)⊺ (
h⃗(k−1)

)⊺
(11.18)

4. Full Backpropagation Process We summarize the results above into
the following four steps:

140 introduction to machine learning lecture notes for cos 324 at princeton university

1. Compute the Jacobian matrix with respect to the output layer,
∂ℓ
∂⃗o ∈ R1×dout :

∂ℓ

∂⃗o
=
(⃗

ô− e⃗y

)⊺
((11.14) revisited)

2. Compute the Jacobian matrix with respect to the last hidden layer,
∂ℓ

∂⃗h(L−1) ∈ R1×dL−1 :

∂ℓ

∂⃗h(L−1)
=

∂ℓ

∂⃗o
W(o) ((11.15) revisited)

Then, compute the gradient with respect to the output weights,
∂ℓ

∂W(o) ∈ Rdout×dL−1 :

∂ℓ

∂W(o)
=

(
∂ℓ

∂⃗o

)⊺ (
h⃗(L−1)

)⊺
((11.17) revisited)

3. For each successive layer k, calculate the Jacobian matrix with
respect to the k-th hidden layer ∂ℓ

∂⃗h(k) ∈ R1×dk :

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
diag(1(W(k+1)h⃗(k) > 0))W(k+1) ((11.16) revisited)

Next, compute the gradient with respect to the (k + 1)-th hidden
layer weights ∂ℓ

∂W(k+1) ∈ Rdk+1×dk :

∂ℓ

∂W(k+1)
= diag(1(W(k+1)h⃗(k) > 0))

(
∂ℓ

∂⃗h(k+1)

)⊺ (
h⃗(k)

)⊺
((11.18) revisited)

4. Repeat Step 3 until we reach the input layer.

Note that these instructions are based on a model that adopts the
cross-entropy loss and the ReLU activation function. Using alterna-
tive losses and/or activation functions would result in a similar form,
although the actual derivatives may be slightly different.

Problem 11.4.6. (i) Show that if A is an m× n matrix and h⃗ ∈ Rn then
computing Ah⃗ requires mn multiplications and m vector additions. (ii)
Using the previous part, argue that the number of arithmetic operations
(additions or multiplications) in backpropagation algorithm on a fully
connected net with ReLU activations is proportional to the number of
parameters in the net.

While the above calculation is in line with your basic algorithmic
training, it doesn’t exactly describe running time in modern ML
environments with GPUs, since certain operations are parallelized,
and compilers are optimized to run backpropagation as fast as
possible.

feedforward neural network and backpropagation 141

11.4.3 Using a Different Activation Function

We briefly consider what happens if we choose a different activation
function for the hidden layers. Consider the sigmoid activation
function σ(z) = 1

1+e−z . Its derivative is given by:

σ′(z) =
(

1
1 + e−z

)′
=

e−z

(1 + e−z)2

= σ(z) ·
(

e−z

1 + e−z

)
= σ(z) · (1− σ(z))

(11.19)

There is also the hyperbolic tangent function tanh(z) = e2z−1
e2z+1 .

Problem 11.4.7. Compute f ′(z) for f (z) = tanh(z); show how f ′(z) can
be written in terms of f (z).

Problem 11.4.8. Say a neural network uses an activation function f (z) at
layer k + 1 such that f ′(z) is a function of f (z). That is, f ′(z) = g(f (z))
for some function g. Then verify that (11.16, 11.18) can be rewritten as:

∂ℓ

∂⃗h(k)
=

∂ℓ

∂⃗h(k+1)
diag(g(W(k+1)h⃗(k)))W(k+1)

∂ℓ

∂W(k+1)
= diag(g(W(k+1)h⃗(k)))

(
∂ℓ

∂⃗h(k+1)

)⊺ (
h⃗(k)

)⊺

11.4.4 Final Remark

Directly following the steps of backpropagation is complicated and
involves a lot of calculations. But remember that backpropagation
is simply computing gradients by the Chain Rule. At a high level, we
can think of the loss as a function of inputs and all the weights and
note that backpropagation simply entails calculating derivatives
with respect to each variable. The good news is that modern deep
learning software does all the gradient calculations for users. All
the model designer needs to do is to determine the neural network
architecture (e.g., choose number of layers, number of hidden units,
and the activation functions).

One note of caution is that the loss function for deep neural nets
is highly non-convex with respect to the parameters of the network.
Just as we discussed in Chapter 3, the gradient descent algorithm is
not guaranteed to find the actual minimizer in such situation, and the
choice of the initial values of the parameters matter a lot.

142 introduction to machine learning lecture notes for cos 324 at princeton university

11.5 Feedforward Neural Network in Python Programming

In this section, we discuss how to write Python code to build neural
network models and perform forward propagation and backpropaga-
tion. As usual, we use the numpy package to speed up computation.
Additionally, we use the torch package to easily design and train the
neural network.

import necessary packages

import numpy as np

import torch

import torch.nn as nn

define the neural network

class Net(nn.Module):

def __init__(self, input_size=2, hidden_dim1=2, hidden_dim2=3,

hidden_dim3=2):

super(Net, self).__init__()

self.hidden1 = nn.Linear(input_size, hidden_dim1, bias=False)

self.hidden1.weight = nn.Parameter(torch.tensor([[-2., 1.], [3., -1.

]]))

self.hidden2 = nn.Linear(hidden_dim1, hidden_dim2, bias=False)

self.hidden2.weight = nn.Parameter(torch.tensor([[0., 1.], [2., -1.]

, [1., 2.]]))

self.hidden3 = nn.Linear(hidden_dim2, hidden_dim3, bias=False)

self.hidden3.weight = nn.Parameter(torch.tensor([[-1., 2., 1.], [3.,

0., 0.]]))

self.activation = nn.ReLU()

single step of forward propagation

def forward(self, x):

h1 = self.hidden1(x)

h1 = self.activation(h1)

h2 = self.hidden2(h1)

h2 = self.activation(h2)

h3 = self.hidden3(h2)

return h3

net = Net()

forward propagation with sample input

x = torch.tensor([3., 1.])

y_pred = net.forward(x)

print(’Predicted value:’, y_pred)

backpropagation with sample input

loss = nn.functional.cross_entropy(y_pred.unsqueeze(0), torch.LongTensor([1]

))

loss.backward()

print(loss)

print(net.hidden1.weight.grad)

We start the code by importing all necessary packages.

import numpy as np

import torch

feedforward neural network and backpropagation 143

import torch.nn as nn

With PyTorch, we can design the architecture of any neural net-
work by defining the corresponding class.

class Net(nn.Module):

def __init__(self, input_size=2, hidden_dim1=2, hidden_dim2=3,

hidden_dim3=2):

super(Net, self).__init__()

self.hidden1 = nn.Linear(input_size, hidden_dim1, bias=False)

self.hidden1.weight = nn.Parameter(torch.tensor([[-2., 1.], [3., -1.

]]))

self.hidden2 = nn.Linear(hidden_dim1, hidden_dim2, bias=False)

self.hidden2.weight = nn.Parameter(torch.tensor([[0., 1.], [2., -1.]

, [1., 2.]]))

self.hidden3 = nn.Linear(hidden_dim2, hidden_dim3, bias=False)

self.hidden3.weight = nn.Parameter(torch.tensor([[-1., 2., 1.], [3.,

0., 0.]]))

self.activation = nn.ReLU()

def forward(self, x):

h1 = self.hidden1(x)

h1 = self.activation(h1)

h2 = self.hidden2(h1)

h2 = self.activation(h2)

h3 = self.hidden3(h2)

return h3

In the constructor, we define all the layers and activation functions
we are going to use in the network. In particular, we specify that we
need fully-connected layers by making instances of the nn.Linear class
and that we need ReLU activation function by making an instance of
the nn.Relu class. Then in the forward() function, we specify the order
in which to apply the layers and activations. See Figure 11.7 for a
visualization of this neural network architecture.

Figure 11.7: A sample feedforward
neural network with two hidden layers
and two output nodes.

We can simulate one step of forward propagation by calling the
forward() function of the class Net we defined.

x = torch.tensor([3., 1.])

y_pred = net.forward(x)

print(’Predicted value:’, y_pred)

144 introduction to machine learning lecture notes for cos 324 at princeton university

Similarly, we can implement backpropagation by specifying which
loss function we want to use, and calling its backward() function.

loss = nn.functional.cross_entropy(y_pred.unsqueeze(0), torch.LongTensor([1]

))

loss.backward()

print(loss)

Each function call of backward() will evaluate the gradients of loss
with respect to every parameter in the network. Gradients can be
manually accessed through the following code.

print(net.hidden1.weight.grad)

Note that calling backward() multiple times will cause gradients to
accumulate. While we do not update model weights in this code
sample, it is important to periodically clear the gradient buffer when
doing so to prevent unintended training. 8 We will discuss how to do 8 For more information, see https://

pytorch.org/docs/stable/generated/

torch.Tensor.backward.html
this in the next chapter.

https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html

12
Convolutional Neural Network

In Chapter 11, we focused on a type of a neural network called feed-
forward neural networks. But different data has different structure
(e.g., image, text, audio, etc.) and we need better ways of exploiting
them. This can help reduce the number of parameters needed in the
network, which may allow easier or more data-efficient training. In
this chapter, we present a type of a neural network common in image
processing called Convolutional Neural Network (CNN); these models
use a mathematical technique called convolution in order to extract
important visual features from input images.

12.1 Introduction to Convolution

Roughly speaking, convolution refers to a mathematical operation
where two functions are “mixed” to output a new function. In ma-
chine learning, the main idea of convolution is to reuse the same set
of parameters on different portions of input. This is particularly effec-
tive at exploiting the structure of images. It was originally motivated
by studies of the structure of cortical cells in the V1 visual cortex of
the human brain (Hubel and Wiesel won the Nobel Prize in 1981 for
this breakthrough discovery). 1 Let’s first consider an example of a 1 Paper: https://www.jstor.org/

stable/24965293.1D convolution.

Figure 12.1: The effects of 1D convo-
lution on graph of COVID-19 positive
cases.

https://www.jstor.org/stable/24965293
https://www.jstor.org/stable/24965293

146 introduction to machine learning lecture notes for cos 324 at princeton university

Example 12.1.1. Consider the 3-day moving average of daily COVID-19
cases as shown in Figure 12.1. Let xt denote the number of daily cases on
day t. We can then take three consecutive values, compute their average and
create a new output sequence from averages: yt = 1

3 (xt−1 + xt + xt+1).
Then if we set w1 = w2 = w3 = 1

3 and denote w⃗ = (w1, w2, w3), we can
write: 2 2 If we set the weights to a different

value, we can find a weighted moving
average.yt = w1xt−1 + w2xt + w3xt+1 = w⃗ · (xt−1, xt, xt+1)

yt+1 = w1xt + w2xt+1 + w3xt+2 = w⃗ · (xt, xt+1, xt+2)

yt+2 = w1xt+1 + w2xt+2 + w3xt+3 = w⃗ · (xt+1, xt+2, xt+3)

Notice that we are reusing the same weights and applying them to multiple
different values of xt to calculate yt. It is almost like sliding a filter down the
array of xt’s and applying it to every set of 3 consecutive inputs. For this
reason, we call w⃗ the convolution filter weight of length 3.

Example 12.1.2. Consider an input sequence x⃗ = (2, 1, 1, 7,−1, 2, 3, 1) and
a convolution filter w⃗ = (3, 2,−1). The first two output values will be:

y1 = 2× 3 + 1× 2 + 1× (−1) = 7

y2 = 1× 3 + 1× 2 + 7× (−1) = −2

Following a similar calculation for the other values, we see that the full
output sequence is y⃗ = (7,−2, 18, 17,−2, 11). Note that the length of y⃗
should be |⃗x| − |w⃗|+ 1 = 8− 3 + 1 = 6.

Problem 12.1.3. If yt = 2xt−1 − xt+1, yt+1 = 2xt − xt+2, and yt+2 =

2xt+1 − xt+3, what is the convolution filter weight?

12.2 Convolution in Computer Vision

In this section, we now focus on the application of convolution in
computer vision. By the nature of image data, we will be primarily
dealing with 2D convolution. Generally, 2D convolution filters are
called kernels.

Figure 12.2: The effect of local smooth-
ing on a sample image. (The person
depicted here is Admiral Grace Murray
Hopper, a computing pioneer.)

Example 12.2.1 (Local Smoothing (Blurring)). An image can be blurred
by constructing a filter that replaces each pixel by the average of neighboring
pixels:

yi,j =
1
9 ∑

b1,b2∈{−1,0,1}
xi+b1,j+b2

convolutional neural network 147

An example is shown in Figure 12.2.

Figure 12.3: The effect of local sharpen-
ing on a sample image

Example 12.2.2 (Local Sharpening (Edge Detection)). The edge of objects
in an image can be detected by constructing a filter that replaces each pixel
by its difference with the average of neighboring pixels:

yi,j = xi,j −
1
9 ∑

b1,b2∈{−1,0,1}
xi+b1,j+b2

An example is shown in Figure 12.3.

12.2.1 Convolution Filters for Images

Computationally, we perform 2D convolution on an image by "slid-
ing" the filter around every possible location in the image and taking
the inner product:

yi,j = ∑
−k≤r,s≤k

wr,sxi+r,j+s (12.1)

The result is a new image and we can view each filter as a transfor-
mation which takes an image and returns an image. In the above
equation, the filter size is (2k + 1)× (2k + 1). For example, if k = 1, we
can consider the convolution weight filter to bew−1,−1 w−1,0 w−1,+1

w0,−1 w0,0 w0,+1

w+1,−1 w+1,0 w+1,+1


The filter can only be applied to an image of size m× n at a location
where the filter completely fits inside the image. Therefore, the
locations in the input image where the center of the filter can be
placed are k < i ≤ m− k, k < j ≤ n− k and the size of the output
image is (m− 2k)× (n− 2k).

Example 12.2.3. If the input and convolution filter are given as follows:

X =


1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

 and W =

1 0 1
0 1 0
1 0 1



148 introduction to machine learning lecture notes for cos 324 at princeton university

then the pixel at (1, 1) of the resulting image can be calculated by applying
the filter at the top left corner of the input image. That is, we take the inner
product of the following parts (in red) of the two matrices

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

 and

1 0 1
0 1 0
1 0 1



which is

1× 1+ 1× 0+ 1× 1+ 0× 0+ 1× 1+ 1× 0+ 0× 1+ 0× 0+ 1× 1 = 4

Therefore, the (1, 1) entry of the resulting image is 4. Similarly, the remain-
ing pixels of the resulting image can be calculated by moving around the
filter as in Figure 12.4. The output image is given as:

Y =

4 3 4
2 4 3
2 3 4


In this example, X ∈ R5×5, W ∈ R3×3, k = 1 and Y ∈ R3×3.

Figure 12.4: Visual representation of
applying a 3× 3 convolutional filter to a
5× 5 image.

Problem 12.2.4. Suppose we have a 10× 10 image and a 5× 5 filter. What
is the size of the output image?

Figure 12.5 shows some common filters used in image processing.
Note that all these filters are hand-crafted and require domain-
specific knowledge. However, in convolutional neural networks, we
don’t set these weights by hand and we learn all the filter weights
from the data!

12.2.2 Padding

In standard 2D convolution, the size of the output image is not equal
to the size of the input image because we only consider locations
where the filter fits completely in the image. However, sometimes
we may want their sizes to be the same. In such a case, we apply a

convolutional neural network 149

Figure 12.5: Some common filters
and corresponding weights used in
image processing. Source: https:
//en.wikipedia.org/wiki/Kernel_

(image_processing)

technique called padding. The idea is to pad pixels to all four edges
of the input image (left, right, up, and down) so that the number of
valid locations for the filter is the same as the number of pixels in the
original image. In particular, if the filter size is (2k + 1)× (2k + 1), we
need to pad k pixels on each side.

There are multiple ways to implement padding. Zero padding is
when the values at all padded pixels are set to 0. “Same” padding is
when the values at padded pixels are set to the value of the nearest
pixel at the edge of the input image. In practice, zero padding is a
more common form of padding (it is equivalent to adding a black
frame around the image).

12.2.3 Downsampling Input with Stride

Another common operation in convolutional neural networks is
called stride. Stride controls how the filter convolves around the
input image. Instead of moving the filter by 1 pixel every time, we
can also move the filter every 2 (or in general, s) pixels. Essentially,
we are applying each of the filter weights at fewer locations of the
image than before. This can be viewed as a downsampling strategy,
which gives a smaller output image while greatly preserving the
information from the original input.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

150 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 12.6: A visual comparison
between two common types of padding:
zero padding and “same” padding

Suppose we have an input image of size m× n and a filter of size
(2k + 1) × (2k + 1). If padding is applied to the image, the output
image size is ⌊(m + s− 1)/s⌋ × ⌊(n + s− 1)/s⌋. 3 If padding is not 3 As a sanity check, you can verify that

in the special case of s = 1 the output
image size will be the same as the input
image size

applied to the image, the output image size is ⌊(m + s− 2k− 1)/s⌋ ×
⌊(n + s− 2k− 1)/s⌋; this is because convolution with stride is per-
formed directly on the input image itself, making the effective input
image size (m− 2k)× (n− 2k).

Example 12.2.5. Suppose we have an input image of size 5× 5 and a filter of
size 3× 3. If we apply padding and take stride size s = 2, then output size is
3× 3.

Figure 12.7: Visual representation of
applying a 3× 3 convolutional filter to
a 5× 5 image with padding and stride
size 2.

12.2.4 Nonlinear Convolution

For each location in the image (original or padded) and a single
convolution filter, we can apply a nonlinear activation function after
the convolution

yi,j = g

(
∑

−k≤r,s≤k
wr,sxi+r,j+s

)
(12.2)

where g is some function like ReLU, sigmoid, tanh. The intuition is
similar to what we had earlier in feedforward neural networks — if
we don’t add non-linear activation functions, a multi-layered convolu-
tional neural network can be easily reduced to a linear model!

convolutional neural network 151

12.2.5 Channels

In general, we do not only use one convolution filter. We construct
a network of multiple layers, and for each of the layers, we apply
multiple convolutional filters. Different filters will be able to detect
different features of the image (e.g., one filter detects edges and one
filter detects dots), and we want to apply different filters indepen-
dently on the input image. The result of applying a given filter on a
single input image is called a channel. We can stack the channels to
create a 3D structure, as shown in Figure 12.8.

Figure 12.8: Each filter creates one
channel. The output of a convolutional
layer has multiple output channels.

Next, let’s imagine that we want to build a deep neural network
with multiple convolutional layers (state-of-the-art CNNs have 100 or
even 1000 layers!). A typical convolutional layer in the middle of the
network will have several input channels (equivalent to the number
of output channels from the previous layer) and multiple output
channels. How can we determine the number of filters needed?

Figure 12.9: A convolutional layer
which has multiple input and multiple
output channels.

In this case, we want to define a filter for every possible pair of
input and output channels. The output image of a particular output
channel will be the summation of the output images from each of
the input channels, after applying the corresponding filter. We can
also add a nonlinear activation function g after taking the summation
of the output images. That is, (12.2) can be rewritten for the output

152 introduction to machine learning lecture notes for cos 324 at princeton university

image in the v-th output channel as:

y(v)i,j = g

(
nin

∑
u=1

∑
−k≤r,s≤k

w(u,v)
r,s x(u)i+r,j+s

)
(12.3)

where nin is the number of input channels, X(u) is the image at the
u-th input channel, Y(v) is the image at the v-th output channel, and
W(u,v) is the filter between the u-th input channel and the v-th output
channel.

Example 12.2.6. Assume there are 6 input channels and 3 output channels,
and the filter size is 5× 5. Then for every 6× 3 pair of input and output
channel, we have a kernel of weights of size 5× 5, so there are a total of
6× 3× 5× 5 = 450 weights.

12.2.6 Pooling

Pooling is another popular way to reduce the size of the output of a
convolutional layer. In contrast to stride, which applies convolution
operation every s pixels, pooling partitions each image (channel) to
patches of size ∆ × ∆ and performs a reduction operation on each
patch. You can think of this as similar to what happens when you
lower the resolution of an image. The reduction operation can either
involve taking the max of all the values in the patch (“max-pooling”):

yi,j = max
1≤r,s≤∆

X(i−1)·∆+r,(j−1)·∆+s

or taking the average of all the values in the patch (“mean-pooling”):

yi,j =
1

∆2

∆

∑
r,s=1

X(i−1)·∆+r,(j−1)·∆+s

The pooling operation can reduce the image size by a factor of ∆2.
If the input image is of size m × n, the size of the image after

pooling will be ⌊m/∆⌋ × ⌊n/∆⌋.

Example 12.2.7. If the size of an input image to a pooling layer is 6× 6 and
∆ = 2, then the output is of size 3× 3.

12.2.7 A Full Convolutional Neural Network

Let’s put everything together and consider a full convolutional neural
network. Figure 12.11 shows a typical example of a convolutional
neural network. A convolutional neural network typically begins
by stacking multiple convolutional layers and pooling layers. Each
convolutional layer has its own kernel size and number of output
channels; similarly, each pooling layer has its own kernel size. This is

convolutional neural network 153

Figure 12.10: Max-pooling vs mean-
pooling.

Figure 12.11: A illustration of a full
convolutional neural network.

followed by several fully-connected layers at the end. Since the out-
put images of convolutional layers are 2-dimensional, it is customary
to “flatten” the images into a 1D vector (i. e., append one row after an-
other) before applying the fully connected layers. Intuitively, we can
think of the convolutional and pooling layers as learning interesting
image features (e.g., stripes or dots) while the fully-connected layers
map these features to output classes (e.g., zebras have a lot of stripes).

All the weights in a convolutional neural network (including
weights in kernels, fully-connected layers) can be learned via the
backpropagation algorithm in Chapter 11. Again, modern deep
learning libraries (e.g., PyTorch, TensorFlow) have all the convolu-
tional and pooling layers implemented and can compute gradients

154 introduction to machine learning lecture notes for cos 324 at princeton university

automatically!
Finally, the above convolutional neural network is still a simple

network, compared to modern convolutional neural networks. Inter-
ested students can look up architectures such as AlexNet, Inception,
VGG, ResNet and DenseNet.

12.2.8 Designing a Convolutional Network

While we described convolutional nets above, we did not give a
good explanation of why they are well-suited to solve vision tasks.
Working through the next few examples will help you understand
their power. The idea is that convolution is a parameter-efficient 4 4 Which usually goes with sample-

efficiency!architecture that can “search for patterns” anywhere in the image.
For example, suppose the net has to decide if the input image has
a triangle anywhere in it. If the net were fully connected, it would
have to learn how to detect triangles centered at every possible pixel
location (i, j). By contrast, if a simple convolutional filter can detect
a triangle, we can just replicate this filter in all patches to detect a
triangle anywhere in the image.

Now consider the CNN architecture in Figure 12.12. The architec-
ture has two convolutional layers, the first with a ReLU activation
function, and the second with a sigmoid activation function. 5 We 5 In both Example 12.2.8 and Exam-

ple 12.2.9, the second convolutional
layer can be considered a fully con-
nected layer if we flatten image Y

will choose an appropriate convolutional weight and bias such that
the architecture can detect a particular simple visual pattern.

Input X Image Y Output o Output ôConv 1
ReLU

Conv 2 σ

Figure 12.12: A sample CNN archi-
tecture that can be used to detect the
patterns as aligned in Example 12.2.8
and Example 12.2.9.

Example 12.2.8. The input to the network is a gray-scale image of size
8× 8 (1 channel), and each pixel takes an integer value between 0 and 255,
inclusive. If at least one pixel of the image has value exactly 255, the output
of the CNN should have a value close to 1 and otherwise the output should
have a value close to 0.

We will now solve Example 12.2.8 by individually configuring
the parameters for each convolutional layer in Figure 12.12. The first

convolutional neural network 155

convolutional layer will have a 1× 1 filter of weight 1, a bias of −254,
and a ReLU activation function. The convolution will be applied with
no padding, and with stride 1. That is, the (i, j)-th entry of the output
image of the first convolutional layer will be

yi,j = ReLU(xi,j − 254) 1 ≤ i, j ≤ 8

where xi,j is the (i, j)-th entry of the input image. Notice that this
value is zero everywhere, except if xi,j = 255, in which case yi,j takes
the value 1. That is,

yi,j =

1 xi,j = 255

0 otherwise

See Figure 12.13 to see the effect of this choice of convolutional layer
on a sample image. We see that we have now successfully identified
the pixels in the input image that take the value 255.

 0 100 200
50 150 250
55 155 255

 Conv 1−→

−254 −154 −54
−204 −104 −4
−199 −99 1

 ReLU−→

0 0 0
0 0 0
0 0 1


Figure 12.13: The effect of the choice
of the first convoluational layer for
Example 12.2.8 on a sample image.
Only a portion of the image is shown.

Next, consider the second convolutional layer with a 8× 8 filter
of all weights equal to 10, a bias of −5, and a sigmoid activation
function. The convolution will be applied with no padding, and with
stride 1. 6 The output, before the sigmoid, will be 6 Once the output image of the first

convolutional layer is flattened to a
vector of length 64, this can also be
thought of as a fully-connected layer
with input size 64 and output size 1.

o =

(
8

∑
i,j=1

10yi,j

)
− 5

Notice that this value is −5 if and only if there is no pixel such that
yi,j = 1 (i. e., xi,j = 255). If there is one such pixel, the output is 5; if
there are two, the output is 15. The important thing is, the output is
at least 5 if there is at least one pixel in the input image whose value
is 255, and otherwise the output is ≤ 0. That is

o =

≥ 5 ∃(i, j) : xi,j = 255

−5 otherwise

Finally, when we apply the sigmoid function, the final output of the
model will be

ô = σ(o) =

≥ 0.99 ∃(i, j) : xi,j = 255

0.01 otherwise

This is exactly what we wanted in Example 12.2.8.

156 introduction to machine learning lecture notes for cos 324 at princeton university

Example 12.2.9. The input to the network is a gray-scale image of size
8× 8 (1 channel), and each pixel takes an integer value between 0 and 255,
inclusive. If any part of the input image contains the following pattern: ∗ 255 ∗

255 255 255
∗ 255 ∗

 (12.4)

the output of the CNN should have a value close to 1 and otherwise the
output should have a value close to 0.

We use the same architecture as in Figure 12.12, but now with a
different choice of parameters for the convolutional layers. The first
convolutional layer will have a 3× 3 filter with the following weights:0 1 0

1 1 1
0 1 0


a bias of −1274, and a ReLU activation function. The convolution will
be applied with no padding, and with stride 1. That is, the (i, j)-th
entry of the output image of the first convolutional layer will be

yi,j = ReLU
(
xi−1,j + xi,j−1 + xi,j + xi,j+1 + xi+1,j − 1274

)
2 ≤ i, j ≤ 7

where xi,j is the (i, j)-th entry of the input image. 7 Notice that this 7 Since there is no padding, the values
y1,1, y1,8, y8,1, y8,8 are not defined.value is zero everywhere, except if xi,j + xi−1,j + xi,j−1 + xi,j+1 +

xi+1,j = 1275, in which case yi,j takes the value 1. This can only
happen if xi−1,j = xi,j−1 = xi,j = xi,j+1 = xi+1,j = 255. That is, if the
input image has the pattern in (12.4) centered around (i, j).

yi,j =

1 Pattern in (12.4) exists at (i, j)

0 otherwise

See Figure 12.14 to see the effect of this choice of convolutional layer
on two sample images.

 0 255 0
255 250 255

0 255 0

 Conv 1−→

∗ ∗ ∗
∗ −4 ∗
∗ ∗ ∗

 ReLU−→

∗ ∗ ∗∗ 0 ∗
∗ ∗ ∗


 0 255 0

255 255 255
0 255 0

 Conv 1−→

∗ ∗ ∗
∗ +1 ∗
∗ ∗ ∗

 ReLU−→

∗ ∗ ∗∗ 1 ∗
∗ ∗ ∗



Figure 12.14: The effect of the choice
of first convoluational layer for Exam-
ple 12.2.9 on two sample images. Only
a portion of the images is shown.

convolutional neural network 157

Next, consider the second convolutional layer with a 6× 6 filter
of all weights equal to 10, a bias of −5, and a sigmoid activation
function. The convolution will be applied with no padding, and with
stride 1. The output, before the sigmoid, will be

o =

(
7

∑
i,j=2

10yi,j

)
− 5

Notice that this value is −5 if and only if there is no pixel such that
yi,j = 1 (i. e., the pattern exists at (i, j)). If there is one such pixel, the
output is 5; if there are two, the output is 15. The important thing
is, the output is at least 5 if there is at least one copy of the given
pattern, and otherwise the output is ≤ 0. That is

o =

≥ 5 ∃(i, j) : Pattern in (12.4) exists at (i, j)

−5 otherwise

Finally, when we apply the sigmoid function, the final output of the
model will be

ô = σ(o) =

≥ 0.99 ∃(i, j) : Pattern in (12.4) exists at (i, j)

0.01 otherwise

This is exactly what we wanted in Example 12.2.9.

12.3 Backpropagation for Convolutional Nets

A convolutional neural network is a special case of a feedforward
neural network where we use convolutional layers, instead of fully-
connected layers as in Chapter 11. Therefore, we can apply the
same basic idea of backpropagation so that we can run the gradient
descent algorithm, although the details of the calculation are slightly
different.

The biggest difference is that in a fully-connected layer, each
weight is used exactly once, while in a convolutional layer, each
weight is applied multiple times throughout the input image. 8 This 8 This phenomenon is also known as

weight sharing.makes the computation for the gradient slightly more convoluted.
But the basic idea is the same — identify all paths through which the
corresponding weight affects the output of the model and add up the
amount of effect for each path.

Figure 12.15 shows a portion of a sample neural network where
weight sharing occurs. That is, the same weight w is used between
the following four pairs of nodes: (x1, y1), (x2, y2), (x2, y3), (x3, y4).
If we wanted to find the gradient ∂o/∂w, we need to consider the
four paths that the weight w affects the output: w → yi → o where
1 ≤ i ≤ 4.

158 introduction to machine learning lecture notes for cos 324 at princeton university

x1

x2

x3

y1

y2

y3

y4

· · ·

· · ·

· · ·

· · ·

o

w(1)

w(2)

w(3)

w(4)

Figure 12.15: A sample neural net-
work where weight sharing occurs.
w(1), w(2), w(3), w(4) are the copies of the
same weight w.

What we will do is consider the four copies of the weight w as
separate weights that will be denoted as w(i) where 1 ≤ i ≤ 4. Since
these weights are only used in one place in the layer, we are already
familiar with computing the gradients ∂o/∂w(i). Then we will add
(or pool) these values to get the gradient ∂o/∂w. This works because
we can think of each w(i) as a function of w where w(i) = w. Then by
Chain Rule, we have

∂o
∂w

=
4

∑
i=1

∂o
∂w(i)

· ∂w(i)

∂w
=

4

∑
i=1

∂o
∂w(i)

12.3.1 Deriving Backpropagation Formula for Convolutional Layers

In this subsection, we derive the backpropagation formula for a
convolutional layer. (As in many other places, if your instructor did
not teach it in COS 324, consider this to be advanced reading.)

Recall that in a fully-connected layer (without an activation func-
tion), which computes h⃗k = W(k)h⃗(k−1), the gradient with respect to a
particular weight w(k)

i,j can be simply computed as

∂ℓ

∂w(k)
i,j

=
∂ℓ

∂h(k)i

·
∂h(k)i

∂w(k)
i,j

=
∂ℓ

∂h(k)i

· h(k−1)
j

This is because the weight w(k)
i,j is only used to compute h(k)i out

of all nodes in the next hidden layer. In comparison, consider a
convolutional layer, which computes an output image Y ∈ Rn×n from
an input image X ∈ Rm×m and filter W ∈ R(2k+1)×(2k+1). Notice
that the weight wi,j is used to compute all of the pixels in the output
image. Therefore, we just need to add (or pool) the gradient flow from
each of these paths. The gradient with respect to a particular weight

convolutional neural network 159

wi,j will be

∂ℓ

∂wi,j
=

(
∂ℓ

∂y1,1
· ∂y1,1

∂wi,j
+

∂ℓ

∂y1,2
· ∂y1,2

∂wi,j
+ . . . +

∂ℓ

∂y1,n
· ∂y1,n

∂wi,j

)

+

(
∂ℓ

∂y2,1
· ∂y2,1

∂wi,j
+

∂ℓ

∂y2,2
· ∂y2,2

∂wi,j
+ . . . +

∂ℓ

∂y2,n
· ∂y2,n

∂wi,j

)
+ . . .

+

(
∂ℓ

∂yn,1
· ∂yn,1

∂wi,j
+

∂ℓ

∂yn,2
· ∂yn,2

∂wi,j
+ . . . +

∂ℓ

∂yn,n
· ∂yn,n

∂wi,j

)

Assuming there is zero padding, this can be calculated as

∂ℓ

∂wi,j
=

(
∂ℓ

∂y1,1
· xi+1,j+1 +

∂ℓ

∂y1,2
· xi+1,j+2 + . . . +

∂ℓ

∂y1,n
· xi+1,j+n

)
+

(
∂ℓ

∂y2,1
· xi+2,j+1 +

∂ℓ

∂y2,2
· xi+2,j+2 + . . . +

∂ℓ

∂y2,n
· xi+2,j+n

)
+ . . .

+

(
∂ℓ

∂yn,1
· xi+n,j+1 +

∂ℓ

∂yn,2
· xi+n,j+2 + . . . +

∂ℓ

∂yn,n
· xi+n,j+n

)

Notice that the equation above can be rewritten as

∂ℓ

∂wi,j
= ∑

1≤r,s≤n

∂ℓ

∂yr,s
· xi+r,j+s (12.5)

That is, the Jacobian matrix ∂ℓ/∂W is the output when applying a
convolution filter ∂ℓ/∂Y to the input matrix X.

Similarly, we can try to calculate the Jacobian matrix with respect
to the input matrix X. Each input pixel xi,j is used to calculate the
output pixels yi+r,j+s where −k ≤ r, s ≤ k. The gradient with respect
to a particular input pixel will be

∂ℓ

∂xi,j
=

(
∂ℓ

∂yi−k,j−k
·

∂yi−k,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi−k,j+k
·

∂yi−k,j+k

∂xi,j

)

+

(
∂ℓ

∂yi−k+1,j−k
·

∂yi−k+1,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi−k+1,j+k
·

∂yi−k+1,j+k

∂xi,j

)
+ . . .

+

(
∂ℓ

∂yi+k,j−k
·

∂yi+k,j−k

∂xi,j
+ . . . +

∂ℓ

∂yi+k,j+k
·

∂yi+k,j+k

∂xi,j

)

160 introduction to machine learning lecture notes for cos 324 at princeton university

Assuming zero padding, this is calculated as

∂ℓ

∂xi,j
=

(
∂ℓ

∂yi−k,j−k
· wk,k + . . . +

∂ℓ

∂yi−k,j+k
· wk,−k

)

+

(
∂ℓ

∂yi−k+1,j−k
· wk−1,k + . . . +

∂ℓ

∂yi−k+1,j+k
· wk−1,−k

)
+ . . .

+

(
∂ℓ

∂yi+k,j−k
· w−k,k + . . . +

∂ℓ

∂yi+k,j+k
· w−k,−k

)

which can be rewritten as

∂ℓ

∂xi,j
= ∑
−k≤r,s≤k

∂ℓ

∂yi+r,j+s
· w−r,−s (12.6)

That is, the Jacobian matrix ∂ℓ/∂X is the output when applying the
horizontally and vertically inverted image of W as the convolutional
filter to the input matrix ∂ℓ/∂Y.

12.4 CNN in Python Programming

In this section, we discuss how to write Python code to implement
Convolutional Neural Networks (CNN). As usual, we use the numpy
package to speed up computation and the torch package to easily
design and train the neural network. We also introduce the torchvision
package:

• torchvision: This package focuses on computer vision applications
and is integrated with the broader PyTorch framework. It provides
access to pre-built models, popular datasets, and a variety of
image transform capabilities. 9 9 Documentation is available at https:

//pytorch.org/vision/stable/index.

htmlThe following code sample implements a CNN and trains it on a
single image.

import necessary packages

import random

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

set random seeds to ensure reproducibility

torch.manual_seed(0)

np.random.seed(0)

random.seed(0)

https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html

convolutional neural network 161

load CIFAR10 data

transform = transforms.Compose(

[transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_data = torchvision.datasets.CIFAR10(root=’./data’, train=True,

download=True, transform=transform)

test_data = torchvision.datasets.CIFAR10(root=’./data’, train=False,

transform=transform)

helps iterate through the train/test data in batches

train_loader = DataLoader(dataset=train_data, batch_size=8, shuffle=True,

num_workers=0)

test_loader = DataLoader(dataset=test_data, batch_size=8, shuffle=False,

num_workers=0)

define the CNN architecture

class ConvNet(nn.Module):

def __init__(self):

super(ConvNet, self).__init__()

Conv2d takes # input channels, # output channels, kernel size

self.conv1 = nn.Conv2d(3, 3, 5)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(3, 16, 5)

self.pool2 = nn.AvgPool2d(2, 2)

self.fc1 = nn.Linear(16*5*5, 120)

self.fc2 = nn.Linear(120, 10)

def forward(self, x):

x = F.relu(self.conv1(x))

x = self.pool1(x)

x = F.relu(self.conv2(x))

x = self.pool2(x)

x = x.view(-1, 16*5*5)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

extract one image from the dataset

images, labels = next(iter(train_loader))

image = images[0].unsqueeze(0)

forward propagation

net = ConvNet()

output = net(image)

choose the optimization technique to invoke

optimizer = torch.optim.SGD(net.parameters(), lr=0.01)

backpropagation

loss = torch.norm(output - torch.ones(output.shape[1]))**2

loss.backward()

optimizer.step()

optimizer.zero_grad()

As usual, we start by importing packages.

import random

import numpy as np

import torch

import torch.nn as nn

162 introduction to machine learning lecture notes for cos 324 at princeton university

import torch.nn.functional as F

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

The DataLoader class helps iterate through a dataset in batches.
Next, we fix all random seeds to ensure reproducibility.

torch.manual_seed(0)

np.random.seed(0)

random.seed(0)

Recall that programming languages on a classical computer can only
implement pseudorandom methods, which always produce the same
result for a given seed.

Then we load the CIFAR-10 dataset.

transform = transforms.Compose(

[transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_data = torchvision.datasets.CIFAR10(root=’./data’, train=True,

download=True, transform=transform)

test_data = torchvision.datasets.CIFAR10(root=’./data’, train=False,

transform=transform)

The CIFAR-10 dataset contains simple images of a single object, and
the images are labeled with the category of the objects they contain.
Note that we normalize the dataset with a mean of 0.5 and standard
deviation of 0.5 per color channel. Figure 12.16 shows a sampling of
images from the dataset after the normalization.

Figure 12.16: Sample images from the
CIFAR10 dataset.

Next we create DataLoader objects to help iterate through the
dataset in batches. Each batch will consist of 8 images and 8 labels.

train_loader = DataLoader(dataset=train_data, batch_size=8, shuffle=True,

num_workers=0)

test_loader = DataLoader(dataset=test_data, batch_size=8, shuffle=False,

num_workers=0)

Then we define our CNN architecture in the ConvNet class.

class ConvNet(nn.Module):

def __init__(self):

super(ConvNet, self).__init__()

conv2d takes # input channels, # output channels, kernel size

self.conv1 = nn.Conv2d(3, 3, 5)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(3, 16, 5)

self.pool2 = nn.AvgPool2d(2, 2)

convolutional neural network 163

self.fc1 = nn.Linear(16*5*5, 120)

self.fc2 = nn.Linear(120, 10)

def forward(self, x):

x = F.relu(self.conv1(x))

x = self.pool1(x)

x = F.relu(self.conv2(x))

x = self.pool2(x)

x = x.view(-1, 16*5*5)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

Just like the FFNN code from the previous chapter, we define all the
layers and activations we are going to use in the constructor. Note
that in addition to instances of the nn.Linear class and the nn.ReLU
class, we also make use of classes like nn.Conv2d and nn.MaxPool2d
which are specifically designed for CNNs.

We extract one training image with the following code.

images, labels = next(iter(train_loader))

image = images[0].unsqueeze(0)

The unsqueeze() function adds one dimension to the training data.
This is called a batch dimension. Normally, we would run the training
in batches, and the size of the data along the batch dimension will be
equal to the number of images in each batch. Here, we only use one
image for the sake of exposition.

We can now run forward propagation on a sample image with the
code below.

net = ConvNet()

output = net(image)

We then implement the squared error loss. Alternatively, we could
have chosen the cross-entropy loss or any other valid loss function.

loss = torch.norm(output - torch.ones(output.shape[1]))**2

Next, we calculate the gradients of the loss with the following line of
code

loss.backward()

and update each of the parameters according to the Gradient Descent
algorithm with the following line.

optimizer.step()

Finally, we reset the values of the gradients to zero with the following
code.

optimizer.zero_grad()

164 introduction to machine learning lecture notes for cos 324 at princeton university

Recall as discussed in the previous chapter that failing to do so
will cause unintended training during subsequent iterations of
backpropagation. Here, we called the zero_grad() function at the end
of one iteration of backpropagation, but it may be a good idea to
call this function right before calling backward(), just in case there
are already gradients in the buffer before program execution (e.g., if
someone was working with the model beforehand in the interpreter).

In this section, we only showed how to run forward propagation
and backpropagation on a single data point. In general, we train the
model on the entire dataset multiple times. A single pass over the
entire dataset is called an epoch.

Part IV

Reinforcement Learning

13
Introduction to Reinforcement Learning

This part of the course concerns Reinforcement Learning (RL), the
conceptual underpinning of several modern technologies such as
self-driving technologies in new cars. It is the third major category of
machine learning, in addition to the two previously seen categories
of supervised and unsupervised learning. In class we saw a video of
robots (made by Boston Dynamics) doing parkour, dancing, and over-
all doing a pretty good job of imitating the peak human physique.
That is also achieved via RL.

The basic idea of RL involves the concept of an agent learning to
make a sequence of actions in a dynamic environment. At each discrete
time step, the agent is able to take one of a menu of actions. Each
choice of action leads to changes in the state of the world (i. e., the
agent and its surroundings). The agent has an internal representation
of the current and potential states of the world (e.g., using vision
or other sensing modules). Under this setting, the agent takes a
sequence of actions towards a certain goal.

The world contains uncertainty due to a variety of factors. For
instance, there may be other agents in the environment that also
take actions to their own benefit, or the sensing modules may be
imperfect. Thus taking the same action from the same state of the
world may lead to different evolution of state in the future — that is,
RL is non-deterministic.

In this chapter, we introduce the basic elements of RL using real-
world examples, and what it means for the agent to act optimally.
Chapter 14 focuses on the setting where the underlying environ-
ment (e.g., the number of states, the current state, the probability
distribution) is completely known to the agent. 1 In Chapter 15, we 1 Think of playing a game where you

know the complete set of rules.will present the case where the environment is not fully available
to the agent, and the agent learns about the environment while also
learning to act in it. 2 2 Think of playing a Role-playing Game

(RPG) where you need to unlock parts
of the map by advancing the story.

168 introduction to machine learning lecture notes for cos 324 at princeton university

13.1 Basic Elements of Reinforcement Learning

Now we formalize several of the basic elements of reinforcement
learning that were sketched above.

13.1.1 States and Actions

There is a finite set S of states, and the entire system agent + envi-
ronment exists in one of these states at any time. At each state s ∈ S,
the agent makes an action a ∈ As, where As is the set of allowed
actions at state s. We denote A =

⋃
s∈S

As to be the set of all possible

actions in the whole RL environment.

Example 13.1.1. Consider a game of chess. Each state s can be represented
as a pair (C, p) where C denotes the current configuration of pieces and p
denotes the player to play next. For example, “white king at e1, black king
at e8, and it is white turn to move” would be a possible state s of the game.
An action a is a valid movement of a piece, given a state of the game. For
example, “white king to e2” (i.e., Ke2) would be a possible action of the
agent playing white in state s.

Example 13.1.2. Self-driving cars, like those built by Tesla, are becoming
increasingly popular. Let’s imagine how we could construct a state diagram
for the task of driving autonomously. Each state can be represented by the
current configuration of a number of factors (e.g., the car speed, distance
from lane boundaries, distance to nearest vehicle, etc.) Possible actions
include increasing/decreasing speed, changing gear, changing direction,
changing lane, etc.

13.1.2 Modeling Uncertainty via Transition Probabilities

As mentioned, the agent has many sources of uncertainty in its
knowledge about the environment, and we can use concepts from
probability to model uncertainty.

Suppose S = {s1, s2, . . . , sn} contains n states. When the agent
takes action a while in state s, it will transition into another (poten-
tially the same) state s′. The catch is: the agent does not know exactly
which state it will end up in. Instead, there is a probability pi of end-
ing up in state si for each si ∈ S. Here ∑i pi = 1, meaning each (state,
action) pair is associated with a probability distribution over the next
state that the agent will enter. Formally, we define it as follows:

Definition 13.1.3 (Transition Probabilities). Given a state s ∈ S and an
action a ∈ As, there is an associated transition probability p(∗ | s, a)
distributed over S such that state s′ ∈ S happens with probability p(s′ | s, a)

introduction to reinforcement learning 169

when action a is taken at state s and ∑
s′∈S

p(s′ | s, a) = 1. If p(s′ | s, a) > 0,

we say that the state s′ is reachable from s when action a is taken.

In general, not all states are reachable, given a state s and an action
a. That is, some transition probability p(s′ | s, a) is zero. For these
states, it is conventional to leave out the corresponding transitions
when representing the RL environment as a state diagram as in
Figure 13.1 or Figure 13.2.

Example 13.1.4. Consider the state diagram shown in Figure 13.1. This is
a special case where there is only one action a in the set A. In other words,
the agent is not making any choices; instead, it is just following probabilistic
transition over time steps. To calculate the probability of reaching state s3

from s0, we note there are two different paths. The first path is s0 − s1 − s3

and the second path is s0 − s2 − s3. We thus calculate the probabilities of each
of these paths and note that the overall probability of reaching s3 will be the
sum of both: 0.2 · 0.7 + 0.8 · 0.4 = 0.46.

Figure 13.1: An example diagram
where |A| = 1. The agent simply
follows probabilistic transitions.

Now we consider an example where there is more than one action
to make. In this case, each action induces a different probability
distribution on the set of states, so we need to draw a diagram for
each option.

Example 13.1.5. We can model a baby learning to walk through RL. As
shown in Figure 13.2, we can define the state s0 = standing but feeling
unsteady, s1 = standing and feeling secure, and s2 = on ground. The
baby has two actions to take: a = not grab onto nearest support and
a′ = grab onto nearest support. The state diagram on the top represents
the transition probabilities when the baby takes the action a. See that the
baby has a high chance of entering state s2 — falling to the ground. On
the other hand, the state diagram on the bottom represents the transition
probabilities when the baby takes the action a′. The baby now has a high
chance of entering state s1 — standing securely on the ground. The two
actions have different probability distributions associated with the relevant
transitions.

Example 13.1.6. Mechanical ventilators are used to stabilize breathing for
patients. Suppose we wished to construct a state diagram. We could define

170 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 13.2: An example diagram
showing how an action determines the
probability of outgoing transitions.

states that consider the pressure and CO2 level in the patient’s level for the
past k seconds. Actions might include adjusting the flow rate of oxygen
via valve settings as needed. Possible transitions might include the typical
mechanical response of the lungs, or unexpected spasms. Finally, we can
define the goal to be maintaining steady pressure in the patient without

“overshooting” and causing damage.

13.1.3 Agent’s Motivation/Goals

In general, an agent is a participant in RL models driven by the
need to maximize “rewards.” In a probabilistic setting, the agent
wishes to maximize their expected rewards. In a natural setting, the
“rewards” could be innate satisfaction, such as getting to eat food,
being entertained, etc. But in the usual artificial settings such as
robots and self-driving cars, rewards are sprinkled by the system
designer into the framework. Some examples appear later.3 3 While reward/punishment as a way

to shape human or animal behavior is a
very old idea, mathematical modeling
of agents as reward-maximisers appears
in several disciplines that flowered
around the middle of the 20th century
(e. g., behaviorism in psychology, profit-
maximization in economics, and of
course RL).

At each step, the agent takes an action, and is given a reward
(which could be negative, i. e., is a punishment) based on the action,
current state, and next state.

Definition 13.1.7 (Reward). For each valid 3-tuple (a, s, s′) where s′ ∈ S
is a state reachable from state s ∈ S by taking action a ∈ As, we define a
corresponding reward r(a | s, s′) ∈ R.

Example 13.1.8 (Example 13.1.5 revisited). When the baby stands and
feels secure after grabbing onto something, the parents applaud the baby,
and the baby receives a positive reward: r(a′ | s0, s1) = 5. When the baby
feels secure without grabbing onto the nearest support, the parents feel even
prouder and the baby gets a more positive reward: r(a | s0, s1) = 10. When
the baby falls to the ground, the baby feels pain and receives negative reward:

introduction to reinforcement learning 171

r(a | s0, s2) = r(a′ | s0, s2) = −5.

Typically, the designer of an RL model gets to define the rewards
throughout the framework based on the designer’s judgment. For
instance, in Example 13.1.2, we might design an RL model such that
if the car drifts into an adjacent lane, we assign a negative reward.
If another vehicle is in the lane, we might assign an even larger
negative reward. This will induce an RL model to “learn” the proper
way to driving — staying in lane.

13.1.4 Comparison with NFA

Recall the Non-deterministic Finite Automata (NFA) you learned in
COS 126. In an NFA, there is a finite number of states, and for each
state, we know the set of next possible states, based on the next input
character.

Figure 13.3: A sample Non-
deterministic Finite Automata. Source:
Introduction to the Theory of Computation
by Michael Sipser.

We can consider the following analogy between RL and NFA —
there is someone behind an NFA, who can observe its current state
and type in the next input character. This person will be called an
agent, and the choice of input character that is typed in will be called
an action. Each action can lead to a finite set of next possible states,
but because of some uncertainty in the world, the agent cannot
specify which particular state will be the next one. This is similar to
an NFA in the sense that the actions are non-deterministic. Also, just
like in an NFA, the change in the current state is also referred to as a
transition. One major difference between RL and NFA is that while an
NFA only cares about the final state of the automata (i. e., whether it
is an accept state or a reject state), in RL, the agent is given a reward
after each transition. The goal of the agent will be to take a sequence

172 introduction to machine learning lecture notes for cos 324 at princeton university

of actions so as to maximize the sum of the reward throughout the
sequence of actions.

13.2 Useful Resource: MuJoCo-based RL Environments

Real-life robots with precise and reliable hardware can get very
expensive to buy, let alone train. An easier playground for students
(especially those trying to work with a single GPU on CoLab) is
doing RL in a virtual environment.

MuJoCo is a famous physics engine that allows creating virtual
objects with somewhat realistic “joints” that can be commanded to
move similar to real-life robots. OpenAI and DeepMind have open-
source environments that allow experimentation in the MuJoCo
environment. The official website gives a pretty good overview of the
software:

Figure 13.4: An example of a MuJoCo
Walker.

MuJoCo is a physics engine that aims to facilitate research and development
in robotics, biomechanics, graphics and animation, and other areas where fast
and accurate simulation is needed. MuJoCo offers a unique combination of
speed, accuracy and modeling power, yet it is not merely a better simulator.
Instead it is the first full-featured simulator designed from the ground up
for the purpose of model-based optimization, and in particular optimization
through contacts. 4 4 Source: https://mujoco.org.

One aspect of MuJoCo simulation involves a representation of a
humanoid figure (i. e., the agent) learning how to navigate an obstacle
course (i. e., the environment). Training videos are readily available
online and show how the agent learns over time (sometimes, to
comedic effect).

Example 13.2.1. Let’s analyze the example of an agent navigating an
obstacle course through an RL framework. The states can be considered to be

https://mujoco.org

introduction to reinforcement learning 173

the set of coordinates, velocity, and acceleration for each limb, the velocity
and acceleration for the motors in each joint, and the environment itself
straight ahead. The actions can include the agent increasing or decreasing
motor speed in their joints. Finally, the final goal is to stay upright, run
forward at a reasonable pace, and avoid obstacles.

13.3 Illustrative Example: Optimum Cake Eating

Let’s consider an extended example which ties together the elements
of RL discussed previously. Suppose you buy a small cake with three
slices. The reward of eating one slice at one sitting is 1, but eating
two or three slices at one sitting is 1.5 and 1.8 respectively. 5 5 This sense of diminishing rewards is

known as the satiation effect.

Problem 13.3.1. Suppose you plan to eat the cake over a period of three days.
What eating schedule will maximize the internal reward?

Now let’s introduce your roommate, who is oblivious to basic
understandings of ownership and adheres to the “finders keepers”
faith. We define the probability Pr[sneakily eats a slice overnight] =
1
2 . To account for this uncertainty, we can create a look-ahead tree for
different initial actions. We first consider the action where you decide
to eat two out of the three slices on the first night. Successive states
and associated probabilities are shown in the Figure 13.5.

Figure 13.5: The diagram (look-ahead
tree) of the cake problem where you
decide to eat two slices on the first
night. Each state represents the number
of slices remaining, and each action
represents the number of slices eaten on
one night.

Even though you eat only two out of the three slices during the
first night, there is a 1

2 chance that your roommate eats the remaining
slice overnight. Therefore, the action of “eating 2 slices” can lead
to two possible states — “1 slice left” or “0 slices left” — each with
probability 1

2 .

Example 13.3.2. We can calculate the expected reward associated with eating
two slices on the first night by analyzing the Figure 13.5. You first gain

174 introduction to machine learning lecture notes for cos 324 at princeton university

reward of 1.5 by eating the two slices on the first night. Then with proba-
bility 1

2 (where the roommate does not eat the remaining slice overnight),
you get to eat the last slice on the second night and gain additional re-
ward of 1. With probability of 1

2 (where the roommate eats the remaining
slice), you cannot gain anymore reward. That is, the expected reward is
1.5 + 0.5 · 1 + 0.5 · 0 = 2.

Problem 13.3.3. Consider the result of Example 13.3.2. Would you prefer to
take two slices on the first night or three slices?

We next consider the action where you decide to eat one out of
the three slices on the first night. Successive states and associated
probabilities are shown in Figure 13.6.

Figure 13.6: The diagram (look-ahead
tree) of the cake problem where you
decide to eat one slice on the first night.

The difficulty in this example in contrast to the Figure 13.5 is that
if the roommate does not eat a slice after the first night, you have two
slices at your disposal on the second night. You have two actions you
can take in this “2 slices left” state — “eat 1 slice” (and hope the third
slice is still there on the third night) or “eat 2 slices” — and it is not
immediately obvious which one is more optimal. It turns out that
the expected reward you can get from the remaining 2 slices is 1.5 for
both options.

Problem 13.3.4. Verify the previous claim that both options on the second
night have the same expected reward.

Example 13.3.5. Given the previous analysis and the look-ahead tree in the
Figure 13.6, we note that the total expected reward is 1 + 0.5 · 1 + 0.5 · 1.5 =

2.25. You first receive a reward of 1 by eating 1 slice on the first night. Then
with probability 1

2 , the roommate eats one slice over night, and you gain
reward of 1 by eating the last slice on the second night. With the remaining
probability 1

2 , the roommate does not eat a slice, and you are expected to gain
reward of 1.5 from the remaining 2 slices, regardless of the action you choose
to take on the second night.

Problem 13.3.6. Consider the result of Example 13.3.5. Would you prefer to
take two slices on the first night or one slice?

14
Markov Decision Process

In this chapter, we formally introduce the Markov Decision Process
(MDP), a way to formulate an RL environment. We then present
ways to find the optimal strategy of an agent, provided that the agent
knows the full details of the MDP — that is, knows everything about
the environment.

14.1 Markov Decision Process (MDP)

Let’s review the key ingredients of RL. We have the agent, who senses
the environment and captures it as the current state. There is a finite
number of actions available at any given state, and taking an action a
in state s will cause a transition to s′ with probability p(s′ | s, a). Each
transition is accompanied by a reward r(a | s, si) ∈ R. Finally, the
goal of the agent is to maximize the expected reward via a sequence
of actions.

A Markov Decision Process (MDP) is a formalization of these con-
cepts. It is a directed graph which consists of four key features:

• A set S which contains all possible states

• A set A which contains all possible actions

• For each valid tuple of action a and states s1, s2, there is an as-
signed probability p(s2 | s1, a) of transition to s2 if action a is taken
in s1

• For each valid tuple of action a and states s1, s2, there is an as-
signed reward r(a | s1, s2), which is obtained if action a is taken to
transition from s1 to s2

If a designed MDP has M actions and N states, we can specify the
MDP by a table of transition probabilities (with MN2 numbers) and a
table for rewards (with MN2 numbers).

176 introduction to machine learning lecture notes for cos 324 at princeton university

14.1.1 Revisiting the Cake Eating Example

Let’s return to the case study on eating cake from Subsection 13.3,
and formally express it through a MDP. The set of states is given
as S = {0, 1, 2, 3}, where each state represents the number of slices
left. The set of actions is given as A = {1, 2, 3}, where each action
represents the number of slices you choose to eat on a given night.
Notice that reward only depends on how many slices you take, not
how many slices are left after your roommate goes through the fridge.
That is, we can define the reward r(a | s, ∗) for each a ∈ A to be the
same for every s ∈ S where a is feasible. 1 1 We still need to include the previous

state s because not all actions are
feasible at each state. For example, you
can’t eat 2 slices when there is only 1
slice left.

Example 14.1.1. Let’s revisit Example 13.3.2 as a motivating example.
If we let a = 2, s1 = 3, and s2 = 0, then the probability of the specified
transition is p(s2 | s1, a) = 0.5. The associated reward is r(a | s1, s2) = 1.5
as discussed earlier.

We are now ready to generalize to the a more complete MDP,
which is shown in Figure 14.1. Note that every transition is labeled
with its probability, associated action, and associated reward.

Figure 14.1: A more complete diagram
of the cake problem when described as
a MDP.

14.1.2 Discounting the Future

The MDP describing cake eating in the previous subsection was
acyclic. 2 However, in general, MDPs can have directed cycles, and 2 This is also known as an Episodic

MDP.the agent’s actions can allow it to continuously collect rewards along
that cycle. For instance, continuing our cake theme, we may have a
scenario in which you receive a fresh cake every 3 days. But now we
run into a problem: how can we calculate the expected reward when
there is an unbounded number of steps?

The solution lies in the concept of future discounting. The basic
idea is to reduce, or discount, the amount of reward we get from

markov decision process 177

future steps. In an MDP, we represent this through a discount factor
0 < γ ≤ 1 and an associated infinite sum. 3 3 This is related to notions of discount-

ing commonly considered in economics.
Definition 14.1.2 (Future Discounting). If a reward rt is received at
time t = 0, 1, 2, . . . , then the perceived value of these rewards rd, or the
discounted reward, at t = 0 is:

rd = r0 + γr1 + γ2r2 + γ3r3 + · · ·

Example 14.1.3. Consider the cake eating problem again and let rt denote the
reward we get on night t. If the reward is discounted by a factor of γ every
night, the total expected discounted reward E[total] can be rewritten as

E[total] = E[r1] + γ ·E[r2] + γ2 ·E[r3]

Consider taking the action a = 2 on the first night. If γ = 0.9, then the
expected discounted reward is

1.5 + 0.9 · (0.5 · 1 + 0.5 · 0) = 1.95

This is the same as in Example 13.3.2 except the reward taken from the
second night is discounted by a factor of 0.9. Now consider taking the action
a = 1 on the first night and on the second night. If γ = 0.9, the expected
discounted reward is

1 + 0.9 · (0.5 · 1 + 0.5 · 1) + 0.92 · (0.52 · 1) = 2.1025

Here, we first take the reward of 1 on the first night without any discount
factor. Then, we calculate the expected reward from the second night — 1
whether or not the roommate eats a slice — and discount it by a factor of 0.9.
Finally, we calculate the expected reward from the third night — 1 only if
the roommate did not eat any slice on the first two nights — and discount it
by a factor of 0.92.

Note that in Definition 14.1.2, if each rt ∈ [−R, R] and if γ < 1,
then the magnitude of discounted reward of the infinite sequence has
the following upper bound:

|rd| ≤ R(1 + γ + γ2 + · · ·) = R
1− γ

(14.1)

(14.1) is derived by considering the formula for the sum of an infinite
geometric series, which we can invoke if γ < 1. In general, γ is up
to the system designer. A lower γ would imply that the agent places
little importance on future rewards, whereas γ = 1 would imply that
there is effectively no discounting.

14.2 Policy and Markov Reward Process

Now that we have discussed what an action is and what it does in
an MDP, we want to specify what action an agent has to take in each
state. This is known as a policy.

178 introduction to machine learning lecture notes for cos 324 at princeton university

Example 14.2.1. Consider again the cake eating MDP example without
a discount factor. We already established through Example 13.3.2 and
Example 13.3.5 that to maximize the expected reward, you need to eat one
slice per day until all slices are gone. That is, in any state j where j = 1, 2, 3,
you need to take action 1.

In general, if S is the set of states, and A is the set of actions, then
a policy (not necessarily the optimum) π can be defined as a function
π : S→ A

Definition 14.2.2 (Policy). If S is the set of states, and A is the set of
actions, any function π : S → A is called a policy that describes which
action to take at each state. In particular, each state s should only be mapped
to a valid action a ∈ As at that state.

Recall that if there are M actions and N states, there are at most
MN2 transitions in the graph of the MDP. Because a policy specifies
one action per state, there are at most N2 transitions that remain
when we choose a specific policy. Therefore, it can be understood
that a policy trims out the MDP.

14.2.1 Markov Reward Process (MRP)

When we have an MDP and a fixed policy, we have what is called a
Markov Reward Process (MRP). There are no more decisions to make;
instead, all we need to do is take the action specified by the policy;
probabilistically follow a transition into a new state; and collect the
associated reward.

Example 14.2.3. Let’s revisit Figure 14.1. If we fix the policy to be π(s) = 1
for any s ∈ S, we can focus our attention to the action a = 1. Then there
are three trajectories that will lead from state 3 to state 0, based on what
the roommate does overnight. The first trajectory is 3 → 1 → 0 with
probability 0.5× 1 and reward 1 + 1. The second trajectory is 3 → 2 → 0
with probability 0.5× 0.5 and reward 1 + 1. The last trajectory is 3→ 2→
1→ 0 with probability 0.5× 0.5× 1 and reward 1 + 1 + 1.

In general, when we fix a policy π and an initial state s, we can
redraw the transition diagram of an MDP into a tree diagram for
the MRP, where each node corresponds to a state, and each edge
corresponds to a probabilistic transition. The top node represents the
initial state, and each subsequent row of the tree represents the set of
possible states after taking an action from their parent node.

Example 14.2.4. We revisit Example 14.2.3. We now transform Figure 14.1
into a tree diagram for the MRP as shown in Figure 14.2. The top node is
the initial state 3. The second row of the tree is all states that can be achieved
by taking the action 1 at state 3, and so on.

markov decision process 179

Figure 14.2: A tree representing the
MRP in Example 14.2.3.

Note that in an MRP tree, the same state can appear multiple
times, but each copy of the same state is identical — that is, the
subtree rooted at each copy must be identical. In Figure 14.2, the
state 1 appears twice in the tree. Every time it appears, it can only
lead to state 0 with probability 1. This is simply the result of fixing
a policy π — once we know the state we are in, we only have one
choice for the action to take.

The policy also induces a value function on this tree. The value
function assigns a value to each node of the tree, and each value
intuitively measures how much reward the agent should expect to
collect once the agent knows they have arrived at that node. By the
observation from the previous paragraph, this expected reward is the
same for two nodes if they are copies of the same state. Therefore,
we can equivalently define the value function for each state s instead.
Formally, we define the value function as the following.

Definition 14.2.5 (Value Function). vπ(s), the value of state s under the
policy π, is the expected discounted reward of a random trajectory starting
from s. We can define this value by using the following recursive formula:

vπ(s) = ∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvπ(s′)

)
(14.2)

Computing the value function as in (14.2) is also known as the Bellman
equation.

Let us unpack the intuition behind (14.2). Once we take action
π(s) at state s, it will bring us to state s′ with probability p(s′ | s, a),
immediately giving us a reward r(a | s, s′). Then, the expected reward
from that point on is already captured by the value vπ(s′). We just
need to apply the discount factor γ because we already took one time
step to reach s′ from s.

180 introduction to machine learning lecture notes for cos 324 at princeton university

On the other hand, if we pick any random trajectory starting
from s, its next node will be some state s′ that is reachable from s.
Therefore, the contribution of this particular trajectory to vπ(s) is
accounted for when we sum over that particular s′.

14.2.2 Connection with Dynamic Programming

In COS 226, you may have seen an implementation of a bottom-up
dynamic programming.

Figure 14.3: A Dynamic Programming
implementation of a coin changing
problem that uses the bottom-up
approach.

In such implementations, the algorithm divides the problem into
subproblems arranged as directed acyclic graphs and computes
“bottom-up.” The MDP from the cake eating problem is acylic and
our method using a look-ahead tree is similar to the dynamic pro-
gramming algorithms. Therefore, it seems like we can apply a similar
algorithm to the cake eating problem.

Example 14.2.6. Consider Example 14.2.3 again, but now with a discount
factor of 0.9. We will find the value vπ(s) of each state s by going bottom-up
from the tree in Figure 14.2. We start by noticing that vπ(0) = 0 as can be
seen from the bottom row. Then from the third node of the third row, we can
calculate

vπ(1) = 1 · (1 + 0.9 · 0) = 1

From the second node of the second row, we can calculate

vπ(2) = 0.5 · (1 + 0.9 · 0) + 0.5 · (1 + 0.9 · 1) = 1.45

Finally, from the top node, we can calculate

vπ(3) = 0.5 · (1 + 0.9 · 1) + 0.5 · (1 + 0.9 · 1.45) = 2.1025

But in general, the dynamic programming approach does not
completely apply to MDP. The biggest assumption for dynamic
programming algorithms is that the graph is acyclic, but MDPs are
generally allowed to have directed cycles if we can return to the same
state after a sequence of actions. Therefore, computing the expected
reward for even a single policy π involves solving a system of linear
equations.

markov decision process 181

Example 14.2.7. Assume that we have three states s1, s2, s3 and transitions
as in Figure 14.4 with a discount factor of γ = 0.7. Then the value at each
state is given as

vπ(s1) = 0.2× (1 + 0.7vπ(s1)) + 0.8× (2 + 0.7vπ(s2))

vπ(s2) = 0.5× (2 + 0.7vπ(s1)) + 0.5× (2 + 0.7vπ(s3))

vπ(s3) = 1× (0 + 0.7vπ(s2))

Unlike in Example 14.2.6, we cannot compute any of these values one by
one because the values are interdependent in a cyclic manner. Instead, we
need to solve the linear equation as a whole, which gives us the solution:
vπ(s1) ≈ 5.47, vπ(s2) ≈ 5.18, vπ(s3) ≈ 3.63.

Figure 14.4: Visual representation of the
MDP in Example 14.2.7.

14.3 Optimal Policy

Out of all choices for a policy, we are interested in the optimal policy,
the one that maximizes the expected (discounted) reward. Surpris-
ingly, it is known that there always exists a policy π∗ that obtains the
maximum expected reward from all initial states simultaneously; that
is π∗ = arg max

π
vπ(s) for every state s. 4. The value function of the 4 If there are multiple such policies, we

denote any one of them by π∗.
optimal policy is called the optimal value function and is often denoted
as v∗(s). Then we can express the optimal value function using (14.2)
as:

v∗(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γvπ(s′))

This is just restating the fact that the optimal value of state s is the
maximum of all possible values vπ(s) of s under a policy π — i. e.,
the Bellman equation evaluated with the values vπ(s′) of each child
node s′ under that specific policy π.

But we can even go further than this result. It is known that the
optimal value also satisfies the following:

v∗(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γv∗(s′)) (14.3)

182 introduction to machine learning lecture notes for cos 324 at princeton university

Notice that vπ(s′) in the summation has now been replaced with
v∗(s′). This property, known as the Bellman Optimality condition,
states that the optimal value is even the maximum when the Bellman
equation is evaluated with the values v∗(s′), regardless of the choice
of the policy π.

Notice that the right-hand side of (14.3) only depends on the
choice of the action a of the given state s, not any other states. There-
fore, we can rewrite (14.3) as:

v∗(s) = max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.4)

which also suggests that the optimal action at state s can be ex-
pressed as:

π∗(s) = arg max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.5)

But the problem is: it is unclear how to turn this into an efficient
algorithm. Computing the value v∗(s) depends on the value v∗(s′),
which can also depend on v∗(s), which becomes recursive.

In this section, we present an iterative algorithm called the value
iteration method which will be used to compute the optimal policy.
Before we describe the algorithm, we unpack the underlying ideas.

14.3.1 Developing Intuition about Optimality: Gridworld

To develop intuition about how to find an optimum policy, let’s
consider a classic example called Gridworld. 5 5 Source: Sutton and Barton 2020, https:

//web.stanford.edu/class/psych209/

Readings/SuttonBartoIPRLBook2ndEd.

pdf
Example 14.3.1 (Gridworld). Consider a 5× 5 grid. The set of states
is given as the cells of this grid. At each state except for A = (1, 2) and
B = (1, 4), there are four available actions: move left/right/up/down, each
with reward 0, except in the following setting: if the action will make you
move off the grid. then the reward is −1, and you are made to stay at the
same state instead.

At A, there is only one action: move to A′ = (5, 2) with reward 10 and
similarly at B, there is one action: move to B′ = (3, 4) with reward 5. 6 The 6 The outgoing transition from A and B

can be thought of as “wormholes.”discount factor is given as 0.9.

How can we compute the reward for a policy in the example
above? When beginners try to calculate the exact value using the
above definitions, they quickly get bogged down in keeping track of
too many variables, equations, and recurrences.

Instead, let’s try to think intuitively about what an optimal policy
should be trying to do. Since the wormholes are the only source of
rewards, an optimal policy should be trying to utilize the wormholes
as much as possible. Using this kind of intuition, we can design a

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

markov decision process 183

Figure 14.5: Visual representation of the
Gridworld.

policy that looks at least near-optimal, and use its value as a lower
bound for the optimal policy.

First, let v∗(s) denote the value vπ∗(s) of state s for an optimal
policy π∗. Since there is only one action to choose from at state A, we
know that

v∗(A) = 10 + γv∗(A′) (14.6)

Now, at the state A′, one possible trajectory you can follow is “go
up four steps” (each with reward 0) back to A. We know that the
optimal value has to be at least as great as this value. That is

v∗(A′) ≥ γ4v∗(A) (14.7)

Combining (14.6) and (14.7), we get

v∗(A) ≥ 10 + γ5v∗(A)

If we solve for v∗(A), we get

v∗(A) ≥ 10
1− γ5 ≈ 24.4

The value iteration method discussed below is based on this
intuition — we can provide a lower bound for the optimal policy
by suggesting some potential policy. If we repeat this process, the
lower bound for the optimal policy can only go up. At the end of
the section, we will prove that this process converges to the actual
optimal value.

14.3.2 Value Iteration Method

Value Iteration is a method guaranteed to find the optimal policy. At
each step of the iteration, we are given a lower bound on the optimal
values of each state s. Using the values of the immediate children
nodes in the tree, we can compute an improved lower bound on
v∗(s).

184 introduction to machine learning lecture notes for cos 324 at princeton university

Example 14.3.2. See Figure 14.6. Suppose there are two actions to take at
state s. The first action, labeled as blue, will lead to state s1 with reward −1
with probability 0.5 and s3 with reward −1 with probability 0.5. The second
action, labeled as red, will lead to state s2 with reward 2 with probability
1. The discount factor is given as 0.6. Now assume that someone tells us
that they know a way to get an expected reward of 12 starting from s1, 1
from s2, and 4 from s3, regardless of the choice of initial action at s. In
other words, the optimal values for these three states are lower bounded by:
v∗(s1) ≥ 12, v∗(s2) ≥ 1 and v∗(s3) ≥ 4. Using this fact, we consider two
strategies 7 — (1) first take action blue at state s and play optimally thereon 7 This is not necessarily a policy because

the second part of playing optimally
may require you to return to state s and
take an action that is inconsistent with
your initial choice of action.

based on the other person’s knowledge; (2) first take action red at state s and
play optimally thereon. The lower bound for the expected reward for each of
the two strategies can be computed as:

vblue(s) ≥ 0.5× (−1 + 0.6× 12) + 0.5× (−1 + 0.6× 4) = 3.8

vred(s) ≥ 1.0× (2 + 0.6× 1) = 2.6

The Bellman Optimality condition in (14.4) guarantees that the optimal
policy is at least as good as either of these strategies. Therefore v∗(s) has to
be larger than both vblue, vred; that is, v∗(s) ≥ 3.8.

Figure 14.6: There are two actions you
can take at state s, and you will end up
in one of the three states: s1, s2, s3.

In general, the value iteration algorithm looks like:

1. Initialize some values v0(s) for each state s such that we are guar-
anteed v0(s) ≤ v∗(s)

2. For each time step k = 1, 2, . . ., and for each state s, use the values
vk(s′) of the immediate children s′ to compute an updated value
vk+1(s) such that vk+1(s) ≤ v∗(s). 8 8 These values vk(s) maintained by the

algorithm is not necessarily associated
with a specific policy. They are just a
lower bound for the optimal value v∗(s)
that will be improved over time.

3. When k→ ∞, each vk(s) will converge to the optimal value v∗(s).

Recall from (14.1) that if all transition rewards are within [−R, R],
then the expected rewards at any state for any policy lies in

[
− R

1−γ , R
1−γ

]
.

markov decision process 185

Therefore, we can set the initial value v0(s) = − R
1−γ to be the lower

bound for each state s. 9 9 Our proof assumes this special
initialization where all v0(s) = − R

1−γ
for all states s. It turns out the value
iteration method converges to the
optimal value for arbitrary initialization,
but the proof is more complicated.

After the k-th iteration of the algorithm, we will maintain a value
vk(s) for state s, where the condition vk(s) ≤ v∗(s) is maintained as
an invariant. Now at the (k + 1)-th iteration, the algorithm will update
the values at each state s as the following:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
(14.8)

This is just the Bellman equation evaluated with the values vk(s′) of
each children node.

Example 14.3.3 (Example 14.3.1 revisited). Say we start the value
iteration on the gridworld with all values equal to zero. Now let us compute
v1(A), the value of A after the first iteration. Recall that A has only one
action to choose from: moving to A′. Denote this action by a. Therefore,

v1(A) = p(A′ | A, a) ·
(
r(a | A, A′) + γv0(A′)

)
= 1.0 · (10 + 0.9 · 0) = 10

Problem 14.3.4 (Example 14.3.1 revisited). Start value iteration with
all values equal to zero. What is v2((1, 3)), the value of (1, 3) after second
iteration?

14.3.3 Why Does Value Iteration Find an Optimum Policy?

Assume γ < 1. We prove that the values vk(s) maintained by the
value iteration method converge to the optimal values vπ(s). We
break this proof down into two parts. We first prove that the invari-
ant vk(s) ≤ v∗(s) holds throughout the algorithm. Then we prove
that in general, vk+1(s) is a tighter lower bound for v∗(s) than vk(s).

Proposition 14.3.5. For each time step k = 1, 2, . . ., and for each state s, the
invariant vk(s) ≤ v∗(s) holds.

Proof. Proof by mathematical induction. As discussed earlier, our
choice of initial values v0(s) = − R

1−γ satisfies the invariant. Now
assume that the invariant holds for some k. Now consider the update
rule of the value iteration algorithm:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
Notice that for any specific policy π and for any next state s′, we
have

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤p(s′ | s, π(s)) ·

(
r(π(s) | s, s′) + γv∗(s′)

)

186 introduction to machine learning lecture notes for cos 324 at princeton university

because of the inductive hypothesis that vk(s′) ≤ v∗(s′). Therefore, if
we sum over all state s′, we have

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤∑

s′
p(s′ | s, π(s)) ·

(
r(π(s) | s, s′) + γv∗(s′)

)
Since this inequality holds for every policy π, we have the following:

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γvk(s′)

)
≤ max

π
∑
s′

p(s′ | s, π(s)) ·
(
r(π(s) | s, s′) + γv∗(s′)

)
= v∗(s)

where we apply the Bellman Optimality condition (14.4) in the last
equality. This concludes the inductive step, and it suffices for the
proof.

Now to prove that these values vk(s) eventually converge to v∗(s),
we introduce the following definition:

Definition 14.3.6. The residual at s at the k-th iteration is defined as
δs,k = v∗(s)− vk(s) ≥ 0.

Notice that as long as the residuals at the k-th iteration converge
to 0, the values vk(s) also converge to v∗(s). Since the residuals take
finite values when the algorithm is initiated, it suffices to prove that
the residuals decrease non-trivially in every iteration. 10 10 Our exposition of Value Iteration with

our particular initialization is new. The
usual textbook description requires a
slightly more complicated argument.

Proposition 14.3.7. If the largest residual at iteration k is denoted as
δk = maxs δs,k, then the largest residual δk+1 at iteration k + 1 satisfies
δk+1 ≤ γδk

Proof. Let a∗ be the action at s under the optimum policy π∗. Then
by (14.2),

v∗(s) = ∑
s′

p(s′ | s, a∗)(r(a∗ | s, s′) + γv∗(s′)) (14.9)

Note that taking the action a∗ is always an option at the (k + 1)-
th iteration, so vk+1(s), the maximum value across all policies (in
particular, across all actions available at s), has to be greater than or
equal to the value computed with the action a∗; that is,

vk+1(s) = max
π

∑
s′

p(s′ | s, π(s))(r(π(s) | s, s′) + γvk(s′))

≥∑
s′

p(s′ | s, a∗)(r(a∗ | s, s′) + γvk(s′)) (14.10)

markov decision process 187

Subtracting (14.10) from (14.9), we get

v∗(s)− vk+1(s) ≤ γ

(
∑
s′

p(s′ | s, a∗)(v∗(s′)− vk(s′))

)
By the definition of δk, each of v∗(s′)− vk(s′) = δs′ ,k ≤ δk. Therefore,

δs,k+1 = v∗(s)− vk+1(s) ≤ γδk∑
s′

p(s′ | s, a∗) = γδk

where the last equality uses the fact that ∑
s′

p(s′ | s, a∗) = 1 because p

is a probability distribution. Since this inequality holds for any state
s, we conclude that

δk+1 = max
s

δs,k+1 ≤ γδk

Theorem 14.3.8. For each s ∈ S, vk(s) converges to v∗(s) when k→ ∞.

Proof. By Proposition 14.3.5 and Proposition 14.3.7,

|v∗(s)− vk(s)| = v∗(s)− vk(s) ≤ δk ≤ γkδ0

which converges to 0 when k goes to infinity.

Theoretically, the value iteration method may not converge in a
finite number of steps, and the values maintained by the algorithm
vk(s) may only asymptotically approach the optimal values v∗(s).
However, in practice, the value iteration method will always termi-
nate, albeit sometimes not at convergence. The current design of
computers uses a discrete set of floating point numbers to approx-
imate the set of real numbers R. Once the theoretical difference
between vk(s) and vk+1(s) becomes smaller than what the computers
can process as different, no changes will be made to the values, and
the algorithm is guaranteed to terminate. However, the values when
the algorithm terminates may be slightly off from the optimal values.

14.3.4 Retrieving Optimal Policy from the v∗’s

One important thing to note is that the value iteration method finds
the optimal value of each state, not the optimal policy. So we need an
extra step to retrieve the optimal policy from the output of the value
iteration algorithm. This can be done by considering the Bellman
Optimality condition. For each state s, define π∗(s) = a∗ such that

a∗ = arg max
a∈As

∑
s′

p(s′ | s, a)(r(a | s, s′) + γv∗(s′)) (14.5 revisited)

where v∗(s) is the value that the value iteration algorithm converges
to. If there are multiple actions a that satisfy the equation above,
arbitrarily choose an action.

188 introduction to machine learning lecture notes for cos 324 at princeton university

Example 14.3.9 (Example 14.3.1 revisited). Say we ran the value iteration
algorithm on the Gridworld. The output of the algorithm (the optimal values
of each state) is given in Table 14.1.

22.0 24.4 22.0 19.4 17.5
19.8 22.0 19.8 17.8 16.0
17.8 19.8 17.8 16.0 14.4
16.0 17.8 16.0 14.4 13.0
14.4 16.0 14.4 13.0 11.7

Table 14.1: Optimal values v∗(s) of the
Gridworld.

Consider the state A′ = (5, 2). There are four actions to take: left-
/right/up/down. Each action would yield the following values when evaluat-
ing the Bellman equation:

vle f t(A′) = 0 + 0.9× 14.4 = 13.0

vright(A′) = 0 + 0.9× 14.4 = 13.0

vup(A′) = 0 + 0.9× 17.8 = 16.0

vdown(A′) = −1 + 0.9× 16.0 = 13.4

The only action that maximizes the value is the action “go up.” Therefore,
we can conclude that the optimal policy π∗ will adopt the action “go up” for
the state A′.

Problem 14.3.10 (Example 14.3.1 revisited). Verify that an optimal policy
can assign either the action “go up” or the action “go left” for the state
(5, 3).

15
Reinforcement Learning in Unknown Environments

In the previous Chapter 14, we established the principles of reinforce-
ment learning using a Markov Decision Process (MDP) with set of
states S, set of actions A, transition probabilities p(s′ | a, s), and the
rewards r(a | s, s′). We saw a method (value iteration) to find the
optimal policy that will maximize the expected reward for every state.
The main assumption of the chapter was that the agent has access to
the full description of the MDP — the set of states, the set of actions,
the transition probabilities, rewards, etc.

But what can we do when some of the parameters of the MDP are
not available to the agent in advance — specifically, the transition
probabilities and the rewards? Instead, the agent makes actions and
observes the new state and the reward it just received. Using such
experiences it begins to learns the reward and transition structure,
and then to translate this incremental knowledge into improved
actions.

The above scenario describes most real-life agents: the system
designer does not know a full description of the probabilities and
transitions. For instance, think of the sets of possible states and
transitions in the MuJoCo animals and walkers that we saw. Even
with a small number of joints, the total set of scenarios is too vast.
Thus the designer can set up an intuitive reward structure and let the
learner figure out from experience (which is tractable since it involves
a simulation).

Settings where agent must determine (or “figure out”) the MDP
through experience, specifically by taking actions and observing the
effects, is called the “model-free” setting of RL. This chapter will
introduce basic concepts, including the famous Q-learning algorithm.

In many settings today, the underlying MDP is too large for the
agent to reconstruct completely, and the agent uses deep neural
networks to represent its knowledge of the environment and its own
policy.

190 introduction to machine learning lecture notes for cos 324 at princeton university

15.1 Model-Free Reinforcement Learning

In model-free RL, we know the set of states S and the set of actions A,
but the transition probabilities and rewards are unknown. The agent
now needs to explore the environment to estimate the transition
probabilities and rewards. Suppose the agent is originally in state
s1, chooses to take an action a, and ends up in state s2. The agent
immediately observes some reward r(a | s1, s2), but we need more
information to figure out p(s2, |s1, a).

One way we can estimate the transition probabilities is through the
Maximum Likelihood Principle. This concept has been used before
when considering estimating unigram probabilities in Chapter 8. In
model-free RL, an agent can keep track of the number of times they
took action a at state s1 and ended up in state s2 — denote this as
#(s1, a, s2). Then the estimate of the transition probability p(s′|s, a) is:

p(s2|s1, a) =
#(s1, a, s2)

∑
s′

#(s1, a, s′)
(15.1)

The Central Limit Theorem (see Chapter 18) guarantees that esti-
mates will improve with more observations and quickly converge to
underlying state-action transition probabilities and rewards.

15.1.1 Groundhog Day

Groundhog Day is an early movie about a “time loop” and the title
has even become an everyday term. The film tracks cynical TV weath-
erman Phil Connors (Bill Murray) who is tasked with going to the
small town of Punxsutawney and filming its annual Groundhog Day
celebration. He ends up reliving the same day over and over again,
and becomes temporarily trapped. Along the way, he attempts to
court his producer Rita Hanson (Andie MacDowell), and is only
released from the time loop after a concerted effort to improve his
character.

Sounds philosophically deep! On the internet you can find various
interpretations of the movie: Buddhist interpretation (“many reincar-
nations ending in Nirvana”) and psychoanalysis (“revisiting of the
same events over and over again to reach closure”). The RL interpre-
tation is that Phil is in an model-free RL environment, 1 revisiting 1 Specifically a model-free RL environ-

ment with an ability to reset to an initial
state. This happens for example with a
robot vacuum that periodically returns
to its charging station. After charging,
it starts exploring the MDP from the
initial state again.

the same events of the day over and over again and figuring out his
optimal actions.

reinforcement learning in unknown environments 191

15.2 Atari Pong (1972): A Case Study

In 1972, the classic game of Pong was released by Atari. This was the
first commercially successful video game, and had a major cultural
impact on the perception of video games by the general public. The
rules of the game are simple: each player controls a virtual paddle
which can move vertically in order to rally a ball back and forth
(one participant may be an AI agent). If a player misses the ball, the
other player wins a point. We can consider the total number of points
accumulated by a player to be their reward so far. While technology
and video games have become far more advanced in the present, it
is still useful to analyze Pong today. This is because it is a simple
example of a physics-based system, similar to (but far less advanced
than) the MuJoCo stick figure simulations discussed in Chapter 13. It
thus provides a useful case study to demonstrate how an agent can
learn basic principles of physics through random exploration and
estimation of transition probabilities.

Let’s apply some simplifications in the interest of brevity. We
define the pong table to be 5× 5 pixels in size, the ball to have a size
of 1 pixel, and the paddles to be 2 pixels in height. We define the
state at a time t as the locations of the two paddles at time t, and the
locations of the ball at time t and time t− 1. 2 2 Storing the location of the ball at time

t− 1 and time t allows us to calculate
the difference between the two locations
and thus gives an estimate for the
velocity.

We additionally restrict attention to the problem of tracking and
returning the ball, also known as “Pico-Pong.” Thus, we define the
game to begin when the opponent hits the ball. The agent gets a
reward of +1 if they manage to hit the ball, −1 if they miss, and 0
if the ball is still in play. As soon as the agent either hits the ball or
misses, we define that the game ends. Of course, these additional
rules of the game are not available to the agent playing the game.
The agent needs to “learn” these rules by observing the possible
states, transitions, and corresponding rewards.

In general, these simplifications remove complications of modeling
the opponent and makes the MDP acyclic; an explanatory diagram
is shown in Figure 15.1. Throughout this section, we will build
intuition about different aspects of our Pico-Pong model through
some examples.

15.2.1 Pico-Pong Modeling: States

Suppose the agent is playing random paddle movements. Consider
the possible states of the game shown in Figure 15.2. We note that
out of the three, the third option is never seen. By the definition of
the game, the ball can never move away from the agent. Of course,
the agent is oblivious to this fact at first, but once the game proceeds,

192 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 15.1: The simplified Pico-Pong
setup which will be considered in this
case study.

the agent will be able to implicitly “learn” that the ball can never
move away from them.

Figure 15.2: Out of these possible states,
the third option is never seen.

15.2.2 Pico-Pong Modeling: Transitions

Let us now add another restriction to the game that the ball always
moves at a speed of 1 pixel every time step (i. e., moves to one of the
8 adjacent pixels) and in a straight linear path unless being bounced
against the top/bottom wall. Consider the possible transitions shown
in Figure 15.3. We note that out of the three, the third option is never
seen. By the restriction of the game, the ball cannot move 2 pixels in
one time step. The agent thus implicitly “learns” that the ball moves
at a constant speed of 1 pixel per time step.

Figure 15.3: Out of these possible
transitions, the third option is never
seen.

reinforcement learning in unknown environments 193

Problem 15.2.1. Suppose the agent is playing randomly and the ball is trav-
eling at a speed of 1 pixel per step. Which of the transitions in Figure 15.4 is
never seen, and why?

Figure 15.4: Out of these possible
transitions, one option is never seen.

15.2.3 Pico-Pong Modeling: Rewards

Suppose the agent is playing randomly and the ball is traveling at a
speed of 1 pixel per step. Consider the action in Figure 15.5. We note
that the associated reward will be +1 because in the resulting state
the agent has “hit” the ball. The agent thus implicitly learns that if
the ball is 1 pixel away horizontally, it should move to intercept it to
obtain a positive reward.

Figure 15.5: Taking action ↓ results in a
reward of +1.

Problem 15.2.2. Suppose the agent is playing randomly and the ball is
traveling at a speed of 1 pixel per step. What reward is achieved given the
current state and chosen action in Figure 15.6, and why?

Figure 15.6: What reward will result
when taking action ↓?

15.2.4 Playing Optimally in the Learned MDP

After allowing the agent to explore enough, the agent has “learned”
some information about the underlying MDP of the Pico-Pong model.
The first thing the agent can learn is that, out of all possible states,
there is a subset of states that never appear in the game (e.g., ball

194 introduction to machine learning lecture notes for cos 324 at princeton university

moving away from the agent or ball moving too fast). The agent will
be able to ignore these states, while learning how to play optimally in
states that did occur while exploring.

Figure 15.7: An example look-ahead
tree for the Pico-Pong model.

Also, the agent has now “learnt” the transition probabilities and
rewards of the MDP. Using these estimates, the agent is able to build
up a representation of the MDP. Since the underlying MDP for the
simplified Pico-Pong model is acyclic, the optimal policy can be
determined using a simple look-ahead tree. An example diagram is
shown in Figure 15.7.

We provide a specific example to aid the exposition. Suppose
an agent finds themselves in the state shown in Figure 15.8. Since
the path of the ball is already determined, the next possible state is
uniquely determined by the choice of the action — “go down” or
“stay in place” or “go up.” If the agent chooses to “go down,” the
game will end with a reward of +1. If the agent chooses to “stay in
place” or “go up,” the game continues for another time step, but no
matter the choice of action on that step, the game will end with a
reward of −1. Therefore, the agent will learn that the optimal policy
will assign the action of “go down” in the state shown in Figure 15.8.

Problem 15.2.3. Draw out the look-ahead tree from the state shown in
Figure 15.8.

Figure 15.8: A sample state in the game
play of Pico-Pong.

Problem 15.2.4. Suppose we start from the state shown in Figure 15.9.
Assuming optimal play, what is the expected reward for the agent? (Hint:
consider if the agent will be able to reach the ball in time.)

reinforcement learning in unknown environments 195

Figure 15.9: A sample state in the game
play of Pico-Pong.

Impressive! The agent has learnt how to return the ball in Pico-
Pong by first building up the MDP and its transitions/rewards
through repeated observations, and then computing the optimum
policy for the constructed MDP through a look-ahead tree. 3 3 How would you extend these ideas to

design a rudimentary ping pong robot
which can track and return the ball?

15.3 Q-learning

15.3.1 Exploration vs. Exploitation

Let us analyze the case study with Pico-Pong more deeply. We
can separate the process of learning into two different stages —
exploration and exploitation:

• Exploration: This pertains to what the agent did in the first phase.
Random paddle movements were used to help build up previously
unknown knowledge of the MDP — transition probabilities and
rewards.

• Exploitation: This pertains to what the agent did in the second
phase. Specifically, the agent used the learnt MDP to play opti-
mally.

In general, an RL environment is more complicated than Pico-
Pong, and there is no clear-cut boundary of when an agent has
explored “sufficiently.” It is best to combine the two stages (i. e.,
exploration and exploitation) into one and “learn as you go.” Also,
it is difficult to balance between these two processes, and how to
find the correct trade-off between exploration and exploitation is a
recurring topic in RL.

15.3.2 Q-function

We now introduce the Q-function, an important concept that helps tie
together concepts of exploration and exploitation when considering
general MDPs with discounted rewards.

Definition 15.3.1 (Q-function). We define the Q-function Q : S× A→ R

as a table which assigns a real value Q(s, a) to each pair (s, a) where s ∈ S
and a ∈ A.

196 introduction to machine learning lecture notes for cos 324 at princeton university

Intuitively, the value Q(s, a) is the current estimate of the expected
discounted reward when we take action a from state s. In other words, it
is the estimate of the value vπ(s) if π is any policy that will assign
the action a to state s. Using the currently stored values of the Q-
function, we can define a canonical policy πQ. For each state s, the
policy will assign the action a that maximizes the Q(s, a) value; that
is,

πQ(s) = arg max
a

Q(s, a)

Since the agent only has access to the estimate values Q(s, a), but
not the actual value function v, this is the most optimal policy to
the agent’s knowledge. Therefore, if the agent chooses to take an
exploitation step, they will take an action prescribed by the policy πQ

with respect to the currently maintained Q-function.
Instead of relying on the currently stored Q-function, we can also

choose to take an exploration step. Every time we take an exploration
step and receive additional information about the RL environment,
we update the values of the Q-function accordingly. The goal of the
Q-learning is to learn the optimal Q-function, which approximates the
optimal policy π∗ and the optimal value function v∗ as closely as
possible. We formalize the notion as follows:

Definition 15.3.2 (Optimal Q-function). The optimal Q-function is a
Q-function that satisfies the following two conditions:

• The corresponding canonical policy πQ is an optimal policy for the MDP.

• The Q-function satisfies the following condition:

Q(s, a) = ∑
s′ ; a

p(s′ | s, a)(r(a | s, s′) + γ max
b

Q(s′, b)) (15.2)

The first condition of Definition 15.3.2 states that for a fixed state s,
the action a that maximizes Q(s, a) is a = π∗(s). This condition only
cares about the relative ordering of the values of Q(s, a) — as long
as Q(s, π∗(s)) is the maximum value among all Q(s, a), then it is fine.
This condition guarantees that the action we take in the exploitation
step is an optimal action.

The second condition is formally stating that the values of the
Q-function are estimates of the expected reward when we take action
a from state s. It also suggests that Q-function needs to “behave
like” a value function vπ for some policy π. However, whereas a
similar condition for a value function vπ only needs to hold for one
particular action (i. e., a = π(s)) given a state s, this condition for a
Q-function should hold for any arbitrary action a. Note that for an
optimal Q-function, the term maxb Q(s′, b) in (15.2) is equivalent to
vπQ(s

′).

reinforcement learning in unknown environments 197

15.3.3 Q-learning

Now that we have defined the Q-function and the optimal Q-function,
it is time for us to study how to learn the optimal Q-function. This
process is called Q-learning. The basic idea is to probabilistically
choose between exploration or exploitation: we define some probabil-
ity ϵ ∈ [0, 1] such that we choose a random action a with probability ϵ

(exploration) or choose the action a according to the current canonical
policy πQ with probability 1− ϵ (exploitation). If we choose the explo-
ration option, we use its outcome to update the Q(s, a) table. But how
should we define the update rule?

Let’s take a step back and consider a (plausibly?) real life scenario.
You are a reporter for the Daily Princetonian at Princeton, and want
to estimate the average wealth of alumni at a Princeton Reunions
event. The alumni, understandably vexed by such a request, strike
a compromise that you are only allowed to ask one alum about their
net worth. Can you get an estimate of the average? Well, you could
pick an alum at random and ask them their net worth! 4 4 The expectation gives the right aver-

age. But typically the answer would be
far from the true average; especially if
Jeff Bezos happens to be attending the
reunion.

With this intuition, we return to the world of Q-learning. Suppose
you start at some state st, take an action at, receive a reward of rt, and
arrive at state st+1. We call this process an experience. Now, when we
update the current estimate of Q(st, at), we ideally want to mimic the
behavior of the optimal Q-function in (15.2) and update it to:

Q(st, at) = ∑
s′ ; at

p(s′ | st, at) · (r(at | st, s′) + γ max
b

Q(s′, b)) (15.3)

Notice that this is the weighted average of the expected reward
r(at | st, s′) + γ maxb Q(s′, b) over all possible next states s′ given the
action at. But in practice, the agent only has the ability to take a single
experience; they lack the ability to “reset” and retake the step to try
all states s′ according to the transition probability p(s′ | st, at). We
thus must consider an alternative idea — we define the estimate for
Q(st, at) according to the experience at time step t as

Q′t = rt + γ max
b

Q(st+1, b)

This estimate can be calculated using the observed reward rt and
looking up the Q values of the state st+1 on the Q-function table.
Note that the expectation of Q′t is exactly the right hand side of (15.3).
That is,

E[Q′t] = ∑
s′ ; at

p(s′ | st, at) · (r(at | st, s′) + γ max
b

Q(s′, b))

This is because the agent took a transition to state st+1 with probabil-
ity p(st+1 | st, at) (of course, the agent does not know this value). This

198 introduction to machine learning lecture notes for cos 324 at princeton university

is thus analogous to the single-sample estimate of average alumni
wealth at the Princeton Reunions event. We can now define the
following update rule of the Q-learning process:

Q(st, at)← Q(st, at) + η(Q′t −Q(st, at))

= (1− η)Q(st, at) + ηQ′t
(15.4)

for some learning rate η > 0. You can understand this update rule in
two different ways. First, we are gently nudging the value of Q(st, at)

towards the estimate Q′t from the most recent experience. We can
alternatively think of the updated value of Q(st, at) as the weighted
average of the previous value of Q(st, at) and the estimate Q′t. In
either approach, the most important thing to note is that we combine
both the previous Q value and the new estimate to compute the
updated Q value. This is because the new estimate is just a single
sample that can be far off from the actual expectation, and also
because after enough iterations, we can assume the previous Q value
to contain information from past experience.

Example 15.3.3. Let’s return to our adventures in Pico-Pong and consider
the situation in Figure 15.10. Denote the state in the left diagram as st and
the state in the right as st+1. Suppose the current value of Q(st, a) = 0.4
with a =↑. Assuming that Q(st+1, a) = 0 for all a, we can compute the
estimate Q′t from this experience as

Q′t = rt + γ max
b

Q(st+1, b) = 1

Then the Q value will be increased to 0.4 + 0.6η.

Figure 15.10: The diagram representing
two states in a game of Pico-Pong.

15.3.4 Deep Q-learning

Note that the update rule in (15.4) looks similar to the Gradient De-
scent algorithm. They are both iterative processes which incorporate
a learning rate η. In fact, you can consider the Q-learning update rule
to be trying to minimize the squared difference between Q(st, at) and
Q′t. The similarity between the Q-learning update rule and the Gra-
dient Descent algorithm allows us to utilize a deep neural network

reinforcement learning in unknown environments 199

to learn the optimal Q-function. Such a network is called the Deep Q
Network (DQN).

In a DQN, the Q-function can be represented by the parameters
W of the network. We emphasize this by denoting the Q-function as
QW(s, a). Now instead of directly updating the Q-function as in the
update rule

Q(st, at)← Q(st, at) + η(Q′t −Q(st, at)) (15.4 revisited)

we instead update the parameters W such that the Q-function is
updated accordingly.

First consider the case that Q′t > Q(st, at). That is, the estimated
Q-value is larger than the currently stored value. Then the update
rule (15.4) will increase the value of Q(st, at). To mimic this behavior,
we want to find an update rule for W that will increase the Q-value.
This is given as:

W← W + β · ∇WQW(st, sa)

for some learning rate β > 0.

Problem 15.3.4. Suppose Q′t < Q(st, at). How should we design the weight
updates?

One final thing to note is a technique called experience replay. Ex-
periencing the environment can be expensive (i. e., computation time,
machine wear, etc.). Therefore, it is customary to keep a history of
old experiences and their rewards, and periodically take a random
sample out of the old experiences to update the Q values. In partic-
ular, experience replay ensures that DQNs are efficient and avoid
“catastrophic forgetting.” 5 5 Catastrophic forgetting is a phe-

nomenon where a neural network, after
being exposed to new information,
“forgets” information it had learned
earlier.

15.4 Applications of Reinforcement Learning

15.4.1 Q-learning for Breakout (1978)

We previously considered using reinforcement learning for Pong. We
can also use it for another famous Atari game called Breakout. One
particular design uses a CNN to process the screen and uses the
"score" as a reward. As shown in Figure 15.11, the model becomes
quite successful after several epochs.

15.4.2 Self-help Apps

Self-help apps are designed to aid in recovery of the user from ad-
diction, trauma, heart disease, etc. A typical design involves an RL
algorithm which determines the next advice/suggestion based upon
reversals, achieved milestones, etc. so far. These can be a helpful
supplement to expensive therapy/consultation.

200 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 15.11: An application of Q-
learning to the famous Atari game
Breakout.

15.4.3 Content Recommendation

At reputable websites, we might imagine that there exists a page cre-
ation system designed to capture the “reward” of user engagement.
We can use MDP techniques to model this situation. Specifically,
we can define s0 as the outside link which brought the user to the
landing page and/or the past history of the user on the site. If the
user clicks on a link, a new page is created and we can define s1

as a concatenation of s0 and the new link. If the user again clicks
on a link, another new page is created and we can define s2 as the
concatenation of s1 and the new link.

15.5 Deep Reinforcement Learning

Deep Reinforcement Learning is a subfield of machine learning that
combines the methods of Deep Learning and Reinforcement Learning
that we have discussed earlier. 6 The goal of it is to create an artificial 6 Source: https://www.youtube.com/

watch?v=x5Q79XCxMVcagent with human-level intelligence (Artifical General Intelligence,
AGI). In general, Reinforcement Learning defines the objective and
Deep Learning gives the mechanism for optimizing that objective.
Deep RL combines the problem given by the RL specification with
the solution given by the DL technique. In the cited source video,
RL expert David Silver made three broad conjectures related to this
topic.

1. RL is enough to formalize the problem of intelligence

2. Deep neural networks can represent and learn any computable
function

3. Deep RL can solve the problem of intelligence

Many Deep RL models are trained to play games (e.g., chess, Go) be-
cause it is easy to evaluate progress. By letting them compete against

https://www.youtube.com/watch?v=x5Q79XCxMVc
https://www.youtube.com/watch?v=x5Q79XCxMVc

reinforcement learning in unknown environments 201

humans, we can easily compare them to human-level intelligence. As
an example, Google Deepmind trained a Deep RL model called DQN
to play 49 arcade games. 7 The computer is not given the explicit set 7 For the full paper, visit https:

//storage.googleapis.com/

deepmind-media/dqn/DQNNaturePaper.

pdf

of rules; instead, given only the pixels and game score as input, it
learns by using deep reinforcement learning to maximize its score.
Amazingly, on about half of the games, the model played at least at a
human level of intelligence!

15.5.1 Chess: A Case Study

Founders of AI considered chess to be the epitome of human in-
telligence. In principle, the best next move can be calculated via a
look-ahead tree (similar to Figure 13.5 from the cake-eating example).
Since chess is a two-player game, we can use an algorithm called the
min-max search on the look-ahead game tree. 8 8 Source: https://www.youtube.com/

watch?v=l-hh51ncgDIUsually, RL agents are playing against the nature that causes
them to take random transitions according to the MDP’s transition
probabilities. But in chess, the agent plays against an opponent that
is trying to make the agent take the largest possible loss (the largest
possible gain for the opponent). That is why we need a min-max
evaluation of the look-ahead tree.

Figure 15.12: An example look-ahead
game tree for chess with depth 3. White
will choose the right option.

In Figure 15.12, the numbers at the leaf nodes represent a static
evaluation of how good the game configuration is for white. This
is an approximation for the actual value of the node. An example
metric in chess would be the difference in the number of pieces (#
white − # black). These numbers are evaluated either when the game
terminates or when the algorithm has reached the specified number
of steps to look ahead. If the game ever reaches the specified node,
the white has two options to choose from: if white chooses the left
child node, it will end up with reward of −1; whereas if it chooses
the right child node, the reward will be 3. Then to maximize reward,

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://www.youtube.com/watch?v=l-hh51ncgDI
https://www.youtube.com/watch?v=l-hh51ncgDI

202 introduction to machine learning lecture notes for cos 324 at princeton university

the best move of white will be to choose 3. 9 9 For those who are familiar with chess
or game theory in general, this is
known as the best response.Figure 15.13: Black will choose the left
option.

In Figure 15.13, it is now black’s turn to choose. Note that the
reward for black is the opposite of the reward for white, so black
wants to minimize the value on the tree. Therefore, black will want to
choose the left child node.

So whenever we are at a configuration, we can create a look-
ahead tree for a reasonable number of steps and try to calculate
the best move. But the size of a game tree is astronomical, so it is
computationally infeasible to search all levels of the tree. 10 10 There is an optimization method

called alpha-beta pruning. Consult
the video referenced above for an
implementation on the game of chess.15.5.2 AlphaGo: A Case Study

Go is a game invented in China around 500 BC. It is played by 2
players on a 19× 19 grid. Players take turns placing stones on the grid,
and if any set of stones is entirely surrounded by opponent stones,
the enclosed stones are taken away from the board and awarded to
the opponent as points. Even though the rules are very simple, no
computer could beat a good human amateur at Go until 2015. 11 11 In comparison, IBM’s Deep Blue

model beat the world chess champion
Kasparov in 1997.

How can we utilize RL concepts to play this game? In general, we
can create a Deep Policy Net (DPN) to learn W, which is a function
that takes state s as an input and outputs a probability distribution
pW(a | s) over the next possible actions from s. AlphaGo is an
example of a DPN engineered by the Google Deepmind lab. It takes
the current board position as the input and uses ConvNet to learn the
internal weights, and outputs the value given by a softmax function.
In its initial setup, the DPN was trained using a big dataset of past
games. 12 12 Source: https://www.youtube.com/

watch?v=Wujy7OzvdJkTo be more specific, AlphaGo used supervised learning from
human data to learn the optimal policy (action to take at each game
setting). In other words, it used convolutional layers to replicate the
moves of professional players as closely as possible. Since the CNN

https://www.youtube.com/watch?v=Wujy7OzvdJk
https://www.youtube.com/watch?v=Wujy7OzvdJk

reinforcement learning in unknown environments 203

Figure 15.14: The diagram representing
the process of training AlphaGo.

is just mimicking human players, it cannot beat human champions.
However, it can be used to search the full game tree more efficiently
than the alpha-beta search. Formally, this method is called the Monte
Carlo Tree Search, where the CNN is used to decide the order in
which to explore the tree. After the policy network was sufficiently
trained, reinforcement learning was used to train the value network
for position evaluation. Given a board setting, the network was
trained to estimate the value (i. e., likelihood of winning) of that
setting.

AlphaGo Zero is a newer version of the model that does not
depend on any human data or features. In this model, policy and
value networks are combined into one neural network, and the model
does not use any randomized Monte-Carlo simulations. It learns
solely by self-play reinforcement learning and uses neural network
(ResNet) to evaluate its performance. Within 3 days of training,
AlphaGo Zero surpassed an earlier version of AlphaGo that beat Lee
Se Dol, the holder of 8 world titles; within 21 days, it surpassed the
version that beat Ke Jie, the world champion. Interestingly enough,
AlphaGo Zero adopted some opening patterns commonly played by
human players, but it also discarded some common human patterns
and it also discovered patterns unknown to humans.

The newest version of AlphaGo is called AlphaZero. It is a model
that can be trained to play not just Go but simultaneously Chess and
Shogi (Japanese chess). After just a few hours of training, AlphaZero
surpassed the previous computer world champions (Stockfish in
Chess, Elmo in Shogi, and AlphaGo Zero in Go). Just as AlphaGo Zero
did, AlphaZero was able to dynamically adopt or discard known
openings in chess.

Part V

Advanced Topics

16
Machine Learning and Ethics

Throughout this course, we have discussed the technical aspects of
model design, training, and testing in depth. However, we have not
yet discussed some of the social implications of this technology. What
are some ethical and legal issues in deployment of ML techniques in
society? What are the caveats and limitations to temper our exuber-
ance about the possibilities of ML? This brief chapter addresses these
issues, and we hope as technologists you will continue to investigate
and consider such issues throughout your career.

16.1 Facebook’s Suicide Prevention

Figure 16.1: A visualization of the
Facebook model to predict suicides.

In 2017, Facebook launched a program to use a machine learning
algorithm to predict suicide risk amongst its user population. It has
continued with various iterations over the years. Figure 16.1 gives a
visualization of the four-step process:

1. ML algorithm automatically analyzes a post by processing its text
content and comments

208 introduction to machine learning lecture notes for cos 324 at princeton university

2. Algorithm additionally uses spatial-temporal context of the post to
perform a risk prediction

3. A human behind the algorithm performs a personal review to
finally verify if a threshold is reached

4. If the post poses a serious risk, Facebook performs a wellness
check through the person’s contacts, community organizations, etc.

At first sight, this may appear to be very good idea: even if it saves
just one life, surely the project is worth it? But the announcement of
the project cause a lot of controversy among people. The following
are some of the potential problems that people identified:

1. False positives may result in stigmatization.

2. Many people who contemplate suicide do not end up going
through with it. Facebook’s reporting could lead to criminal
penalties (in regions where suicide is a crime), involuntary hospi-
talization, stigmatization, etc.

3. Involvement of authorities (e.g., law enforcement) raises risk of
illegal seizures.

4. Should Facebook be liable for any problem caused by mis-
detection?

Beyond these points, there are deep philosophical questions as-
sociated with the concept of suicide as well. For instance, is suicide
actually immoral? Even if it is immoral, is it the responsibility of
Facebook to get involved? Is it moral for Facebook to use personal
information to assess suicide risk? Opinions differ.

16.2 Racial Bias in Machine Learning

Suppose we are designing a machine learning approach for loan
approval. The general approach will be to take a dataset of (⃗x, y),
where x⃗ is a vector of the individual’s attributes (e.g., age, education,
alma mater, address, etc.) who got a loan and y ∈ {−1, 1} indicates
whether they actually paid off the loan or not. Using the approaches
we learned in Section 4.2, we could train a binary classifier through
logistic regression. Civil rights legislation forbids using the individ-
ual’s race in many of these decisions, so while training we could
simply mask out any coordinates which identify race. However, this
does not guarantee that the classifier will be entirely “race-neutral.” 1 1 The reason is that race happens

to be correlated with many other
attributes. Thus if a classifier uses any
of the correlated attributes, it may be
implicitly using racial information in
the decision making process.

In 2016, a study 2 found that COMPAS, a leading software for

2 Machine Bias, by Angwin et al., in Pro
Publica 2016.

assessing the probability that a prison inmate would commit another

machine learning and ethics 209

serious crime, disproportionately tags African-American as being
likely to commit crimes — in the sense that African-Americans who
were tagged as likely to commit another crime were only half as
likely to actually commit a crime than a similarly-tagged person of
another race.

White African-American
Labeled Higher Risk

23.5% 44.9%
& Did Not Re-offend
Labeled Lower Risk

47.7% 28.0%
& Did Re-offend

Table 16.1: COMPAS correctly predicts
recidivism 61 percent on average. But
African-Americans are almost twice
as likely as whites to be labeled a
higher risk but not actually re-offend.
Conversely, whites are twice as likely as
African-Americans to be labeled lower
risk but go on to commit other crimes.

16.3 Conceptions of Fairness in Machine Learning

We will briefly consider possible ways to formulate fairness in ma-
chine learning. Keep in mind that this task is intrinsically difficult,
as we are attempting to assign a quantifiable objective to a funda-
mentally normative problem. The first property we might want an
ML classifier to have is called demographic parity, which effectively
enforces that the output of classifier does not depend on a protected
attribute (e.g., race, ethnicity, gender).

Definition 16.3.1 (Demographic Parity). We say that a binary classifier
that outputs y ∈ {−1, 1} satisfies demographic parity if Pr[y | xi = a] =
Pr[y | xi = b] where a, b are any two values that a protected attribute xi can
take.

Figure 16.2: A hypothetical application
of ML to a loan approval application.
Race has been made a protected at-
tribute in an attempt to prevent bias
during training.

A visualization of how a protected attribute could be specified in a
dataset is shown in Figure 16.2. Consider the loan approval example

210 introduction to machine learning lecture notes for cos 324 at princeton university

from the previous section. If the binary classification model for the
loan approval satisfies the demographic parity property, then the
model approves loans for different races at similar rates. One way
to achieve this condition is to use a regularizer term λ(Pr[y | xi =

a]− Pr[y | xi = b])2) during training. 3 3 Does this seem like a good formula-
tion of fairness?Another property we might want a “fair” model to satisfy is called

the predictive parity. This is the property that the model in Table 16.1
failed to satisfy.

Definition 16.3.2 (Predictive Parity). We say that a binary classifier that
outputs y ∈ {−1, 1} satisfies predictive parity if the true negative, false
negative, false positive, true positive rates are the same for any values of a
protected attribute.

Figure 16.3: A table of all possible
outcomes based on the model output
and the ground truth outcome. This is
also known as a confusion matrix.

Ideally, we want an ML model to satisfy both the demographic
parity and predictive parity. However, it turns out that these two
notions are incompatible!

Theorem 16.3.3 (Fairness Impossibility Theorem). 4 Under fairly general 4 See Inherent Trade-Offs in the Fair
Determination of Risk Scores, Kleinberg,
Mullainathan, and Raghavan, ITCS 2017.
The paper actually considered three
possible definitions of “fairness” and
showed every pair of them are mutually
incompatible.

conditions, demographic parity and predictive parity are incompatible.

There are other formulations of fairness, but it is difficult to find a
combination of these notions that are compatible with each other. So
one way or another, we need to sacrifice some notions of “fairness.”

16.4 Limitations of the ML Paradigm

The predictive power of ML seems immense, but is it true that if we
have enough data and the right algorithm, then everything becomes
predictable? If yes, then one could imagine societal programs leverag-
ing this to precisely target help to where it would be more effective.
We first consider a famous — and somewhat amusing — example of
a study 5 that turned out to be false. 5 Extraneous factors in judicial decisions,

Danziger et al., PNAS 2011.

machine learning and ethics 211

16.4.1 Hungry Judge Effect

The study analyzed the parole decisions made by 8 Israeli judges in
over 1, 100 cases. The data in Figure 16.4 shows that prisoners were
much more likely to be granted parole after the judge took a lunch
break or a coffee break. The study therefore suggested that judges
tend to be stricter before a break (maybe because they are “hangry”)
but more lenient when they return from the break.

Figure 16.4: Data from the study
shows an uptick in favorable decisions
following a lunch break or a coffee
break.

Nevertheless, it turns out that this “hungry judge effect” can be
explained by a completely different reason. A followup study 6 6 Overlooked factors in the analysis of

parole decisions, Weinshall-Margel and
Shepard, PNAS, 2012.

found that the ordering of cases presented to the judge was not
random: prisoners with attorneys were scheduled at the beginning
of each session, while prisoners without an attorney were scheduled
at the end of a session. The former group were let on parole with a
rate of 67%, while the rate was just 39% for those without attorneys.
Another important observation was that attorneys tended to present
their cases in decreasing order of strength of case, with the average
attorney having 4.1 clients. Computer simulations of hunger-immune
judges faced with cases presented according to these percentages
showed the same see-saw effect of Figure 16.4.

16.4.2 Fragile Families Challenge

The Fragile Families Challenge is a collaborative project initiated by
the Center for Research on Child Wellbeing at Princeton University.
A brief description of the initiative’s motivation is provided on the
website: 7 7 Source: http://www.

fragilefamilieschallenge.org.
The Fragile Families Challenge is a mass collaboration that combines pre-
dictive modeling, causal inference, and in-depth interviews to yield insights
that can improve the lives of disadvantaged children in the United States.

http://www.fragilefamilieschallenge.org
http://www.fragilefamilieschallenge.org

212 introduction to machine learning lecture notes for cos 324 at princeton university

By working together, we can discover things that none of us can discover
individually.

The Fragile Families Challenge is based on the Fragile Families and Child
Wellbeing Study, which has followed thousands of American families for
more than 15 years. During this time, the Fragile Families study collected
information about the children, their parents, their schools, and their larger
environments.

Figure 16.5: Diagram illustrating
the dataset of the Fragile Families
Challenge. After training a model on
the training data, participants made
predictions on held-out data and
submitted the results to a leaderboard.

The initiative has collected immense data on multiple families,
including interviews with mothers, fathers, and/or primary care-
givers at several ages. Interviewees were inquired as to attitudes,
relationships, parenting behavior, economic and employment status,
etc. Additionally, in-home assessments of children and their home
environments were performed to assess cognitive and emotional
development, health, and home environment. The goal was to predict
six key outcomes at age 15 (e.g., whether or not the child is attending
school) given background data from birth to age 9 as shown in 16.5.
However, up to this point no method has done better than random
guessing.

This is food for thought: what is going on?

16.4.3 General Limits to Prediction

Matt Salganik and Arvind Narayanan, professors at Princeton Uni-
versity, recently started a course 8 which aims to explore the extent 8 The course, COS 597E/SOC 555 is a

seminar first offered in Fall 2020.to which interdisciplinary problems in social science and computer
science can be predictable. In general, the following are some major
themes that can make prediction difficult:

1. The distribution associated with data can shift over time

2. The relationship between input data and desired outputs can
change over time

machine learning and ethics 213

3. There is a possibility for undiscovered coordinates to be uninten-
tionally ignored (i. e., as in the hungry judge effect)

4. The “8 billion problem,” which describes how data available in the
real world is fundamentally finite and limited

16.5 Final Thoughts

As described in the preceding sections, users and designers of ma-
chine learning will often face ethical dilemmas. Designers may have
to operate without moral clarity or easy technical fixes. In fact, techni-
cal solutions may even be impossible. To appropriately acknowledge
these limitations, it is important to embrace a culture of measuring
and openly discussing the impact of the system being built. Indeed, a
general principle to follow is to avoid harm when trying to do good.

17
Deep Learning for Natural Language Processing

17.1 Word Embeddings

In traditional NLP, each word is regarded as a distinct symbol each
with a single value of weight. For example, in Chapter 1, we learned
how to use linear regression on sentiment prediction. But with this
approach, it is hard for the computer to learn the meaning of the
word; instead, each of the words remains as some abstract symbol
with numeric weights.

But how do computers know the meaning of words? We can easily
think of one solution: we can look up words in a dictionary. For
example, WordNet is a project that codes the meaning of the words
and the relationship between the words, so that the data can be used
for computers to parse. 1 But resources like WordNet require human 1 For more information, check http:

//wordnetweb.princeton.edu.labor to create and adapt, and it is impractical to keep up-to-date
(because new words are coined and new meanings appear out of
existing words).

An alternative approach is to represent words as short (50 - 300
dimensions 2), real-valued vectors. These vectors encode the meaning 2 The dimension of word vectors is

a hyperparameter that needs to be
decided first.

and other properties of words. In this representation, the distance
between vectors represents the similarity between words. This vector-
ized form of the words is much easier to be used as input in modern
ML systems (especially neural networks). These vector forms of
words are known as word embedding. In this section, we explore the
process of how to learn a good word embedding.

17.1.1 Distributional Hypothesis

Word embedding is based on a concept called the distributional hypoth-
esis, a theory developed by John Rupert Firth. The hypothesis, one of
the most successful ideas of modern statistical NLP, says that words
that occur in similar contexts tend to have similar meaning.

http://wordnetweb.princeton.edu
http://wordnetweb.princeton.edu

216 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 17.1.1 (Context). When a word w appears in a text, its context
is the set of words that appear nearby (within a fixed-size window).

Example 17.1.2. Assume that you first heard the word tejuino and have no
idea what the word means. But you learn that the word may appear in the
following four contexts.

• C1: A bottle of is on the table.

• C2: Everybody likes .

• C3: Don’t have before you drive.

• C4: We make out of corn.

Based on these contexts, it is reasonable to conclude that the word “tejuino”
refers to some form of alcoholic drink made from corn.

Problem 17.1.3. To find words with similar meanings as “tejuino,” we
tried filling out the contexts from Example 17.1.2 with 5 other words. The
results are given in Table 17.1, where 1 means that a native speaker deemed
the word was appropriate to be used in that context, and 0 means that it was
inappropriate.

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

Table 17.1: Data showing if 6 words
are appropriate for the four contexts in
Example 17.1.2.

Which word is closest to “tejuino”?

17.1.2 Word-word Co-occurrence Matrix

Given a very large collection of documents with words from a dic-
tionary V, we construct a |V| × |V| matrix X, where the entry at the
i-th row, j-th column denotes the number of times (i. e., frequency)
that wj appears in the context window of wi. This matrix is called the
word-word co-occurrence matrix.

Example 17.1.4. Table 17.2 shows a portion of a word-word co-occurrence
matrix. Each row corresponds to the center word wi, and each column
corresponds to the context word wj. The value Xij at the (i, j) entry means
that the context word wj appeared Xij times in the context (of length 4) of
wi in total.

Although the portion shown in Table 17.2 mostly has non-zero entries, in
general, the entries of the matrix are mostly zero.

deep learning for natural language processing 217

· · · computer data result pie sugar · · ·
cherry · · · 2 8 9 442 25 · · ·

strawberry · · · 0 0 1 60 19 · · ·
digital · · · 1670 1683 85 5 4 · · ·

information · · · 3325 3982 378 5 13 · · ·

Table 17.2: A portion of a word-word
co-occurrence matrix for a corpus
of Wikipedia articles. Source: https:
//www.english-corpora.org/wiki/.

17.1.3 Factorization of Word-word Co-occurrence Matrix

Recall the example of movie recommendation through matrix factor-
ization in Chapter 9. In that example m× n matrix M was factored
into M ≈ AB where the i-th row of A was a d-dimensional vector
that represented user i and the j-th column of B was a d-dimensional
vector that represented movie j.

We can imagine a similar factorization on the word-word co-
occurrence matrix. That is, we can represent each center word and
each context word as a d-dimensional vector such that Xij ≈ Ai∗ ·
B∗j. But this particular idea does not work on the word-word co-
occurrence matrix. The key difference is that X is a complete matrix
with no missing entries (although most entries are zero). Therefore
we instead use other standard matrix factorization techniques.

One popular choice of factorization is running the Singular Value
Decomposition (SVD) on a weighted co-occurrence matrix. 3 This 3 The particular weighting scheme is

called PPMI. We will not get into that
detail here.

idea originates from a concept called Latent Semantic Anlysis. 4 If the
4 From Indexing by Latent Semantic
Analysis by Deerwester et al., 1990.

SVD returns the following decomposition,

 X

 =

 W




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σd


 V⊺



where X is a |V| × |V| matrix, W is a |V| × d matrix, and V is a
d× |V| matrix, then the i-th row of matrix W can be regarded as the
embedding for word wi.

Other modern approaches tend to treat word vectors as parame-
ters to be optimized for some objective function and apply the gra-
dient descent algorithm. But the principle is the same: “words that
occur in similar contexts tend to have similar meanings.” Some of the
popular algorithms with this approach include: word2vec (Mikolov et
al., 2013), GloVe (Pennington et al., 2014), and fastText (Bojanowski et
al., 2017).

Here we briefly explain the GloVe algorithm. Given the co-
occurrence table X, we will construct a center word vector u⃗i ∈ Rd

and a context word vector v⃗j ∈ Rd such that they optimize the follow-

https://www.english-corpora.org/wiki/
https://www.english-corpora.org/wiki/

218 introduction to machine learning lecture notes for cos 324 at princeton university

ing objective:

J(θ) = ∑
i,j∈V

f (Xij)
(

ui · vj + bi + b̃j − log Xij

)2
(17.1)

where f is some non-linear function and bi, b̃j are bias terms, and θ is
the set of all entries in ui, vj and bi, b̃j. This is within the same line of
logic as optimizing

L(A, B) =
1
|Ω| ∑

i,j∈Ω
(Mij − (AB)ij)

2 ((9.5) revisited)

17.1.4 Properties of Word Embeddings

A good word embedding should represent the meaning of the words
and their relationship with other words as accurately as possible.
Therefore there are some properties that we would like a word
embedding to preserve. We will discuss three such properties and
see how the current algorithms for word embedding perform on
preserving those properties.

1. Similar words should have similar word vectors: This is the most
important property we can think of.

Example 17.1.5. In a certain word embedding, the following is the list of 9
most nearest words to the word “sweden.”

Word Cosine distance
norway 0.760124
denmark 0.715460
finland 0.620022

switzerland 0.588132
belgium 0.585835

netherlands 0.574631
iceland 0.562368
estonia 0.547621
slovenia 0.531408

Notice Scandanavian countries are the top 3 entries on the list, and the rest
are also European country names.

2. Vector difference should encode the relationship between words: If
there are two or more pairs of words where each pair of words are
distinguishable by the same attribute, you can imagine that the vector
difference within each pair is nearly the same.

deep learning for natural language processing 219

Example 17.1.6. In Figure 17.1, notice that vman− vwoman ≈ vking− vqueen.
The vector difference in common can be understood as representing the male-
female relationship. Similarly, there seems to be a common vector difference
for representing the difference in verb tense.

Figure 17.1: Pairs of words that differ
in the same attribute show a similar
difference in their word embeddings.

3. The embeddings should be translated between different languages:
When we independently find the word embedding in different lan-
guages, we can expect to have a bijective mapping that preserves the
structure of the words in each language. 5 5 From Exploiting Similarities among

Languages for Machine Translation by
Mikolov et at., 2013.Example 17.1.7. In Figure 17.2, notice that if we let W to be the mapping

from English to Spanish word embeddings, vcuatro ≈W ◦ v f our

Figure 17.2: Word embeddings are
translated into the embeddings of other
languages.

17.2 N-gram Model Revisited

Recall the n-gram model from Chapter 8. It assigned a probability
Pr[w1w2 . . . wn] to every word sequence w1w2 . . . wn. We discussed
the concept of perplexity of the model to compare the performance

220 introduction to machine learning lecture notes for cos 324 at princeton university

of unigram, bigram, and trigram models. While the n-gram model is
impressive, it has obvious limitations.

Problem 17.2.1. “The students opened their .” Can you guess the
next word?

Problem 17.2.2. “As the proctor started the clock, the students opened their
.” Can you guess the next word?

In a lot of cases, words in a sentence are closely related to other
words and phrases that are far away. But the n-gram model cannot
look beyond the specified frame.

Example 17.2.3. The following is a text generated by a 4-gram model

Today the price of gold per tan, while production of shoe
lasts and shoe industry, the bank intervened just after it

considered and rejected an imf demand to rebuild depleted
european stocks, sept 30 and primary 76 cts a share.

The generated text is surprisingly grammatical, but incoherent.

Example 17.2.3 shows that we need to consider more than three
words at a time if we want to model language well. But if we use
a larger value of n for the n-gram model, the data will become too
sparse to estimate the probabilities. But even when we restrict our-
selves to words that appear in the dictionary, there are 1021 distinct
sequences of 4 words.

17.2.1 Feedforward Neural Language Model

The idea of the feedforward neural language model was proposed by
Bengio et al. in 2003 in a paper called A Neural Probabilistic Language
Model. The intuition is to use a neural network to learn the probabilis-
tic distribution of language, instead of estimating raw probabilities.
The key ingredient in this model is the word embeddings we dis-
cussed earlier.

Example 17.2.4. Assume we are given two contexts “You like green
” and “You like yellow ” to fill the blanks in. A n-gram

model will try to calculate the raw probabilities Pr[w | You like green] and
Pr[w | You like yellow]. However, if the word embeddings showed that
vgreen ≈ vyellow, then we can imagine that the two contexts are similar
enough. Then we may be able to estimate the probabilities better.

Now we show how to use the feedforward neural language model
on a n-gram model. Assume we want to estimate the probability
Pr[wn+1 | w1 . . . wn]. Then the first step is to find a word embedding

v1, v2, . . . , vn ∈ Rd

deep learning for natural language processing 221

of each word w1, w2, . . . , wn. Then we concatenate the word embed-
dings into 6 6 the order of the input vectors cannot

changex⃗ = (v1, . . . , vn) ∈ Rnd

This will be the input layer. Then we define the fully connected
hidden layer as

h⃗ = tanh(Wx⃗ + b⃗) ∈ Rh

where W ∈ Rh×nd and b⃗ ∈ Rh. Then we define the output layer as

z⃗ = Uh⃗ ∈ R|V|

where U ∈ R|V|×h. Then finally, the probability will be calculated
with the softmax function:

Pr[wn+1 = i | w1 . . . wn] = softmaxi (⃗z) =
ezi

∑
k∈V

ezk

So the total number of parameters to train in this network is

d |V|+ ndh + h + h |V|

where the terms are respectively for the input embeddings, W, b⃗, U.
When d = h, sometimes we tie the input and output embeddings.
That is, we can consider U to be the parameters required for the
output embeddings. At this point, the language model reduces
to a |V|-way classification, and we can create lots of training ex-
ample by sliding the input-output indices. That is, when given
a huge text, we can create lots of input-output tuple as follows:
((w1, . . . , wn), wn+1), ((w2, . . . , wn+1), wn+2),

17.2.2 Beyond Feedforward Neural Language Model

But the feedforward language model still has its limitations. The
main reason is that W ∈ Rh×nd scales linearly with the window
size. Of course, this is better than the traditional n-gram model
which scales exponentially with n. Another limitation of the neu-
ral LM is that the model learns separate patterns for the same item.
That is, a substring wkwk+1, for example, will correspond to differ-
ent parameters in W when trained on (wkwk+1 . . . wk+n−1) or on
(wk−1wk . . . wk+n−2).

To mitigate these limitations, we can choose to use similar model-
ing ideas but use better and bigger neural network architectures like
recurrent neural networks (RNN) or transformers.

Here we briefly explain the core ideas of a RNN. RNNs are a fam-
ily of neural networks that handle variable length inputs. Whereas
feedforward NNs map a fixed-length input to a fixed-length output,
recurrent NNs map a sequence of inputs to a sequence of outputs. The

222 introduction to machine learning lecture notes for cos 324 at princeton university

Figure 17.3: A visual representation of
an RNN architecture.

sequence length can vary and the key is to reuse the weight matrices at
different time steps. When the inputs are given as x⃗1, x⃗2, . . . x⃗T ∈ Rd

and we want to find outputs h⃗1, h⃗2, . . . h⃗T ∈ Rh, we train the parame-
ters

W ∈ Rh×h, U ∈ Rh×d, b⃗ ∈ Rh

such that
h⃗t = g(Wh⃗t−1 + U⃗xt + b⃗) ∈ R

where g is some non-linear function (e.g., ReLU, tanh, sigmoid). We
can also set h⃗0 = 0⃗ for simplicity.

Part VI

Mathematics for Machine
Learning

18
Probability and Statistics

18.1 Probability and Event

18.1.1 Sample Space and Event

Probability is related to the uncertainty and randomness of the world.
It measures the likelihood of some outcome or event happening. To
formalize this concept, we introduce the following definition:

Definition 18.1.1 (Sample Space and Event). A set S of all possible
outcomes of a random phenomenon in the world is called a sample space.
Each element x ∈ S is called an outcome. A subset A ⊂ S is called an
event.

Example 18.1.2. The sample space of “the outcome of tossing two dice” is the
set S = {(1, 1), (1, 2), . . . , (6, 6)} of 36 elements. The event “the sum of the
numbers on the two dice is 5” is the subset A = {(1, 4), (2, 3), (3, 2), (4, 1)}
of 4 elements.

18.1.2 Probability

Given a sample space S, we define a probability for each event A of
that space. This probability measures the likelihood that the outcome
of the random phenomenon belongs to the set A.

Definition 18.1.3 (Probability). A probability Pr : S → R≥0 is a
mapping from each event A ⊂ S to a non-negative real number Pr[A] ≥ 0
such that the following properties are satisfied:

1. 0 ≤ Pr[A] ≤ 1 for any A ⊂ S

2. Pr[S] = 1

3. For any countable collection {A1, A2, . . .} of events that are pairwise
disjoint (i.e., Ai ∩ Aj = ∅ for any i ̸= j),

Pr

[
∞⋃

i=1

Ai

]
=

∞

∑
i=1

Pr[Ai]

226 introduction to machine learning lecture notes for cos 324 at princeton university

When the sample space is finite or countably infinite, 1 the properties above 1 A countably infinite set refers to a
set whose elements can be numbered
with integer indices. The set N of
natural numbers or the set Q of rational
numbers are examples of countably
infinite sets.

can be simplified into the following condition:

∑
x∈S

Pr[{x}] = 1

Example 18.1.4. Consider the sample space of “the outcome of tossing two
dice” again. Assuming the two dice are fair, the probability of each outcome
can be defined as 1/36. Then the probability of the event “the sum of the
numbers on the two dice is 5” is 4/36.

Example 18.1.5. We are picking a point uniformly at random from the sam-
ple space [0, 2]× [0, 2] in the Cartesian coordinate system. The probability of
the event that the point is drawn from the bottom left quarter [0, 1]× [0, 1] is
1/4.

18.1.3 Joint and Conditional Probability

In many cases, we are interested in not just one event, but multiple
events, possibly happening in a sequence.

Definition 18.1.6 (Joint Probability). For any set of events A =

{A1, . . . , An} of a sample space S, the joint probability of A is the proba-
bility Pr[A1 ∩ . . .∩ An] of the intersection of all of the events. The probability
Pr[Ai] of each of the events is also known as the marginal probability.

Example 18.1.7. Consider the sample space of “the outcome of tossing two
dice” again. Let A1 be the event “the number on the first die is 1” and let
A2 be the event “the number on the second die is 4.” The joint probability of
A1, A2 is 1/36. The marginal probability of each of the events is 1/6.

It is also useful to define the probability of an event A, based on
the knowledge that other events A1, . . . , An have occurred.

Definition 18.1.8 (Conditional Probability). For any event A and any
set of events A = {A1, . . . , An} of a sample space S, where Pr[A1 ∩ . . . ∩
An] > 0, the conditional probability of A given A is

Pr[A | A1, . . . , An] =
Pr[A ∩ A1 ∩ . . . ∩ An]

Pr[A1 ∩ . . . ∩ An]

Example 18.1.9. Consider the sample space of “the outcome of tossing
two dice” again. Let A1 be the event “the number on the first die is 1” and
let A2 be the event “the sum of the numbers on the two dice is 5.” The
conditional probability of A1 given A2 is 1/4. The conditional probability of
A2 given A1 is 1/6.

Using the definition of a conditional probability, we can define a
formula to find the joint probability of a set A of events of a sample
space.

probability and statistics 227

Proposition 18.1.10 (Chain Rule for Conditional Probability). Given a
set A = {A1, . . . , An} of events of a sample space S, where all appropriate
conditional probabilities are defined, we have the following

Pr[A1 ∩ . . . ∩ An] = Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 ∩ . . . ∩ An]

= Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 | A3 ∩ . . . ∩ An] · Pr[A3 ∩ . . . ∩ An]

...

= Pr[A1 | A2 ∩ . . . ∩ An] · Pr[A2 | A3 ∩ . . . ∩ An] · · ·Pr[An]

Finally, from the definition of a conditional probability, we see that

Pr[B | A]Pr[A] = Pr[A ∩ B] = Pr[A | B]Pr[B]

This shows that

Pr[B | A] =
Pr[A | B]Pr[B]

Pr[A]

This is known as the Bayes’s Rule.

18.1.4 Independent Events

Definition 18.1.11 (Independent Events). Two events A, B are indepen-
dent if Pr[A], Pr[B] > 0 and

Pr[A] = Pr[A | B]

or equivalently
Pr[B] = Pr[B | A]

or equivalently
Pr[A ∩ B] = Pr[A] · Pr[B]

Example 18.1.12. Consider the sample space of “the outcome of tossing
two dice” again. Let A1 be the event “the number on the first die is 1” and
let A2 be the event “the number on the second die is 4.” A1 and A2 are
independent.

Example 18.1.13. Consider the sample space of “the outcome of tossing two
dice” again. Let A1 be the event “the number on the first die is 1” and let
A2 be the event “the sum of the numbers on the two dice is 5.” A1 and A2

are not independent.

18.2 Random Variable

In the previous section, we only learned how to assign a probability
to an event, a subset of the sample space. But in general, we can
assign a probability to a broader concept called a random variable,
associated to the sample space.

228 introduction to machine learning lecture notes for cos 324 at princeton university

Definition 18.2.1 (Random Variable). Given a sample space S, a mapping
X : S → R that maps each outcome x ∈ S to a value r ∈ R is called a
random variable.

Example 18.2.2. Consider the sample space of “the outcome of tossing two
dice” again. Then the random variable X = “sum of the numbers on the two
dice” maps the outcome (1, 4) to the value 5.

Definition 18.2.3 (Sum and Product of Random Variables). If
X, X1, . . . , Xn are random variables defined on the same sample space S
such that X(x) = X1(x) + . . . + Xn(x) for every outcome x ∈ S, then we
say that X is the sum of the random variables X1, . . . , Xn and denote

X = X1 + . . . + Xn

If X(x) = X1(x)× . . .× Xn(x) for every outcome x ∈ S, then we say that
X is the product of the random variables X1, . . . , Xn and denote

X = X1 · · ·Xn

Example 18.2.4. Consider the sample space of “the outcome of tossing two
dice” again. Then the random variable X = “sum of the numbers on the two
dice” is the sum of the two random variables X1 = “the number on the first
die” and X2 = “the number on the second die.”

18.2.1 Probability of Random Variable

There is a natural relationship between the definition of an event
and a random variable. Given a sample space S and random variable
X : S→ R, the “event that X takes a value in B” is denoted Pr[X ∈ B].
It is the total probability of all outcomes x ∈ S such that X(x) ∈ B. In
particular, the event that X takes a particular value r ∈ R is denoted
as X = r and the event that X takes a value in the interval [a, b] is
denoted as a ≤ X ≤ b and so on.

Example 18.2.5. Consider the sample space of “the outcome of tossing two
dice” and the random variable X = “sum of the numbers on the two dice”
again. Then

Pr[X = 5] = Pr[{(1, 4), (2, 3), (3, 2), (4, 1)}] = 4/36

Often we are interested in the probability of the events of the form
X ≤ x. Plotting the values of Pr[X ≤ x] with respect to x completely
identifies the distribution of the values of X.

Definition 18.2.6 (Cumulative Distribution Function). Given a random
variable X, there is an associated cumulative distribution function (cdf)
FX : R→ [0, 1] defined as

FX(x) = Pr[X ≤ x]

probability and statistics 229

Proposition 18.2.7. The following properties hold for a cumulative distribu-
tion function FX :

1. FX is increasing

2. lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1

18.2.2 Discrete Random Variable

If the set of possible values of a random variable X is finite or count-
ably infinite, we call it a discrete random variable. For a discrete ran-
dom variable, the probability Pr[X = i] for each value i that the
random variable can take completely identifies the distribution of X.
In view of this fact, we denote the probability mass function (pmf) by

pX(i) = Pr[X = i]

Proposition 18.2.8. The following properties hold for a probability mass
function pX :

1. ∑
i

pX(i) = 1

2. FX(x) = ∑
i≤x

pX(i)

18.2.3 Continuous Random Variable

We now consider the case where the set of all possible values of
a random variable X is an interval or a disjoint union of intervals
in R. We call such X a continuous random variable. In this case, the
probability of the event X = i is zero for any i ∈ R. Instead, we care
about the probability of the events of the form a ≤ X ≤ b.

Definition 18.2.9 (Probability Density Function). Given a continuous
random variable X, there is an associated probability density function
(pdf) fX : R→ R≥0 such that

Pr[a ≤ X ≤ b] =
∫ b

a
fX(x)dx

for any a, b ∈ R.

Proposition 18.2.10. The following properties hold for a probability density
function fX :

1.
∫ ∞
−∞ fX(x)dx = 1

2. FX(x) =
∫ x
−∞ fX(y)dy

230 introduction to machine learning lecture notes for cos 324 at princeton university

18.2.4 Expectation and Variance

Definition 18.2.11 (Expectation). The expectation or the expected value
of a discrete random variable X is defined as

E[X] = ∑
i

i · pX(i) = ∑
i

i · Pr[X = i]

where pX is its associated probability mass function. Similarly, the expecta-
tion for a continuous random variable X is defined as

E[X] =
∫ ∞

−∞
x · fX(x)dx

where fX is the associated probability density function. In either case, it is
customary to denote the expected value of X as µX or just µ if there is no
source of confusion.

Example 18.2.12. Consider the sample space of “the outcome of tossing one
die.” Then the expected value of the random variable X = “the number on
the first die” can be computed as

E[X] = 1 · 6
36

+ 2 · 6
36

+ 3 · 6
36

+ 4 · 6
36

+ 5 · 6
36

+ 6 · 6
36

= 3.5

Proposition 18.2.13 (Linearity of Expectation). If X is the sum of the
random variables X1, . . . , Xn, then the following holds:

E[X] = E[X1] + . . . + E[Xn]

Also, if a, b ∈ R and X is a random variable, then

E[aX + b] = aE[X] + b

Example 18.2.14. Consider the sample space of “the outcome of tossing two
dice.” Then the expected value of the random variable X = “the sum of the
numbers of the two dice” can be computed as

E[X] = 3.5 + 3.5 = 7

since the expected value of the number on each die is 3.5.

Definition 18.2.15 (Variance). The variance of a random variable X, whose
expected value is µ, is defined as

Var[X] = E[(X− µ)2]

Its standard deviation is defined as

σX =
√

Var[X]

It is customary to denote the variance of X as σ2
X .

probability and statistics 231

Proposition 18.2.16. If a ∈ R and X is a random variable, then

Var[aX] = a2Var[X] σaX = |a| σX

Problem 18.2.17. Prove Chebyshev’s inequality:

Pr[|X− µ| ≥ kσ] ≤ 1
k2

for any k > 0. (Hint: Suppose the probability was greater than 1/k2. What
could you conclude about E[(X− µ)2]?)

18.2.5 Joint and Conditional Distribution of Random Variables

Just as in events, we are interested in multiple random variables
defined on the sample space.

Definition 18.2.18 (Joint Distribution). If X, Y are discrete random
variables defined on the same sample space S, the joint probability mass
function pX,Y is defined as

pX,Y(i, j) = Pr[X = i, Y = j]

where the event X = i, Y = j refers to the intersection (X = i) ∩ (Y = j).
If X, Y are continuous random variables defined on S, there is an as-

sociated joint probability density function fX,Y : R → R≥0 such
that

Pr[a ≤ X ≤ b, c ≤ Y ≤ d] =
∫ d

c

∫ b

a
fX,Y(x, y)dxdy

The joint probability mass/density function defines the joint distribution of
the two random variables.

Definition 18.2.19 (Marginal Distribution). Given a joint distribution
pX,Y or fX,Y of two random variables X, Y, the marginal distribution of X
can be found as

pX(i) = ∑
j

pX,Y(i, j)

if X, Y are discrete and

fX(x) =
∫ ∞

−∞
fX,Y(x, y)dy

if continuous. We can equivalently define the marginal distribution of Y.

Definition 18.2.20 (Conditional Distribution). Given a joint distribution
pX,Y or fX,Y of two random variables X, Y, we define the conditional
distribution of X given Y as

pX | Y(i | j) =
pX,Y(i, j)

pY(j)

232 introduction to machine learning lecture notes for cos 324 at princeton university

whenever pY(j) > 0 if X, Y are discrete and

fX | Y(x | y) =
fX,Y(x, y)

fY(y)

whenever fY(y) > 0 if continuous. We can equivalently define the condi-
tional distribution of Y given X.

18.2.6 Bayes’ Rule for Random Variables

Sometimes it is easy to calculate the conditional distribution of X
given Y, but not the other way around. In this case, we can apply
the Bayes’ Rule to compute the conditional distribution of Y given X.
Here, we assume that X, Y are discrete random variables. By a simple
application of Bayes’ Rule, we have

Pr[Y = j | X = i] =
Pr[X = i | Y = j]Pr[Y = j]

Pr[X = i]

Now by the definition of a marginal distribution, we have

Pr[X = i] = ∑
j′

Pr[X = i, Y = j] = ∑
j′

Pr[X = i | Y = j′]Pr[Y = j′]

for all possible values j′ that Y can take. If we plug this into the
denominator above,

Pr[Y = j | X = i] =
Pr[X = i | Y = j]Pr[Y = j]

∑
j′

Pr[X = i | Y = j′]Pr[Y = j′]

Example 18.2.21. There is a coin, where the probability of Heads is
unknown and is denoted as θ. You are told that there is a 50% chance that it
is a fair coin (i.e., θ = 0.5) and 50% chance that it is biased to be θ = 0.7.
To find out if the coin is biased, you decide to flip the coin. Let D be the
result of a coin flip. Then it is easy to calculate the conditional distribution
of D given θ. For example,

Pr[D = H | θ = 0.5] = 0.5

But we are more interested in the probability that the coin is fair/biased
based on the observation of the coin flip. Therefore, we can apply the Bayes’
Rule.

Pr[θ = 0.7 | D = H] =
Pr[D = H | θ = 0.7]Pr[θ = 0.7]

Pr[D = H]

which can be calculated as

Pr[D = H | θ = 0.7]Pr[θ = 0.7]
Pr[D = H | θ = 0.7]Pr[θ = 0.7] + Pr[D = H | θ = 0.5]Pr[θ = 0.5]

=
0.7 · 0.5

0.7 · 0.5 + 0.5 · 0.5
≃ 0.58

probability and statistics 233

So if we observe one Heads, there is a 58% chance that the coin was biased
and a 42% chance that it was fair.

Problem 18.2.22. Consider Example 18.2.21 again. This time, we decide to
throw the coin 10 times in a row. Let N be the number of observed Heads.
What is the probability that the coin is biased if N = 7?

18.2.7 Independent Random Variables

Analogous to events, we can define the independence of two random
variables.

Definition 18.2.23 (Independent Random Variables). Two discrete
random variables X, Y are independent if for every i, j, we have

pX(i) = pX | Y(i | j)

or equivalently,

pY(j) = pY | X(j | i)

or equivalently

pX,Y(x, y) = pX(x) · pY(y)

Two continuous random variables X, Y are independent if the analogous
conditions hold for the probability density functions.

Definition 18.2.24 (Mutually Independent Random Variables). If any
pair of n random variables X1, X2, . . . , Xn are independent of each other,
then the random variables are mutually independent.

Proposition 18.2.25. If X1, . . . , Xn are mutually independent random
variables, the following properties are satisfied:

1. E[X1 · · ·Xn] = E[X1] · · ·E[Xn]

2. Var[X1 + . . . + Xn] = Var(X1) + . . . + Var(Xn)

We are particularly interested in independent random variables
that have the same probability distribution. This is because if we
repeat the same random process multiple times and define a random
variable for each iteration, the random variables will be independent
and identically distributed.

Definition 18.2.26. If X1, . . . , Xn are mutually independent random
variables that have the same probability distribution, we call them indepen-
dent, identically distributed random variables, which is more commonly
denoted as iid or i.i.d. random variables.

234 introduction to machine learning lecture notes for cos 324 at princeton university

18.3 Central Limit Theorem and Confidence Intervals

Now we turn our attention to two very important topics in statistics:
Central Limit Theorem and confidence intervals.

You may have seen confidence intervals or margin of error in the
context of election polls. The pollster usually attaches a caveat to the
prediction, saying that there is some probability that the true opinion
of the public is ±ϵ of the pollster’s estimate, where ϵ is typically a
few percent. This section is about the most basic form of confidence
intervals, calculated using the famous Gaussian distribution. It
also explains why the Gaussian pops up unexpectedly in so many
settings.

A running example in this chapter is estimating the bias of a coin
we have been given. Specifically, Pr[Heads] = p where p is unknown
and may not be 1/2. We wish to estimate p by repeatedly tossing the
coin. If we toss the coin n times, we expect to see around np Heads.
Confidence intervals ask the converse question: after having seen the
number of heads in n tosses, how “confidently” can we estimate p?

18.3.1 Coin Tossing

Suppose we toss the same coin n times. For each i = 1, 2, . . . , n, define
the random variable Xi as an indicator random variable such that

Xi =

1 i-th toss was Heads

0 otherwise

It is easily checked that X1, . . . , Xn are iid random variables, each
with E[Xi] = p and Var[Xi] = p(1− p). Also if we have another
random variable X = “number of heads,” notice that X is the sum of
X1, . . . , Xn. Therefore, E[X] = np and Var[X] = np(1− p).

Problem 18.3.1. Show that if Pr[Heads] = p then E[X] = np and
Var[X] = np(1− p). (Hint: use linearity of expectation and the fact that
Xi’s are mutually independent.)

Suppose p = 0.8. What is the distribution of X? Figure 18.1 gives
the distribution of X for different n’s.

Let’s make some observations about Figure 18.1.

Expected value may not happen too often. For n = 10, the expected
number of Heads is 8, but that is seen only with probability 0.3. In
other words, with probability 0.7, the number of Heads is different
from the expectation. 2 2 In such cases, expectation can be a

misleading term. It may in fact be never
seen. For instance, the expected number
of eyes in an individual drawn from
the human population is somewhere
between 1 and 2 but no individual has a
non-integral number of eyes. Thus mean
value is a more intuitive term.

The highly likely values fall in a smaller and smaller band around the
expected value, as n increases.

For n = 10, there is a good chance that the number of Heads is

probability and statistics 235

Figure 18.1: Distribution of X when we
toss a coin n times, and p = 0.8. The
plots were generated using a calculator.

quite far from the the expectation. For n = 100, the number of
Heads lies in [68, 90] with quite high probability. For n = 1000 it
lies in [770, 830] with high probability.

The probability curve becomes more symmetrical around the mean. Contrast
between the case where n = 10 and the case where n = 100.

Probability curve starts resembling the famous Gaussian distribution .
Also called Normal Distribution and in popular math, the Bell curve,
due to its bell-like shape.

18.3.2 Gaussian Distribution

We say that a real-valued random variable X is distributed according
to N (µ, σ2), the Gaussian distribution with mean µ and variance σ2,
if

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (18.1)

It is hard to make an intuitive sense of this expression. The following
figure gives us a better handle.

Figure 18.2: Cheatsheet for the Gaus-
sian distribution with mean µ and
variance σ2. It is tightly concentrated
in the interval [µ− kσ, µ + kσ] for even
k = 1 and certainly for k = 2, 3. Source:
https://en.wikipedia.org/wiki/

Normal_distribution

Figure 18.2 shows that X concentrates very strongly around the
mean µ. The probability that X lies in various intervals around µ of
the type [µ− kσ, µ + kσ] are as follows: (i) For k = 1 it is 68.3%; (ii) For
k = 2 it is 95.5%; (iii) For k = 3 it is 99.7%.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

236 introduction to machine learning lecture notes for cos 324 at princeton university

18.3.3 Central Limit Theorem (CLT)

This fundamental result explains our observations in Subsection 18.3.1.

Theorem 18.3.2 (Central Limit Theorem, informal statement). Suppose
X1, X2, . . . , is a sequence of random variables that are mutually independent
and each of whose variance is upper bounded by some constant C. Then
as n → ∞, the sum X1 + X2 + . . . + Xn tends to N (µ, σ2) where µ =

∑i E[Xi] and σ2 = ∑i Var(Xi).

We won’t prove this theorem. We will use it primarily via the
“cheatsheet” of Figure 18.2.

18.3.4 Confidence Intervals

We return to the problem of estimating the bias of a coin, namely
p = Pr[Heads]. Suppose we toss it n times and observe X heads.
Then X = ∑i Xi where Xi is the indicator random variable that
signifies if the i-th toss is Heads.

Since the Xi’s are mutually independent, we can apply the CLT
and conclude that X will approximately follow a Gaussian distribu-
tion as n grows. This is clear from Figure 18.1, where the probability
histogram (which is a discrete approximation to the probability
density) looks quite Gaussian-like for n = 1000. In this course we
will assume for simplicity that CLT applies exactly. Using the mean
and variance calculations from Problem 18.3.1, X is distributed like
N (µ, σ2) where µ = np, σ2 = np(1− p). Using the cheatsheet of
Figure 18.2, we can conclude that

Pr[X ̸∈ [np− 2σ, np + 2σ]] ≤ 4.6%

Since X ∈ [np− 2σ, np + 2σ] if and only if np ∈ [X− 2σ, X + 2σ], some
students have the following misconception:

Given the observation of X heads in n coin tosses, the probability that np ̸∈
[X− 2σ, X + 2σ] is at most 4.6%.

But there is no a priori distribution on p. It is simply some (unknown)
constant of nature that we’re trying to estimate. So the correct infer-
ence should be:

If np ̸∈ [X− 2σ, X + 2σ], then the probability (over the n coin tosses) that we
would have seen X heads is at most 4.6%.

The above is an example of confidence bounds. Of course, you may
note that σ also depends on p, so the above conclusion doesn’t give
us a clean confidence interval. In this course we use a simplifying
assumption: to do the calculation we estimate σ2 as np′(1− p′) where
p′ = X/n. (The intuitive justification is that we expect p to be close to
X/n.)

probability and statistics 237

Example 18.3.3. Suppose X = 0.8n. Using our simplified calculation,
σ2 ≈ n(0.8)(0.2), implying σ = 0.4

√
n. Thus we conclude that if p ̸∈

[0.8− 0.4/
√

n, 0.8 + 0.4/
√

n], then the probability of observing this many
Heads in n tosses would have been less than 100− 68.2%, that is, less than
31.8%.

The concept of confidence intervals is also relevant to ML models.

Example 18.3.4. A deep neural network model was trained to predict cancer
patients’ chances of staying in remission a year after chemotherapy, and
we are interested in finding out its accuracy p. When the model is tested
on n = 1000 held-out data points, this problem is equivalent to the coin
flipping problem. For each of the held-out data point, the probability that the
model makes the correct prediction is p. By observing the number of correct
predictions on the held-out data, we can construct a confidence interval for
p. Say the test accuracy was p′ = 70%. Then the 68% confidence interval
can be written as

np ∈ [np′ − σ, np′ + σ]

Substituting p′ = 0.7, σ ≈
√

np′(1− p′), n = 1000, we get

1000p ∈ [685.5, 714.5]

or equivalently,
p ∈ [0.6855, 0.7145]

18.3.5 Confidence Intervals for Vectors

In the above settings, sampling was being used to estimate a real
number, namely, Pr[Heads] for a coin. How about estimating a vec-
tor? For instance, in an opinion poll, respondents are being asked
for opinions on multiple questions. Similarly, in stochastic gradient
descent (Chapter 3), the gradient vector is being estimated by sam-
pling a small number of data points. How can we develop confidence
bounds for estimating a vector in Rk from n samples?

The confidence intervals for the coin toss setting can be easily
extended to this case using the so called Union Bound:

Pr[A1 ∪ A2 ∪ · · · ∪ Ak] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[Ak] (18.2)

This leads to the simplest confidence bound for estimating a vector in
Rk. Suppose the probability of the estimate being off by δi in the i-th
coordinate is at most qi. Then

Pr[estimate is off by δ⃗] ≤ q1 + q2 + · · ·+ qk

where δ⃗ = (δ1, δ2, . . . , δk)

238 introduction to machine learning lecture notes for cos 324 at princeton university

18.4 Final Remarks

The CLT applies to many settings, but it doesn’t apply everywhere.
It is useful to clear up a couple of frequent misconceptions that
students have:

1. Not every distribution involving a large number of samples is
Gaussian. For example, scores on the final exam are usually not
distributed like a Gaussian. Similarly, human heights are not really
distributed like Gaussians.

2. Not everything that looks Gaussian-like is a result of the Central
Limit Theorem. For instance, we saw that the distribution of
weights in the sentiment model in Chapter 1 looked vaguely
Gaussian-like, but they are not the sum of independent random
variables as far as we can tell.

19
Calculus

19.1 Calculus in One Variable

In this section, we briefly review calculus in one variable.

19.1.1 Exponential and Logarithmic Functions

When we multiply the same number a by itself n times, we denote it
as an. The exponential function is a natural extension of this concept.

Definition 19.1.1 (Exponential Function). There is a unique function
f : R → R such that f (n) = en for any n ∈ N and f (x + y) = f (x) f (y)
for any x, y ∈ R. This function is called the exponential function and is
denoted as ex or exp(x).

Figure 19.1: The graph of the exponen-
tial function.

Proposition 19.1.2. The following properties hold for the exponential
function:

1. exp(x) > 0 for any x ∈ R

2. exp(x) is increasing

3. lim
x→−∞

exp(x) = 0

4. lim
x→∞

exp(x) = ∞

5. exp(−x) = 1
exp(x)

We are also interested in the inverse function of the exponential
function.

Definition 19.1.3 (Logarithmic Function). The logarithmic function
log : (0, ∞) → R is defined as the inverse function of the exponential
function. That is, log(x) = y where x = ey.

Figure 19.2: The graph of the logarith-
mic function.

Proposition 19.1.4. The following properties hold for the logarithmic
function:

240 introduction to machine learning lecture notes for cos 324 at princeton university

1. log(x) is increasing

2. lim
x→0+

log(x) = −∞

3. lim
x→∞

log(x) = ∞

4. log(xy) = log(x) + log(y)

19.1.2 Sigmoid Function

In Machine Learning, a slight variant of the exponential function,
known as the sigmoid function is widely used.

Definition 19.1.5 (Sigmoid Function). The sigmoid function denoted as
σ : R→ R is defined as

σ(x) =
1

1 + exp(−x)

Figure 19.3: The graph of the sigmoid
function.

Proposition 19.1.6. The following properties hold for the sigmoid function:

1. 0 < σ(x) < 1 for any x ∈ R

2. σ(x) is increasing

3. lim
x→−∞

σ(x) = 0

4. lim
x→∞

σ(x) = 1

5. The graph of σ is symmetrical to the point
(

0, 1
2

)
. In particular,

σ(x) + σ(−x) = 1

Because of the last property in Proposition 19.1.6, the sigmoid
function is well suited for binary classification (e.g., in logistic re-
gression in Chapter 1). Given some output value x of a classification
model, we interpret it as the measure of confidence that the input is
of label 1, where we implicitly assume that the measure of confidence
that the input is of label 2 is −x. Then we apply the sigmoid function
to translate this into a probability distribution over the two labels.

19.1.3 Differentiation

Definition 19.1.7 (Derivative). Given a function f : R → R, its
derivative f ′ is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

We alternatively denote f ′(x) as d
dx f (x).

calculus 241

Example 19.1.8. The derivative of the exponential function is itself:

exp′(x) = exp(x)

and the derivative of the logarithmic function is:

log′(x) =
1
x

In general, there are more than two variables, that are related to
each other through a composite function. The chain rule helps us find
the derivative of the composite function.

Definition 19.1.9 (Chain Rule). If there are functions f , g : R→ R such
that y = f (x) and z = g(y), then

(g ◦ f)′(x) = g′(f (x)) f ′(x) =
d

dy
g(f (x)) · d

dx
f (x)

or equivalently
dz
dx

=
dz
dy
· dy

dx

19.2 Multivariable Calculus

In this section, we introduce the basics of multivariable calculus,
which is widely used in Machine Learning. Since this is a general-
ization of the calculus in one variable, it will be useful to pay close
attention to the similarity with the results from the previous section.

19.2.1 Mappings of Several Variables

So far, we only considered functions of the form f : R → R that
map a real value x to a real value y. But now we are interested in
mappings f : Rn → Rm that map a vector x⃗ = (x1, . . . , xn) with
n coordinates to a vector y⃗ = (y1, . . . , ym) with m coordinates. In
general, a function is a special case of a mapping where the range is R.
If the mappings are of the form f : Rn → R (i. e., m = 1), it can still be
called a function of several variables.

First consider an example where m = 1.

Example 19.2.1. Let f (x1, x2) = x2
1 + x2

2 be a function in two variables.
This can be understood as mapping a point x⃗ = (x1, x2) in the Cartesian
coordinate system to its squared distance from the origin. For example,
f (3, 4) = 25 shows that the squared distance between the point (3, 4) and
the origin (0, 0) is 25.

When m > 1, we notice that each coordinate y1, . . . , ym is a func-
tion of x1, . . . , xn. Therefore, we can decompose f into m functions
f1, . . . , fm : Rn → R such that

f (⃗x) = (f1 (⃗x), . . . , fm (⃗x))

242 introduction to machine learning lecture notes for cos 324 at princeton university

Example 19.2.2. Let f (x1, x2) = (x2
1x2, x1x2

2) be a mapping from R2 to R2.
Then we can decompose f into two functions f1, f2 in two variables where

f1(x1, x2) = x2
1x2

f2(x1, x2) = x1x2
2

19.2.2 Softmax Function

The softmax function is a multivariable function widely used in Ma-
chine Learning, especially for multi-class classification (see Chapter 4,
Chapter 10). It takes in a vector of k values, each corresponding to
a particular class, and outputs a probability distribution over the k
classes — that is, a vector of k non-negative values that sum up to
1. The resulting probability is exponentially proportional to the input
value of that class. We formally write this as:

Definition 19.2.3 (Softmax Function). Given a vector z⃗ = (z1, z2, . . . , zk) ∈
Rk, we define the softmax function as a probability function so f tmax :
Rk → [0, 1]k where the “probability of predicting class i” is:

so f tmax(⃗z)i =
ezi

∑k
j=1 ezj

(19.1)

Problem 19.2.4. Show that for k = 2, the definition of the softmax function
is equivalent to the sigmoid function (after slight rearrangement/renaming of
terms).

The sigmoid function is used for binary classification, where it
takes in a single real value and converts it to a probability of one
class (and the probability of the other class can be inferred as its com-
plement). The softmax function is used for multi-class classification,
where it takes in k real values and converts them to k probabilities,
one for each class.

19.2.3 Differentiation

Just like with functions in one variable, we can define differentiation
for mappings in several variables. The key point is that now we will
define a partial derivative for each pair (xi, yj) of coordinate xi of the
domain and coordinate yj of the range.

Definition 19.2.5 (Partial Derivative). Given a function f : Rn → Rm, the
partial derivative of yj with respect to xi at the point x⃗ is defined as

∂yj

∂xi

∣∣∣∣⃗
x
= lim

h→0

f j(x1, . . . , xj + h, . . . , xn)− f j(x1, . . . , xj, . . . , xn)

h

calculus 243

Definition 19.2.6 (Gradient). If f : Rn → R is a function of several
variables, the gradient of f is defined as a mapping ∇ f : Rn → Rn that
maps each input vector to the vector of partial derivatives at that point:

∇ f (⃗x) =
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

)∣∣∣∣⃗
x

Similarly to the chain rule in one variable, we can define a chain
rule for multivariable settings. The key point is that there are mul-
tiple ways that a coordinate xj can affect the value of zi. Defini-
tion 19.2.7 can be thought as applying the chain rule for one variable
in each of the paths, and adding up the results.

x1

x2

y1

y2

y3

z1

z2

Figure 19.4: A visualization of the chain
rule in multivariable settings. Notice
that x2 can affect the value of z1 in
three different paths. The amount of
effect from each path will respectively
be calculated as (∂z1/∂y1)(∂y1/∂x2)
(red), (∂z1/∂y2)(∂y2/∂x2) (blue), and
(∂z1/∂y3)(∂y3/∂x2) (cyan).

Definition 19.2.7 (Chain Rule). If f : Rn → Rm and g : Rm → Rℓ are
mappings of several variables, where y⃗ = f (⃗x) and z⃗ = g(⃗y), the following
chain rule holds for each 1 ≤ i ≤ ℓ and 1 ≤ j ≤ n:

∂zi
∂xj

=
m

∑
k=1

∂zi
∂yk
· ∂yk

∂xj

Example 19.2.8. Suppose we define the functions h = s + t2, s = 3x, and
t = x− 2. Then, we can find the partial derivative ∂h

∂x using the chain rule:

∂h
∂x

=
∂s
∂x

+
∂(t2)

∂x

=
∂s
∂x

+
∂(t2)

∂t
· ∂t

∂x
= 3 + 2t · 1
= 2x− 1

Problem 19.2.9. Suppose we define the functions h = s + t2, s = xy, and
t = x− 2y. Compute the partial derivative ∂h/∂x.

20
Linear Algebra

20.1 Vectors

x

y

v⃗ = (2, 1)

Figure 20.1: A visualization of a vector
v⃗ = (2, 1) in R2.

Vectors are a collection of entries (here, we focus only on real num-
bers). For example, the pair (1, 2) is a real vector of size 2, and the
3-tuple (1, 0, 2) is a real vector of size 3. We primarily categorize vec-
tors by their size. For example, the set of all real vectors of size n is
denoted as Rn. Any element of Rn can be thought of as representing
a point (or equivalently, the direction from the origin to the point) in
the n-dimensional Cartesian space. A real number in R is also known
as a scalar, as opposed to vectors in Rn where n > 1.

20.1.1 Vector Space

x

y

x⃗ = (2, 1)

y⃗ = (1, 2)

x⃗ + y⃗ = (3, 3)

Figure 20.2: A visualization of x⃗ + y⃗
where x⃗ = (2, 1) and y⃗ = (1, 2).

We are interested in two operations defined on vectors — vector
addition and scalar multiplication. Given vectors x⃗ = (x1, x2, . . . , xn)

and y⃗ = (y1, y2, . . . , yn) and a scalar c ∈ R, the vector addition is
defined as

x⃗ + y⃗ = (x1 + y1, x2 + y2, . . . , xn + yn) ∈ Rn

where we add each of the coordinates element-wise. As shown in
Figure 20.2, vector addition is the process of finding the diagonal
of the parallelogram made by the two vectors x⃗ and y⃗. The scalar
multiplication is similarly defined as

c⃗x = (cx1, cx2, . . . , cxn) ∈ Rn

x

y

x⃗ = (4, 2)0.5⃗x = (2, 1)

Figure 20.3: A visualization of 0.5⃗x
where x⃗ = (4, 2).

As shown in Figure 20.3, scalar multiplication is the process of
scaling one vector up or down.

Rn is closed under these two operations — i. e., the resulting
vector of either operation is still in Rn. Any subset S of Rn that is
closed under vector addition and scalar multiplication is known as a
subspace of Rn.

246 introduction to machine learning lecture notes for cos 324 at princeton university

20.1.2 Inner Product

The inner product is defined as

x⃗ · y⃗ = x1y1 + x2y2 + . . . + xnyn =
n

∑
i=1

xiyi ∈ R

Closely related to the inner product is the norm of a vector, which
measures the length of it. It is defined as ∥⃗x∥ =

√
x⃗ · x⃗. 1 1 There are many other definitions of a

norm. This particular one is called an ℓ2
norm.Proposition 20.1.1. The inner product satisfies the following properties:

• Symmetry: x⃗ · y⃗ = y⃗ · x⃗

• Linearity: (a1⃗x1 + a2⃗x2) · y⃗ = a1 (⃗x1 · y⃗) + a2 (⃗x2 · y⃗)

and the norm satisfies the following property:

• Absolute Homogeneity: ∥a⃗x∥ = |a| ∥⃗x∥

20.1.3 Linear Independence

Any vector of the form

a1⃗x1 + a2⃗x2 + . . . + ak⃗xk

where ai’s are scalars and x⃗i’s are vectors is called a linear combination
of the vectors x⃗i’s. Notice that the zero vector 0⃗ (i. e., the vector with
all zero entries) can always be represented as a linear combination of
an arbitrary collection of vectors, if all ai’s are chosen as zero. This
is known as a trivial linear combination, and any other choice of ai’s is
known as a non-trivial linear combination.

Definition 20.1.2. k vectors x⃗1, x⃗2, . . . , x⃗k ∈ Rn are called linearly
dependent if 0⃗ can be represented as a non-trivial linear combination of the
vectors x⃗1, . . . , x⃗k; or equivalently, if one of the vectors can be represented as
a linear combination of the remaining k− 1 vectors. The vectors that are not
linearly dependent with each other are called linearly independent.

Consider the following analogy. Imagine trying to have a family
style dinner at a fast food restaurant, where the first person orders a
burger, the second person orders a chilli cheese fries, and the third
person orders a set menu with a burger and a chili cheese fries. The
third person’s order did not contribute to the diversity of the food
on the dinner table. Similarly, if some set of vectors are linearly
dependent, it means that at least one of the vectors is redundant.

Example 20.1.3. The set {(−1, 2), (3, 0), (1, 4)} of three vectors is linearly
dependent because

(1, 4) = 2 · (−1, 2) + (3, 0)

can be represented as the linear combination of the remaining two vectors.

linear algebra 247

Example 20.1.4. The set {(−1, 2, 1), (3, 0, 0), (1, 4, 1)} of three vectors is
linearly independent because there is no way to write one vector as a linear
combination of the remaining two vectors.

20.1.4 Span

Definition 20.1.5. The span of a set of vectors x⃗1, . . . , x⃗k is the set of all
vectors that can be represented as a linear combination of x⃗i’s.

Example 20.1.6. (1, 4) is in the span of {(−1, 2), (3, 0)} because

(1, 4) = 2 · (−1, 2) + (3, 0)

Example 20.1.7. (1, 4, 1) is not in the span of {(−1, 2, 1), (3, 0, 0)} because
there is no way to choose a1, a2 ∈ R such that

(1, 4, 1) = a1(−1, 2, 1) + a2(3, 0, 0)

The span is also known as the subspace generated by the vectors
x⃗1, . . . , x⃗k. This is because if you add any two vectors in the span, or
multiply one by a scalar, it is still in the span (i. e., the span is closed
under vector addition and scalar multiplication).

Example 20.1.8. In the R3, the two vectors (1, 0, 0) and (0, 1, 0) span the
2-dimensional XY-plane. Similarly, the vectors (1, 0, 1) and (0, 2, 1) span
the 2-dimensional plane 2x + y− 2z = 0. 2 2 The term dimension will be formally

defined soon. Here, we rely on your
intuition.In Example 20.1.8, we see examples where 2 vectors span a 2-

dimensional subspace. In general, the dimension of the subspace
spanned by k vectors can go up to k, but it can also be strictly smaller
than k. This is related to the linear independence of the vectors.

Proposition 20.1.9. Given k vectors, x⃗1, . . . , x⃗k ∈ Rn, there is a maximum
number d ≥ 1 such that there is some subcollection x⃗i1 , . . . , x⃗id of these
vectors that are linearly independent. Then

span(⃗x1, . . . , x⃗k) = span(⃗xi1 , . . . , x⃗id) (20.1)

is a d-dimensional subspace of Rn.
Conversely, if we know that the span of the k vectors is a d-dimensional

subspace, then the maximum number of vectors that are linearly indepen-
dent with each other is d, and any subcollection of linearly independent d
vectors satisfies (20.1).

Proposition 20.1.9 states that the dimension of the span of some
set of k vectors is equivalent to the maximum number d of linearly
independent vectors. It also states that the span of the k vectors is
equal to the span of the linearly independent d vectors, meaning all
of the information is captured by the d vectors; the remaining k− d

248 introduction to machine learning lecture notes for cos 324 at princeton university

vectors are just redundancies. But trying to directly compute the
maximum number of linearly independent vectors is inefficient —
it may require checking the linear independence of an exponential
number of subsets of the vectors. In the next section, we discuss a
concept called matrix rank that is very closely related to this topic.

20.1.5 Orthogonal Vectors

Definition 20.1.10. If vectors x⃗1, . . . , x⃗k ∈ Rn satisfy x⃗i · x⃗j = 0 for
any i ̸= j, then they are called orthogonal vectors. In particular, if they
also satisfy the condition that ∥⃗xi∥ = 1 for each i, then they are also
orthonormal.

In Rn, orthogonal vectors form a 90 degree angle with each other.

Example 20.1.11. The two vectors (1, 0), (0, 2) are orthogonal. So are the
vectors (1, 2), (−2, 1).

x

y

x⃗ = (1, 2)y⃗ = (−2, 1)

Figure 20.4: A visualization of orthogo-
nal vectors x⃗ = (1, 2) and y⃗ = (−2, 1).

Given any set of orthogonal vectors, it is possible to transform it
into a set of orthonormal vectors, by normalizing each vector (i. e.,
scale it such that the norm is 1).

20.1.6 Basis

Definition 20.1.12. A collection {⃗x1, . . . , x⃗k} of linearly independent
vectors in Rn that span a set S is known as a basis of S. In particular, if
the vectors of the basis are orthogonal/orthonormal, the basis is called an
orthogonal/orthonormal basis of S.

The set S in Definition 20.1.12 can be the entire vector space Rn,
but it can also be some subspace of Rn with a lower dimension.

Example 20.1.13. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of three vec-
tors is a basis for R3. When we exclude the last vector (0, 0, 1), the set
{(1, 0, 0), (0, 1, 0)} is a basis of the 2-dimensional XY-plane in R3.

Given some subspace S, the basis of S is not unique. However,
every basis of S must have the same size — this size is called the
dimension of S. For a finite dimensional space S, it is known that
there exists an orthogonal basis of S. There is a well-known algorithm
— Gram-Schmidt process — that can transform an arbitrary basis
into an orthogonal basis (and eventually an orthonormal basis via
normalization).

20.1.7 Projection

Vector projection is the key concept used in the Gram-Schmidt process
that computes an orthogonal basis. Given a fixed vector a⃗, it decom-
poses any given vector x⃗ into a sum of two components — one that is

linear algebra 249

orthogonal to a⃗ (“distinct information”) and the other that is parallel
to a⃗ (“redundant information”).

Definition 20.1.14 (Vector Projection). Fix a vector a⃗ ∈ Rn. Given
another vector x⃗, the projection of x⃗ on a⃗ is defined as

proj⃗a (⃗x) =
x⃗ · a⃗
a⃗ · a⃗ a⃗

and is parallel to the fixed vector a⃗. The remaining component

x⃗− proj⃗a (⃗x)

is called the rejection of x⃗ from a⃗ and is orthogonal to a⃗.

Proposition 20.1.15 (Pythagorean Theorem). If x⃗, y⃗ are orthogonal, then

∥⃗x + y⃗∥2 = ∥⃗x∥2 + ∥⃗y∥2

In particular, given two vectors a⃗, x⃗, we have

∥⃗x− proj⃗a (⃗x)∥2 = ∥⃗x∥2 − ∥proj⃗a (⃗x)∥2

Now assume we are given a space S and a subspace T ⊂ S. Then
a vector x⃗ ∈ S in the larger space does not necessarily belong in T.
Instead, we can find a vector x⃗′ ∈ T that is “closest” to x⃗ using vector
projection. 3 3 We ask you to prove this in Prob-

lem 7.1.3.
Definition 20.1.16 (Vector Projection on Subspace). Given a space S, its
subspace T with an orthogonal basis {⃗t1, . . . ,⃗ tk}, and a vector x⃗ ∈ S, the
projection of x⃗ on T is defined as

projT (⃗x) =
k

∑
i=1

proj⃗ti
(⃗x) =

k

∑
i=1

x⃗ · t⃗i

t⃗i · t⃗i
t⃗i

the sum of projection of x⃗ on each of the basis vectors of T.

20.2 Matrices

Matrices are a generalization of vectors in 2-dimension — a m × n
matrix is a collection of numbers assembled in a rectangular shape
of m rows and n columns. The set of all real matrices of size m× n
is denoted as Rm×n. A vector of size n is customarily understood as
a column vector — that is, a n× 1 matrix. Also, if m = n, then the
matrix is known as a square matrix.

20.2.1 Matrix Operation

Similarly to vector operations, we are interested in four matrix opera-
tions — matrix addition, scalar multiplication, matrix multiplication,

250 introduction to machine learning lecture notes for cos 324 at princeton university

and transpose. Given a scalar c ∈ R and matrices X, Y ∈ Rm×n such
that

X =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...
xm,1 xm,2 · · · xm,n

 and Y =


y1,1 y1,2 · · · y1,n

y2,1 y2,2 · · · y2,n
...

...
. . .

...
ym,1 ym,2 · · · ym,n


the matrix addition is defined as

X + Y =


x1,1 + y1,1 x1,2 + y1,2 · · · x1,n + y1,n

x2,1 + y2,1 x2,2 + y2,2 · · · x2,n + y2,n
...

...
. . .

...
xm,1 + ym,1 xm,2 + ym,2 · · · xm,n + ym,n


where we add each of the coordinates element-wise. The scalar
multiplication is similarly defined as

cX =


cx1,1 cx1,2 · · · cx1,n

cx2,1 cx2,2 · · · cx2,n
...

...
. . .

...
cxm,1 cxm,2 · · · cxm,n


The matrix multiplication XY is defined for a matrix X ∈ Rℓ×m and
a matrix Y ∈ Rm×n; that is, when the number of columns of the
first matrix is equal to the number of rows of the second matrix. The
output XY of the matrix multiplication will be a ℓ× n matrix. The (i, j)
entry of the matrix XY is defined as

(XY)i,j =
m

∑
k=1

xi,kyk,j

That is, it is defined as the inner product of the i-th row of X and the
j-th column of Y.

Proposition 20.2.1. The above matrix operations satisfy the following
properties:

• c(XY) = (cX)Y = X(cY)

• (X1 + X2)Y = X1Y + X2Y

• X(Y1 + Y2) = XY1 + XY2

Finally, the transpose X⊺ ∈ Rn×m of a matrix X ∈ Rm×n is the re-
sulting matrix when the entries of X are reflected down the diagonal.
That is,

(X⊺)i,j = Xj,i

linear algebra 251

Proposition 20.2.2. The transpose of a matrix satisfies the following
properties:

• (X + Y)⊺ = X⊺ + Y⊺

• (cX)⊺ = c(X⊺)

• (XY)⊺ = Y⊺X⊺

20.2.2 Matrix and Linear Transformation

Recall that a vector of size n is often considered a n × 1 matrix.
Therefore, given a matrix A ∈ Rm×n and a vector x⃗ ∈ Rn, we
can define the following operation

y⃗ = A⃗x ∈ Rm

through matrix multiplication. This shows that A can be understood
as a mapping from Rn to Rm. We see that ai,j (the (i, j) entry of the
matrix A) is the coefficient of xj (the j-th coordinate of the input
vector) when computing yi (the i-th coordinate of the output vector).
Since each yi is linear in terms of each xj, we say that A is a linear
transformation.

20.2.3 Matrix Rank

Matrix rank is one of the most important concepts in basic linear
algebra.

Definition 20.2.3. Given a matrix A ∈ Rm×n of m rows and n columns,
the number of linearly independent rows is known to be always equal to the
number of linearly independent columns. This common number is known as
the rank of A and is denoted as rank(A).

The following property of rank is implied in the definition, but we
state it explicitly as follows.

Proposition 20.2.4. The rank of a matrix is invariant to reordering rows/-
columns.

Example 20.2.5. Consider the matrix M =

[
1 1 −2 0
−1 −1 2 0

]
, we notice

that the second row is simply the first row negated, and thus the rank of M
is 1.

Example 20.2.6. Consider the matrix M =

1 0 0
0 1 0
0 0 1

, the rank of M is 3

because all the row (or column) vectors are linearly independent (they form
basis vectors of R3).

252 introduction to machine learning lecture notes for cos 324 at princeton university

Example 20.2.7. Consider the matrix M =

 1 0 1
−2 −3 1
3 3 0

, the rank of

M is 2 because the third row can be expressed as the second row subtracted
from the first row.

When we interpret a matrix as a linear transformation, the rank
measures the dimension of the output space.

Proposition 20.2.8. A ∈ Rm×n has rank k if and only if the image of the
linear transformation, i.e., the subspace

{A⃗x | x⃗ ∈ Rn}

of Rm, has dimension k.

There are many known algorithms to compute the rank of a
matrix. Examples include Gaussian elimination or certain decom-
positions (expressing a matrix as the product of other matrices with
certain properties). Given m vectors in Rn, we can find the maximum
number of linearly independent vectors by constructing a matrix with
each row equal to each vector 4 and finding the rank of that matrix. 4 By Proposition 20.2.4, the order of the

rows can be arbitrary.

20.2.4 Eigenvalues and Eigenvectors

Say we have a square matrix A ∈ Rn×n. This means that the linear
transformation expressed by A is a mapping from Rn to itself. For
most vectors x⃗ ∈ Rn, x⃗ is mapped to a very “different” vector A⃗x
under this mapping. However, some vectors are “special” and they
are mapped to another vector with the same direction.

Definition 20.2.9 (Eigenvalue/Eigenvector). Given a square matrix
A ∈ Rn×n, if a vector v⃗ ∈ Rn satisfies

Av⃗ = λ⃗v

for some scalar λ ∈ R, then v⃗ is known as an eigenvector of A, and λ is its
corresponding eigenvalue.

Each eigenvector can only be associated with one eigenvalue, but
each eigenvalue may be associated with multiple eigenvectors.

Proposition 20.2.10. If x⃗, y⃗ are both eigenvectors of A for the same eigen-
value λ, then any linear combination of them is also an eigenvector for A
with the same eigenvalue λ.

Proposition 20.2.10 shows that the set of eigenvectors for a par-
ticular eigenvalue forms a subspace, known as the eigenspace of that
eigenvalue. The dimension of this subspace is known as the geometric
multiplicity of the eigenvalue. The following result ties together some
of the concepts we discussed so far.

linear algebra 253

Proposition 20.2.11 (Rank-Nullity Theorem). Given a square matrix
A ∈ Rn×n, the eigenspace of 0 is the set of all vectors that get mapped to
zero vector 0⃗ under the linear transformation A. This subspace is known as
the null space of A and its dimension (i.e., the geometric multiplicity of 0)
is known as the nullity of A and is denoted as nullity(A). Then

rank(A) + nullity(A) = n

20.3 Advanced: SVD/PCA Procedures

Now we briefly introduce a procedure called Principal Component
Analysis (PCA), which is commonly used in low-dimensional repre-
sentation as in Chapter 7.

We are given vectors v⃗1, v⃗2, . . . , v⃗N ∈ Rd and a positive integer k
and wish to obtain the low-dimensional representation in the sense
of Definition 7.1.1 that minimizes ϵ. This is what we mean by “best”
representation.

Theorem 20.3.1. The best low-dimensional representation consists of
k eigenvectors corresponding to the top k eigenvalues (largest numerical
values) of the matrix AA⊺ where the columns of A are v⃗1, v⃗2, . . . , v⃗N .

Theorem 20.3.1 shows what the best low-dimensional represen-
tation is, but it does not show how to compute it. It turns out some-
thing called the Singular Value Decomposition (SVD) of the matrix A
is useful. It is known that any matrix A can be decomposed into the
following product

A = UΣV⊺

where Σ is a diagonal matrix with entries equal to the square root
of the nonzero eigenvalues of AA⊺ and the columns of U are the
orthonormal eigenvectors of AA⊺, where the i-th column is the
eigenvector that corresponds to the eigenvalue at the i-th diagonal
entry of Σ. There are known computationally efficient algorithms that
will perform the SVD of a matrix.

In this section, we will prove Theorem 20.3.1 for the case where
k = 1. To do this, we need to introduce some preliminary results.

Theorem 20.3.2. If a square matrix A ∈ Rn×n is symmetric (i. e., A = A⊺),
then there is an orthonormal basis of Rn consisting of n eigenvectors of A. 5 5 This is known as the Spectral Theo-

rem.
Proof. A real symmetric matrix is known to be diagonalizable, and
diagonalizable matrices are known to have n eigenvectors that form a
basis for Rn. In particular, the eigenvectors are linearly independent,
meaning the eigenvectors corresponding to a particular eigenvalue
λ will form a basis for the corresponding eigenspace. Through the
Gram-Schmidt process, we can replace some of these eigenvectors

254 introduction to machine learning lecture notes for cos 324 at princeton university

such that the eigenvectors for λ are orthogonal to each other. That
is, if u⃗, v⃗ are eigenvectors for the same eigenvalue λ, then u⃗ · v⃗ = 0.
Now assume u⃗, v⃗ are two eigenvectors with distinct eigenvalues λ, µ

respectively. Then

λu⃗ · v⃗ = (λu⃗) · v⃗ = (Au⃗) · v⃗ =
n

∑
i,j=1

ai,jujvi

= u⃗ · (A⊺⃗v) = u⃗ · (Av⃗) = u⃗ · (µ⃗v) = µu⃗ · v⃗

where the third and the fourth equality can be verified by direct
computation. Since λ ̸= µ, we conclude u⃗ · v⃗ = 0. We have now
showed that u⃗ · v⃗ = 0 for any pair of eigenvectors u⃗, v⃗ — this means
that the basis of eigenvectors is also orthogonal. After normalization,
the basis can be made orthonormal.

The following result is not necessarily needed for the proof of
Theorem 20.3.1, but the proofs are similar.

Theorem 20.3.3. If A ∈ Rn×n is symmetric, then the unit vector x⃗ that
maximizes ∥A⃗x∥ is an eigenvector of A with an eigenvalue whose absolute
values is the largest out of all eigenvalues.

Proof. By Theorem 20.3.2, there is an orthonormal basis {⃗u1, . . . , u⃗n}
of Rn consisting of eigenvectors of A. Then any vector x⃗ is in the
span of the eigenvectors and can be represented as the linear combi-
nation

x⃗ = α1u⃗1 + α2u⃗2 + . . . + αnu⃗n

for some scalars αi’s. Then

∥⃗x∥2 = x⃗ · x⃗
= (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n) · (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

=
n

∑
i,j=1

αiαj (⃗ui · u⃗j)

=
n

∑
i=1

α2
i

where for the last equality, we use the fact that u⃗i’s are orthonormal
— that is, u⃗i · u⃗j = 0 if i ̸= j and u⃗i · u⃗i = 1. Since x⃗ has norm 1, we see

that
n
∑

i=1
α2

i = 1. Now notice that

A⃗x = A(α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

= α1Au⃗1 + α2Au⃗2 + . . . + αnAu⃗n

= α1λ1u⃗1 + α2λ2u⃗2 + . . . + αnλnu⃗n

linear algebra 255

where λi is the eigenvalue for the eigenvector u⃗i. Following a similar
computation as above,

∥A⃗x∥2 =
n

∑
i=1

α2
i λ2

i

The allocation of weights αi that will maximize
n
∑

i=1
α2

i λ2
i while main-

taining
n
∑

i=1
α2

i = 1 is assigning αi = ±1 to the eigenvalue λi that has

the highest value of λ2
i . This shows that the unit vector x⃗ = ±u⃗i is an

eigenvector with the eigenvalue λi.

We now prove one last preliminary result.

Theorem 20.3.4. For a matrix A ∈ Rm×n, the matrix AA⊺ is symmetric
and its eigenvalues are non-negative.

Proof. The first part can be verified easily by observing that

(AA⊺)⊺ = (A⊺)⊺A⊺ = AA⊺

Now assume x⃗ is an eigenvector of A with eigenvalue λ. Then

AA⊺⃗x = λ⃗x

We multiply by x⃗⊺ on the left on both sides of the equation.

x⃗⊺AA⊺⃗x = x⃗⊺(λ⃗x) = λ ∥⃗x∥2

At the same time, notice that

x⃗⊺AA⊺⃗x = (A⊺⃗x)⊺(A⊺⃗x) = ∥A⊺⃗x∥2

which shows that
λ ∥⃗x∥2 = ∥A⊺⃗x∥2

Since ∥⃗x∥2 , ∥A⊺⃗x∥2 are both non-negative, λ is also non-negative.

We are now ready to (partially) prove the main result of this
section.

Proof of Theorem 20.3.1. We prove the case where k = 1. Recall
that we want to find a vector u⃗ that minimizes the error of the low-
dimensional representation:

N

∑
i=1

∥∥∥⃗vi − ̂⃗vi

∥∥∥2

where ̂⃗vi is the low-dimensional representation of v⃗i that can be
computed as ̂⃗vi = (⃗vi · u⃗)⃗u

256 introduction to machine learning lecture notes for cos 324 at princeton university

by the result of Problem 7.1.3. Now by Proposition 20.1.15, we see
that

N

∑
i=1
∥⃗vi − (⃗vi · u⃗)⃗u∥2 =

N

∑
i=1

(
∥⃗vi∥2 − ∥(⃗vi · u⃗)⃗u∥2

)
=

N

∑
i=1

(
∥⃗vi∥2 − (⃗vi · u⃗)2

)
Since we are already given a fixed set of vectors v⃗i, we cannot change
the values of ∥⃗vi∥2. Therefore, minimizing the last term of the equa-

tion above amounts to maximizing
N
∑

i=1
(⃗vi · u⃗)2. Notice that

N

∑
i=1

(⃗vi · u⃗)2 = ∥A⊺u⃗∥2 = u⃗⊺AA⊺u⃗

By Theorem 20.3.2 and by Theorem 20.3.4, there is an orthonormal
basis {⃗u1, . . . , u⃗n} of Rn that consist of the eigenvectors of the matrix
AA⊺. Let λi be the eigenvalue corresponding to the eigenvector u⃗i.
Then similarly to the proof of Theorem 20.3.3, we can represent any
vector u⃗ as a linear combination of the eigenvectors as

u⃗ = α1u⃗1 + α2u⃗2 + . . . + αnu⃗n

Then we have
n
∑

i=1
α2

i = 1 and

u⃗⊺AA⊺u⃗ = (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)
⊺AA⊺(α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)

= (α1u⃗1 + α2u⃗2 + . . . + αnu⃗n)
⊺(α1λ1u⃗1 + α2λ2u⃗2 + . . . + αnλnu⃗n)

=
n

∑
i,j=1

αiαjλj (⃗ui · u⃗j)

=
n

∑
i=1

α2
i λi

Again, the allocation of αi’s that maximize
n
∑

i=1
α2

i λi while maintaining

n
∑

i=1
α2

i = 1 is assigning αi = ±1 to the eigenvector corresponding to

the highest value of λi.

	I Supervised Learning
	Linear Regression: An Introduction
	A Warm-up Example
	Using Linear Regression for Sentiment Prediction
	Importance of Featurization
	Linear Regression in Python Programming

	Statistical Learning: What It Means to Learn
	A Warm-up Example
	Summary of Statistical Learning
	Implications for Applications of Machine Learning

	Optimization via Gradient Descent
	Gradient Descent
	Implications of the Linearity of a Gradient
	Regularizers
	Gradient Descent in Python Programming

	Linear Classification
	General Form of a Linear Model
	Logistic Regression
	Support Vector Machines
	Multi-class Classification (Multinomial Regression)
	Regularization with SVM
	Linear Classification in Python Programming

	Exploring ``Data Science'' via Linear Regression
	Boston Housing: Machine Learning in Economics
	fMRI Analysis: Machine Learning in Neuroscience

	II Unsupervised Learning
	Clustering
	Unsupervised Learning
	Clustering
	k-Means Clustering
	Clustering in Programming

	Low-Dimensional Representation
	Low-Dimensional Representation with Error
	Application 1: Stylometry
	Application 2: Eigenfaces

	n-Gram Language Models
	Probabilistic Model of Language
	n-Gram Models
	Start and Stop Tokens
	Testing a Language Model

	Matrix Factorization and Recommender Systems
	Recommender Systems
	Recommender Systems via Matrix Factorization
	Implementation of Matrix Factorization

	III Deep Learning
	Introduction to Deep Learning
	A Brief History
	Anatomy of a Neural Network
	Why Deep Learning?
	Multi-class Classification

	Feedforward Neural Network and Backpropagation
	Forward Propagation: An Example
	Forward Propagation: The General Case
	Backpropagation: An Example
	Backpropagation: The General Case
	Feedforward Neural Network in Python Programming

	Convolutional Neural Network
	Introduction to Convolution
	Convolution in Computer Vision
	Backpropagation for Convolutional Nets
	CNN in Python Programming

	IV Reinforcement Learning
	Introduction to Reinforcement Learning
	Basic Elements of Reinforcement Learning
	Useful Resource: MuJoCo-based RL Environments
	Illustrative Example: Optimum Cake Eating

	Markov Decision Process
	Markov Decision Process (MDP)
	Policy and Markov Reward Process
	Optimal Policy

	Reinforcement Learning in Unknown Environments
	Model-Free Reinforcement Learning
	Atari Pong (1972): A Case Study
	Q-learning
	Applications of Reinforcement Learning
	Deep Reinforcement Learning

	V Advanced Topics
	Machine Learning and Ethics
	Facebook's Suicide Prevention
	Racial Bias in Machine Learning
	Conceptions of Fairness in Machine Learning
	Limitations of the ML Paradigm
	Final Thoughts

	Deep Learning for Natural Language Processing
	Word Embeddings
	N-gram Model Revisited

	VI Mathematics for Machine Learning
	Probability and Statistics
	Probability and Event
	Random Variable
	Central Limit Theorem and Confidence Intervals
	Final Remarks

	Calculus
	Calculus in One Variable
	Multivariable Calculus

	Linear Algebra
	Vectors
	Matrices
	Advanced: SVD/PCA Procedures

